
Using Symbolic Summation and Polynomial

Algebra for Imperative Program Verification

in Theorema 1

Laura Kovács, Tudor Jebelean a and Deepak Kapur b

aResearch Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria,
Institute e-Austria, Timişoara, Romania

bDepartment of Computer Science,
School of Engineering,

University of New Mexico

Abstract

An approach utilizing combinatorics, algebraic methods and logic is presented for
generating polynomial loop invariants for a family of imperative programs operating
on numbers. The approach has been implemented in the Theorema system, which
seems ideal for such an integration given that it is built on top of the computer
algebra system Mathematica, has a theorem prover for first-order logic as well as
for mechanizing induction. These invariant assertions are then used for generating
the necessary verification conditions as first-order logical formulae, based on Hoare
logic and the weakest precondition strategy. The approach has been successfully
tried on many programs implementing interesting number theoretic algorithms. It
is also shown that for a subfamily of loops, called P-solvable loops, the approach is
complete in generating polynomial equations as invariants.

Key words:
program verification, invariant generation, symbolic summation, Gröbner Bases

Email addresses:
{kovacs,jebelean}@risc.uni-linz.ac.at (Laura Kovács, Tudor Jebelean),
kapur@cs.unm.edu (Deepak Kapur).
1 The program verification project is supported by BMBWK (Austrian Ministry
of Education, Science, and Culture), BMWA (Austrian Ministry of Economy and
Work) and by MEC (Romanian Ministry of Education and Research) in the frame
of the e-Austria Timişoara project. The Theorema system is supported by FWF
(Austrian National Science Foundation) - SFB project F1302.

Preprint submitted to Elsevier 4 November 2006



1 Introduction

Loop invariants are the key to deductive verification of programs. Automati-
cally checking and finding invariants and intermediate assertions are crucial in
the analysis and verification of sequential programs. This paper discusses an
approach for automatically generating polynomial equations as loop invariants
in the Theorema system [2]. Exploiting the symbolic manipulation capabilities
of the computer algebra system Mathematica on which Theorema resides, it is
possible to use several techniques. These include solving recurrence relations
and manipulating polynomial relations, and most importantly, combine them
with automated methods for theorem proving in first-order predicate calculus,
domain specific reasoning, as well as induction theorem proving since they are
supported in Theorema.

A family of loops, called P-solvable loops, has been identified, for which the
value of each program variable can be expressed as a polynomial in terms of
the initial values of variables (when the loop is entered), loop counter, and
some new variables that are polynomially related. It is shown that for such
loops, polynomial equations as loop invariants can be automatically generated.
Further, if the body of such loops includes assignments and conditionals, then
the approach generates a complete set of polynomial equations as invariants
from which any polynomial equation serving as an invariant can be derived.
Many nontrivial number-theoretic algorithms can be shown to be implemented
using P-solvable loops.

The approach has been implemented in Theorema and successfully attempted
on a number of programs. We have also implemented a simple imperative pro-
gramming environment in Theorema, and thus we are able to integrate in the
system the verification of procedural programs, by using a verification condi-
tion generator (VCG) based on Hoare logic [14] and the weakest precondition
method [10,6]. Since the creative part of imperative program verification is the
“guessing” of loop invariants and termination terms (ranking functions), the
proposed approach makes Theorema more amenable to imperative program
verification.

The key steps of the proposed approach are: (i) assignment statements from
a loop body are extracted which are used to generate a system of recurrence
equations describing the behavior of the loop’s variables that are changed
at each iteration; (ii) methods from algebraic combinatorics implemented in
Mathematica [28,19] are used to exactly solve the recurrence equations, thus
producing a closed form (i.e. solutions that are functions of the loop counter)
for each loop variable; these closed forms however may be expressed in terms
of exponentials (which are loop counters) of algebraic numbers; (iii) alge-
braic dependencies among exponentials of algebraic numbers occurring in the

2



closed forms of the loop variables are derived using algebraic and combina-
torial methods implemented in Mathematica [20]. The result of these steps is
that every program variable can be expressed as a polynomial in terms of the
initial values of variables (when the loop is entered), loop counter, and some
new variables that are polynomially related. Loop counters are then elimi-
nated using Gröbner basis algorithm [1] to derive a finite set of polynomial
identities among the program variables as invariants. From this finite set, any
polynomial identity serving a loop invariant can be derived.

The obtained invariants, together with the user-asserted non-polynomial in-
variant properties, are used further in the verification process for generat-
ing automatically the necessary verification conditions, and to prove them by
the available Theorema provers. Polynomial identities found by an automatic
analysis are useful for program verification, as they provide non-trivial valid
assertions about the program, and thus significantly simplify the verification
task. Finding valid polynomial identities (i.e. invariants) has applications in
many classical data flow analysis problem [26], e.g. constant propagation, dis-
covery of symbolic constants, discovery of loop induction variables, etc.

We have tested the proposed approach on a number of examples in imperative
program verification [23]; some of these example are presented in this paper.

The current paper extends earlier papers [24,25] by a correctness proof of the
invariant generation algorithm for P-solvable loops with conditionals.

The rest of the paper is organized as follows: Section 2 gives a brief overview
on related work for invariant generation, followed by section 3 containing the
presentation of some theoretical notions that are used further in the paper.
In section 4 we present our method for polynomial invariant generation, and
illustrate the algorithm on a concrete example in section 5, presenting also the
imperative verification and programming environment in Theorema. Section
6 concludes with some ideas for the future work.

2 Related Work

Research into methods for automatically generating loop invariants goes a long
way, starting with the works [11,17]. However, success was somewhat limited
for cases where only few arithmetic operations (mainly additions) among pro-
gram variables were involved. Recently, due to the increased computing power
of hardware, as well as advances in methods for symbolic manipulation and
automated theorem proving, the problem of automated invariant generation
is once again getting considerable attention. Particularly, using the abstract
interpretation framework [4], many researchers [27,29,30,16] have proposed

3



methods for computing automatically polynomial invariant identities using
polynomial ideal theoretic algorithms.

In [27,30], the invariant generation problem is translated to a constraint solving
problem. In [30], non-linear (algebraic) invariants are proposed as templates
with parameters; constrains on parameters are generated (by forward propa-
gation) and solved using the theory of ideals over polynomial rings. In [27],
backward propagation is performed for non-linear programs (programs with
non-linear assignments) without branch conditions, by computing a polyno-
mial ideal that represents the weakest precondition for the validity of a generic
polynomial relation at the target program point. Both approaches need to fix
a priori the degree of a generic polynomial template being considered as an
invariant.

A related approach for polynomial invariant generation without any a pri-
ori bound on the degree of polynomials is presented in [29]. It is observed
that polynomial invariants constitute an ideal. Thus, the problem of finding
all polynomial invariants reduces to computing a finite basis of the associ-
ated polynomial invariant ideal. This ideal is approximated using a fix-point
procedure by computing iteratively the Gröbner bases of a certain polyno-
mial ideal. The fixed point procedure is shown to terminate when the list of
(conditional) assignments present in the loop constitutes a solvable mapping.
In [16], a method for invariant generation using quantifier-elimination [3,8]
is proposed. A parameterized invariant formula at any given control point is
hypothesized and constraints on parameters are generated by considering all
paths through that control point. Solutions of these constraints on parame-
ters are then used to substitute for parameters in a parameterized invariant
formula to generate invariants.

In our work we do not need to fix a priori the degree of a polynomial assertion,
and do not use the abstract interpretation framework either. Instead, recur-
rence relations expressing the value of each program variable at the end of any
iteration are formulated and solved exactly. Structural conditions are imposed
on recurrence relations so that their closed form solutions can be obtained by
advanced symbolic summation techniques. Since these closed form expressions
can involve exponentials of algebraic numbers, algebraic dependencies among
these exponentials need to be identified which can be done automatically.
Finally, for eliminating the loop counter from these closed form solutions ex-
pressed as polynomials, a Gröbner basis computation is performed; however,
unlike, [29], we do not need to perform Gröbner bases computations multiple
times, but only once. The proposed approach is very much in the spirit of the
earlier works [7,31,18] from the 70’s.

4



3 Theoretical Preliminaries

This section contains a collection of some well-known definitions and facts
about linear recurrences, ideals and algebraic dependencies, which are needed
later on. For additional details see [5,9,20].

Throughout this paper we assume that K is a field of characteristic zero (e.g. Q,
R, etc.), and by K̄ we denote its algebraic closure. All rings are commutative.

Recurrences.

Definition 3.1 Gosper-summable recurrences [12].
A Gosper-summable recurrence f(n) in K is a recurrence of the form:

f(n + 1) = f(n) + h(n + 1) (n ≥ 1), (1)

where h(n) is a hypergeometric term in K, e.g. h(n) can be a product of fac-
torials, binomials, pochhammers, rational-function terms and exponential ex-
pressions in the summation variable n (all these factors can be raised to an
integer power).

The closed-form solution of a Gosper-summable recurrence can be exactly
computed [12]; for doing so, we use the recurrence solving package zb, imple-
mented in Mathematica by the RISC Combinatorics group [28].

Example 3.1 Given the Gosper-summable recurrence,

x(n + 1) = x(n) + n ∗ 2n, n ≥ 0

with inital value x(0), we obtain its closed form:

x(n) = x(0) + 2 + 21+n(n− 1).

Definition 3.2 C-finite recurrences [32,9].
A C-finite recurrence f(n) in K is a (homogeneous) linear recurrence with

constant coefficients, i.e. it is of the form:

f(n + r) = a0f(n) + a1f(n + 1) + . . . + ar−1f(n + r − 1) (n ≥ 1), (2)

where r is the order of the recurrence, and a0, . . . , ar−1 are constants from K,
with a0 6= 0.

By writing xi for each f(n + i), i = 0, . . . , r, the corresponding characteristic
polynomial c(x) of f(n) is:

c(x) = xr − a0 − a1x− · · · − ar−1x
r−1. (3)

5



A crucial and elementary fact about C-finite recurrences is that they always
admit a closed form solution (i.e. a solution that is expressed, without recur-
sion, as a function of the recurrence index) [9].

Proposition 3.1 Closed Form of C-finite Sequences.
The closed form of a C-finite sequence f(n) in K is:

f(n) = p1(n)θn
1 + · · ·+ ps(n)θn

s , (4)

where θ1, . . . , θs ∈ K̄ are the distinct roots of the characteristic polynomial of
f(n), and pi(n) is a polynomial in n whose degree is less than the multiplicity
of the root θi (i = 1, . . . , s).

For obtaining the closed-form solutions of C-finite recurrences we use the
SumCracker package, a Mathematica implementation by the RISC Combi-
natorics group [19].

Ideals. Algebraic Dependencies.

Definition 3.3 Ideals.
Let R be a ring. A set A ⊆ R is called an ideal in R iff for all a1, a2, a ∈
A, p ∈ R we have a1 + a2 ∈ A and pa ∈ A. We write A E R to denote that
A is an ideal in R.

For p1, . . . , pr ∈ R we denote by 〈p1, . . . , pr〉 the smallest ideal containing
p1, . . . , pr. If A = 〈p1, . . . , pr〉, we say that A is generated by p1, . . . , pr and
that p1, . . . , pr is a basis of A.

It is necessary for our work that we can effectively compute with ideals. This
is possible by using Buchberger’s algorithm for Gröbner basis computation
[1]. A Gröbner basis is a basis for an ideal that has special properties that
make it possible to answer algorithmically questions about ideals, such as
ideal membership of a polynomial, equality and inclusion of ideals, etc. A
detailed presentation of the Gröbner bases theory can be found in [1].

Definition 3.4 Algebraic Dependencies among Exponential Sequences.
Let θ1, . . . , θs ∈ K̄ be algebraic numbers, and their corresponding exponential
sequences θn

1 , . . . , θn
s ∈ K̄.

An algebraic dependency (or algebraic relation) [20] of these sequences is a
polynomial p such that

p(θn
1 , . . . , θn

s ) = 0, (∀n ≥ 1). (5)

Using results from [20], if the exponential sequences of the algebraic num-
bers θ1, . . . , θs are related algebraically, all their algebraic dependencies can
be obtained automatically. For doing so, first the set of all integer tuples

6



L = {(m1, . . . ,ms) ∈ Zs :
∏s

i=1 θmi
i = 1} is determined exhaustively, and then,

by computing the ideal
〈{ ∏s

i=1 xai
i − ∏s

i=1 xbi
i : a ∈ Ns, b ∈ Ns, a − b ∈ L

}〉
,

the algebraic dependencies among the exponential sequences is determined.
Example 3.1.

• The algebraic dependency among the exponential sequences of θ1 = 2 and
θ2 = 4 is: θ2n

1 − θn
2 = 0.

• There is no algebraic dependency among the exponential sequences of θ1 = 2
and θ2 = 3.

For automatically determining all algebraic dependencies among exponential
sequences, we use the Dependencies package [20] implemented in Mathematica
by the RISC combinatorics group.

4 Generation of Invariant Polynomial Identities

The algorithm for polynomial invariant generation presented in this paper
combines computer algebra and algorithmic combinatorics, in such a way that
the end of the invariant generation process all valid polynomial assertions of a
P-solvable loop are automatically obtained. The definition of P-solvable loops
is available in our earlier conference papers [24,25].

Informally, an imperative loop is a P-solvable imperative loop (to stand
for polynomial-solvable) iff the closed form solution of the loop variables are
linear combinations of geometric sequences θn ∈ K̄ with polynomial coeffi-
cients p(n) ∈ K (where n ∈ N is the loop counter and the coefficients of p(n)
are determined by the initial values of the loop variables), with the property
that there exist algebraic dependencies among all θn.

The class of P-solvable loops includes the simple situation when the expres-
sions in the assignment statements are affine mappings. Moreover, as presented
in equation (4), any closed form solution of a loop variable defined by a C-finite
recurrence is a linear combinations of terms of the form pi(n)θn

i . Hence, by im-
posing the restriction of having algebraic dependencies among the exponential
sequences θn

i , a loop with only C-finite assignments is P-solvable.

Our experience shows that most practical examples operating on numbers
exhibit the P-solvable loop property, hence the class of P-solvable loops covers
at least a significant part of practical programming.

Remark 4.1 At the current stage of our work, we consider loops with the
property that their assignment statements are either Gosper-summable, geo-
metric series, C-finite recurrences or can be handled by the technique of gener-

7



ating functions [13]. For solving these recurrences we use the mentioned Math-
ematica packages, implemented by the RISC Combinatorics group [28,19,20].

4.1 P-solvable Loops with Assignments Only

We present briefly our algorithm that finds all polynomial invariants for P-
solvable loops with assignments only. We denote by n the loop counter, and
by x1, . . . , xm (m > 1) the recursively changed loop variables. More details
can be found in [24,25].

Polynomial Invariant Generation for P-solvable Loops with Assign-
ments only

(1) Solving recurrences.
(a) Extract the recurrence equations of the loop variables from the body

of the P-solvable loop;
(b) By recurrence solving, obtain the system of closed forms of x1, . . . , xm

as polynomials in terms of initial values of variables, loop counter and
new variables representing exponential sequences of θj (j = 1, . . . , s);

(c) Introduce the notations: y0 = n, y1 = θn
1 , . . . , ys = θn

s , and determine
the algebraic dependencies A among y0, . . . , ys. Thus

xi(n) = qi(y0, y1, . . . , ys), i = 1, . . . ,m (6)

where qi ∈ K[y0, y1, . . . , ys], having their coefficients determined by
the initial values of xi.

(2) Polynomial invariant generation.
The generators of the ideal of polynomial relations among x1, . . . , xm are
computed from A and (6) by elimination of y0, . . . , ys using Gröbner ba-
sis w.r.t. a suitable elimination order.
Thus, our algorithm finds the generators of the ideal of polynomial rela-
tions from which any polynomial invariant can be derived.

The restrictions at the various steps of the algorithm are crucial, namely in
case that the recurrences cannot be solved exactly, or their closed forms do not
fulfill the P-solvable form, our algorithm fails in generating valid polynomial
relations among the loop variables.

4.2 P-solvable Loops with Conditionals and Assignments

We consider a generalization of the invariant generation algorithm from the
previous section, namely we present an invariant generation algorithm of P-

8



solvable loops with conditionals. The key idea is to do first program transfor-
mation (see Prop. 4.1), namely transform P-solvable loops with conditionals
(i.e. outer loops) into nested P-solvable loops with assignments only (i.e. in-
ner loops), and then apply the algorithm presented in the previous section to
obtain all polynomial invariants of the inner loops.

Proposition 4.1 Transformation Rule of Loops with Conditionals.
The P-solvable loop with conditionals and assignments

{I} While[b, c1; If[b1 Then c2 Else c3]; c4] {I ∧ ¬b} (7)

is equivalent with the P-solvable loop with nested P-solvable loops containing
only assignments:

{I}
While[b,

While[b ∧ b′1, c1; c2; c4];

While[b ∧ ¬b1′, c1; c3; c4]]

{I ∧ ¬b} (8)

where I is a loop invariant and b′1 represents condition b1 modified by the
assignment statement c1.
(The soundness proof of this rule is given in [23].)

What remains is to determine the relation between the polynomial invariants
of the P-solvable loop (7) and the polynomial identities of the inner loops from
(8). For doing so:

(i) first we show that the polynomial relations among the variables from an
arbitrary iteration of the outer loop (8) are determined by the intersection
of ideals of the polynomial relations of its inner loops;

(ii) next, we show that any iteration of the outer loop (8) admits the same
set of polynomial relations among the loop variables;

(iii) hence for generating all polynomial invariants of (7), suffices to consider
the first iteration of the outer loop (8) whose polynomials are determined
by the intersection of the ideals of polynomial relations of its inner loops.

In more detail, we proceed as follows:

(i) For an arbitrary iteration of the outer loop (8), we denote by n1, n2 the loop
counters of its first and second inner loops. The variables x1(n1), . . . , xm(n1) of
the first P-solvable inner loop depend only on n1, whereas x1(n2), . . . , xm(n2)
of the second P-solvable inner loop only on n2. By the algorithm from the
previous section, we determine all polynomial relations for each inner loop.
Since the arbitrary iteration of the outer loop is fully described by the recur-
rence equations of its first and second inner loops, taking the intersection of

9



the polynomial relations of the inner loops, we obtain all polynomial relations
of the arbitrary iteration of the outer loop.

(ii) The polynomial relations among the loop variables of the P-solvable inner
loops do not depend on the outer loop iterations, they are obtained from the
closed forms of the inner loop variables by eliminating the inner loop counters
and exponential terms in the inner loop counters. For every iteration of the
outer loop (8) the recurrence equations of the inner loop variables are the
same, thus also the ideals of polynomial relations among the the inner loop
variables remain the same for any iteration of (8). Hence, by step (i), any
iteration of the outer loop (8) admits the same ideal of polynomial relations
among the loop variables, and we have:

Theorem 4.1 [23]
The polynomial relations among the loop variables of (8) are captured by the
polynomial relations among the loop variables after the first iteration of the
outer loop (8).

(iii) Finally, we are able to determine (and give an algorithmic computation
of) all polynomial relation of the P-solvable loop (7):

Theorem 4.2 Polynomial Invariants of P-solvable Loops with Conditionals.

The intersection of polynomial invariants of the P-solvable inner loops from
the first iteration of (8) represents all polynomial invariants of the P-solvable
loop (7).

Proof. Consider a P-solvable loop with conditional as in (7), having its recur-
sively changed loop variables X = {x1, . . . , xm}. Let us denote by n1 and n2

the loop counters of the P-solvable inner loops from the first iteration of (8).

• For the first inner loop, we have closed form solutions for x1(n1), . . . , xm(n1)
as polynomials of n1, exponential terms and initial values;

• Similarly, for the second inner loop, we have closed form solutions for x1(n2),
. . . , xm(n2) as polynomials of n2, exponential terms and initial values that
are given by the final values of the first inner loop as obtained in the previous
step;

• Using the algorithm for P-solvable loops with assignments only, we deter-
mine all polynomial relations among x1(n1), . . . , xm(n1) and x1(n2), . . . , xm(n2);

• By step (i), all polynomial relations of the first iteration of (8) are deter-
mined by the intersection of the polynomials of its inner loops;

• By Theorem 4.1, the generators of the ideal of polynomials (8), thus of (7),
from which any polynomial invariant can be derived, are determined by
the intersection of all polynomial relations of the inner loops from the first
iteration of (8).

10



5 Implementation of the Invariant Generation Algorithm

We have implemented in Theorema a procedural language, as well as a verifi-
cation condition generator (VCG) [21,24] based on Hoare-Logic [14] and using
the Weakest Precondition Strategy [6]. The constructs of the programming
language are: assignments, blocks, conditionals, For and While loops, pro-
cedure calls. The user interface has simple, intuitive commands (Program,
Specification, VCG, Execute). Programs are considered as procedures, with-
out return values and with input, output and/or transient parameters. Pro-
grams are annotated with loop invariants (Invariant) and termination terms
(TerminationTerm).

We illustrate our invariant generation algorithm on the following example:

Example 5.1 Algorithm for Computing the product of two natural numbers

Specification[“Product”, Prod[↓ a, ↓ b, ↑ z],

Pre → (a ≥ 0) ∧ (b ≥ 0),

Post → (z = a ∗ b)]

Program[“Product”, Prod[↓ a, ↓ b, ↑ z],

Module[{x, y}, x := a; y := b; z := 0;

(A) While[(y 6= 0),

(B) If[Odd[y] Then z := z + x, y := y − 1];

(C) x := 2 ∗ x; y := y/2]]]

Step 0: Loop Transformation (see Prop. 4.1).

(A) While[(y 6= 0),

(B) While[(y 6= 0) ∧Odd[y],

z := z + x; y := y − 1; x := 2 ∗ x; y := y/2];

(C) While[(y 6= 0) ∧ ¬Odd[y],

x := 2 ∗ x; y := y/2]]

Step 1: Solving Recurrences for the Inner Loops.

Step 1.(a): Extracting recurrence equations.

11



While loop (B): While loop (C):

n1 = 0, . . . , N1 n2 = 0, . . . , N2
x(n1 + 1) = 2 ∗ x(n1)

y(n1 + 1) = 1
2 ∗ y(n1)− 1

2

z(n1 + 1) = z(n1) + x(n1)


x(n′

2 + 1) = 2 ∗ x(n′
2)

y(n′
2 + 1) = 1

2 ∗ y(n′
2)

z(n′
2 + 1) = z(n′

2)

,

where n′
2 = n2 + N1 and N1, N2 represent the unknown bounds of the inner-

loop counters n1, n2.

Step 1.(b): Solving recurrences.

While loop (B): While loop (C):

n1 = 0, . . . , N1 n2 = 0, . . . , N2

x(n1) =
geom.series

2n1 ∗ x(0)

y(n1) =
C−finite

(
y(0) + 1

)
∗ 2−n1 − 1

z(n1) =
Gosper

z(0)− x(0) + 2n1 ∗ x(0)



x(n′
2) =

geom.series

2n2 ∗ x(N1)

y(n′
2) =

geom.series

2−n2 ∗ y(N1)

z(n′
2) = z(N1)

Step 1.(c): Determining algebraic dependencies. Introducing new
variables.

While loop (B): While loop (C):

n1 = 0, . . . , N1 n2 = 0, . . . , N2

u(n1) = 2n1 , v(n1) = 2−n1 p(n′
2) = 2n2 , q(n′

2) = 2−n2

x(n1) = u(n1) ∗ x(0)

y(n1) =
(
y(0) + 1

)
∗ v(n1)− 1

z(n1) = z(0)− x(0) + u(n1) ∗ x(0)

0 =
Alg.Dep.

u(n1) ∗ v(n1)− 1



x(n′
2) = p(n′

2) ∗ x(N1)

y(n′
2) = q(n′

2) ∗ y(N1)

z(n′
2) = z(N1)

0 =
Alg.Dep.

p(n′
2) ∗ q(n′

2)− 1

Step 2: Polynomial Invariant Generation for the Outer Loop.
After eliminating the variables u, v, p, q by Gröbner basis computation, the
polynomial invariant for the while loop (A) is:

z + x ∗ y = a ∗ b.

The automatically generated polynomial invariant properties, together with
the user-asserted non-polynomial invariants (e.g. inequalities, modulo expres-
sions, etc.) are used further by the VCG for verifying partial correctness of

12



the program. The VCG takes the (annotated) program and its specification,
and, based on the weakest precondition strategy, generates a purely logical
proof obligation, i.e. a list of verification conditions, in Theorema syntax. For
example 5.1, the VCG produces a universally quantified lemma with 3 proof
obligations in order to prove partial correctness of the program. The veri-
fication conditions thus generated are manipulated by provers of Theorema,
particularly, the PCS prover [2], that uses quantifier elimination, and produces
human-readable proofs of the verification conditions. The proving part of the
verification process is beyond the scope of the current paper.

Further Examples. We have successfully tested our method on a number of
interesting number theoretic examples [23], some of them being listed in the
table below. The first column of the table contains the name of the example,
the second and third columns specify the applied combinatorial methods and
the number of generated polynomial invariants for the corresponding exam-
ple, whereas the fourth column shows the timing (in seconds) needed by the
implementation on a Pentium 4, 1.6GHz processor with 512 Mb RAM.

Example Comb. Methods Nr.Poly. (sec)

P-solvable loops with assignments only

Division [21] Gosper 1 0.08

Integer square root [21] Gosper 2 0.09

Integer cubic root [29] Gosper 2 0.15

Fibonacci [24] Generating Functions, Alg.Dependencies 1 0.73

P-solvable loops with conditionals and assignments

Wensley’s Algorithm [31] Gosper, geom.series, Alg.Dependcies 2 0.48

LCM-GCD computation [6] Gosper 1 0.33

Extended GCD [29] Gosper 3 0.65

Fermat’s factorization [22] Gosper 1 0.32

Square root [33] C-finite, Gosper, geom.series, Alg.Dependencies 1 1.28

Binary Division [15] C-finite, Gosper, geom.series, Alg.Dependencies 1 0.72

Floor of square root [6] Gosper, C-finite, geom.series, Alg.Dependencies 1 1.06

Factoring Large Numbers [22] C-finite, Gosper 1 1.9

Hardware Integer Division [30] 0.62

1st Loop geom.series, Alg.Dependencies 3

2nd Loop Gosper, geom. series, Alg.Dependencies 2

6 Conclusions

A framework combining combinatorics, algebraic relations and logic is pre-
sented for generating loop invariants for a family of imperative programs op-
erating on numbers. The framework is implemented in the Theorema system.
It is indeed possible to generate polynomial equations as loop invariants, which

13



can be subsequently used for verifying properties of programs. A collection of
examples successfully worked out using the framework is presented in [23].
The imperative verification environment implemented in the Theorema sys-
tem demonstrates the applicability and the usefulness of several algebraic and
combinatorial techniques for the automated generation of polynomial invari-
ants, and, in more general terms, the advantages of combining techniques from
computational logic with techniques from computer algebra.

So far, the focus has been on generating polynomial equations as loop invari-
ants. We believe that it should be possible to identify and generate polyno-
mial inequalities in addition to polynomial equations, as invariants as well.
We have been investigating the manipulation of pre- and postconditions, and
other annotations of programs, if available, along with conditions in loops and
conditional statements, as well as the simple fact that no loop is executed
less than 0 times. Quantifier elimination methods on theories, including the
theory of real closed fields, should be helpful. Of course, we are also interested
in generalizing the framework to programs on nonnumeric data structures.

Acknowledgement. The authors wish to thank Manuel Kauers (RISC-Linz
Combinatorics group) for his help and comments.

References

[1] B. Buchberger. Gröbner-Bases: An Algorithmic Method in Polynomial Ideal
Theory. In Multidimensional Systems Theory - Progress, Directions and Open
Problems in Multidimensional Systems, pages 184–232, 1985.

[2] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, N. Popov
K.Nakagawa, J. Robu, W. Windsteiger, F. Piroi, and M. Rosenkranz.
Theorema: Towards Systematic Mathematical Theory Exploration. J. of
Applied Logic, Special Issue on Mathematical Assistant Systems, 2005. To
appear.

[3] G. E. Collins. Quantifier Elimination for the Elementary Theory of Real Closed
Fields by Cylindrical Algebraic Decomposition. LNCS, 33:134–183, 1975.

[4] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among
Variables of a Program. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 84–97, 1978.

[5] D. Cox, J. Little, and D. O’Shea. Ideal, Varieties, and Algorithms. An
Introduction to Computational Algebraic Geometry and Commutative Algebra.
Springer, 2nd edition, 1998.

[6] E. W. Dijkstra. A Discipline of Programming. Prentince-Hall, 1976.

14



[7] B. Elspas, M. W. Green, K. N. Lewitt, and R. J. Waldinger. Research in
Interactive Program - Proving Techniques. Technical report, Stanford Research
Institute, 1972.

[8] H. Enderton. Mathematical Logic, an Introduction. Academic Press, 1992.

[9] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward. Recurrence
Sequences, volume 104 of Mathematical Surveys and Monographs. American
Mathematical Society, 2003.

[10] R. W. Floyd. Assigning Meanings to Programs. In Proc. Symphosia in Applied
Mathematics 19, pages 19–37, 1967.

[11] S. M. German and B. Wegbreit. A synthesizer of inductive assertions. In IEEE
Transactions on Software Engineering, pages 68–75, March 1975. 1(1):68-75.

[12] R. W. Gosper. Decision Procedures for Indefinite Hypergeometric Summation.
Journal of Symbolic Computation, 75:40–42, 1978.

[13] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-
Wesley Publishing Company, 2nd edition, 1989. pg. 306–330.

[14] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Comm.
ACM, 12, 1969.

[15] A. Kaldewaij. Programming. The Derivation of Algorithms. Prentince-Hall,
1990.

[16] D. Kapur. Automatically Generating Loop Invariants using Quantifier
Elimination. In Proc. of ACA, 2004.

[17] M. Karr. Affine Relationships Amomg Variables of Programs. Acta Informatica,
6:133–151, 1976.

[18] S. Katz and Z. Manna. Logical Analysis of Programs. Communications of the
ACM, 19(4):188–206, April 1976.

[19] M. Kauers. SumCracker: A Package for Manipulating Symbolic Sums and
Related Objects. Journal of Symbolic Computation, 41:1039–1057, 2006.

[20] M. Kauers and B. Zimmermann. Computing the Algebraic Relations of C-
finite Sequences and Multisequences. Technical Report 2006-24, SFB F013,
Linz, Austria, 2006. (submitted).

[21] M. Kirchner. Program Verification with the Mathematical Software System
Theorema. Technical Report 99–16, RISC-Linz, Austria, 1999.

[22] D. E. Knuth. The Art of Computer Programming, volume 2. Seminumerical
Algorithms. Addison-Wesley, 3rd edition, 1998.

[23] L. Kovacs. Finding Polynomial Invariants for Imperative Loops in the Theorema
System. Technical Report 06-03, RISC-Linz, Austria, 2006.

[24] L. Kovacs and T. Jebelean. Finding Polynomial Invariants for Imperative Loops
in the Theorema System. In Proc. of Verify’06, FLoC’06, 2006.

15



[25] L. Kovacs, N. Popov, and T. Jebelean. Combining Logic and Algebraic
Techniques for Program Verification in Theorema. In Proc. of ISOLA 2006,
2006. To appear.

[26] M. Müller-Olm, M. Petter, and H. Seidl. Interprocedurally Analyzing
Polynomial Identities. In Proc. of STACS 2006, 2006.

[27] M. Müller-Olm and H. Seidl. Polynomial Constants are Decidable. In SAS
2002, volume 2477 of LNCS, pages 4–19, 2002.

[28] P. Paule and M. Schorn. A Mathematica Version of Zeilberger’s Algorithm for
Proving Binomial Coefficient Identities. J. Symbolic Computation, 20(5–6):673–
698, 1995.

[29] E. Rodriguez-Carbonell and D. Kapur. Automatic Generation of Polynomial
Loop Invariants: Algebraic Foundations. In Proc. of ISSAC’04, 2004.

[30] S. Sankaranaryanan, B. S. Henry, and Z. Manna. Nonlinear Loop Invariant
Generation using Gröbner Bases. In Proc. of POPL’04, 2004.

[31] B. Wegbreit. The Synthesis of Loop Predicates. Communication of the ACM,
2(17):102–112, 1974.

[32] D. Zeilberger. A Holonomic Systems Approach To Special Functions. Journal
of Computational and Applied Mathematics, 32:321–368, 1990.

[33] K. Zuse. The Computer - My Life. Springer, 1993.

16


