
MACMAHON'S PARTITION ANALYSIS XI:THE SEARCH FOR MODULAR FORMSGEORGE E. ANDREWS AND PETER PAULEAbstra
t. In this paper we 
ontinue the partition explorations made possible by Omega, the
omputer algebra implementation of Ma
Mahon's Partition Analysis. The fo
us of our workhas been partitions asso
iated with dire
ted graphs. The graphs 
onsidered here are made up of
hains of hexagons, and the related generating fun
tions are in�nite produ
ts. The 
ulminationof our study leads to an in�nite family of modular forms. These, in turn, lead to interestingarithmeti
 theorems and 
onje
tures for the related partition fun
tions.AMS Mathemati
s Subje
t Classi�
ation: 05A15, 05A17, 11P831. Introdu
tionIn his pioneering book \Combinatory Analysis" [13, Vol. II, Se
t. VIII, pp. 91{170℄ Ma
Mahonintrodu
ed Partition Analysis as a 
omputational method for solving 
ombinatorial problems in
onne
tion with systems of linear diophantine inequalities and equations. In parti
ular, he devotesChapter II of Se
tion IX to the study of plane partitions as a natural appli
ation domain for hismethod.In the 
ourse of a joint proje
t devoted to Partition Analysis, the authors have turned Ma
Ma-hon's method into an algorithm des
ribed in full detail in [5, 6℄. As demonstrated in refer-en
es [2℄{[11℄, the resulting 
omputer algebra pa
kage Omega1 has been used as a powerful toolfor 
ombinatorial investigation. In parti
ular, in [8, 10℄ we 
onsidered new variations of planepartitions, a study whi
h will be extended in the present paper to plane partitions of \hexagonalshape". We remark that this extension is 
ompletely di�erent from the generalizations given in[12℄.The \most simple 
ase" of 
lassi
al plane partitions, treated by Ma
Mahon in [13, Vol. II,p. 183℄, is the situation where the non-negative integer parts ai of the partitions are pla
ed at the
orners of a square su
h that the following order relations are satis�ed:(1.1) a1 � a2; a1 � a3; a2 � a4; and a3 � a4:It will be 
onvenient to use arrows as an alternative des
ription for � relations; for instan
e,Fig. 1 represents the relations (1.1). Here and throughout the following it will be understood thatan arrow pointing from ai to aj is interpreted as ai � aj .
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2 GEORGE E. ANDREWS AND PETER PAULEBy using Partition Analysis Ma
Mahon derives that' := Xxa11 xa22 xa33 xa44= 1� x21x2x3(1� x1)(1� x1x2)(1� x1x3)(1� x1x2x3)(1� x1x2x3x4) ;(1.2)where the sum is taken over all non-negative integers ai satisfying (1.1). Furthermore, he observesthat if x1 = x2 = x3 = x4 = q, the resulting generating fun
tion is1(1� q)(1� q2)2(1� q3) :In order to see how Partition Analysis works on (1.2) we need to re
all the key ingredient ofMa
Mahon's method, the Omega operator 
�.De�nition 1. The operator 
� is given by
� 1Xs1=�1 � � � 1Xsr=�1As1;:::;sr�s11 � � ��srr := 1Xs1=0 � � � 1Xsr=0As1;:::;sr ;where the domain of the As1;:::;sr is the �eld of rational fun
tions over C in several 
omplexvariables and the �i are restri
ted to a neighborhood of the 
ir
le j�ij = 1. In addition, theAs1;:::;sr are required to be su
h that any of the series involved is absolute 
onvergent within thedomain of the de�nition of As1;:::;sr .To avoid 
onfusion we will always have 
� operate on variables denoted by letters in the middleof the Greek alphabet (e.g. �, �, �). The parameters una�e
ted by 
� will be denoted by lettersfrom the Latin alphabet.We emphasize that it is essential to treat everything analyti
ally rather than formally be
ausethe method relies on unique Laurent series representations of rational fun
tions.Another fundamental aspe
t of Partition Analysis is the use of elimination rules whi
h des
ribethe a
tion of the Omega operator on 
ertain base 
ases. Ma
Mahon begins the dis
ussion ofhis method by presenting a 
atalog [13, Vol. II, pp. 102{103℄ of twelve fundamental evaluations.Subsequently he extends this table by new rules whenever he is for
ed to do so. On
e found, mostof these fundamental rules are easy to prove. This is illustrated by the following examples whi
hare taken from Ma
Mahon's list.Proposition 1. For integer s � 1,
� 1(1� �A)�1� B�s � = 1(1�A)(1� AsB) ;(1.3) 
� 1(1� �A)(1� �B)�1� C� � = 1�ABC(1�A)(1� B)(1�AC)(1�BC) :(1.4)We prove (1.3); the proof of (1.4) is analogous and is left to the reader.Proof of (1.3). By geometri
 series expansion the left hand side equals
� Xi;j�0 �i�sjAiBj = 
� Xj;k�0�kAsj+kBj ;where the summation parameter i has been repla
ed by sj + k. But now 
� sets � to 1 whi
h
ompletes the proof. �Now we are ready for deriving the 
losed form expression for ' with Partition Analysis.



MACMAHON'S PARTITION ANALYSIS XI: HEXAGONAL PLANE PARTITIONS 3Proof of (1.2). First, in order to get rid of the diophantine 
onstraints, one rewrites the sumexpression in (1.2) into what Ma
Mahon 
alled the \
rude form" of the generating fun
tion,' = 
� Xa1;a2;a3;a4�0�a1�a21 �a1�a32 �a2�a43 �a3�a44 xa11 xa22 xa33 xa44= 
� 1�1� �1�2x1��1� �3�1x2��1� �4�2 x3��1� x4�3�4 � :Next by rule (1.3) we eliminate su

essively �1, �3, and �4,' = 
� 1�1� �2x1��1� �2�3x1x2��1� �4�2 x3��1� x4�3�4 �= 
� 1�1� �2x1��1� �2x1x2��1� �4�2 x3��1� �2x1x2x4�4 �= 
� 1�1� �2x1��1� �2x1x2��1� x3�2 ��1� x1x2x3x4� :Finally, applying rule (1.4) eliminates �2 and 
ompletes the proof of (1.2). �Instead of glueing squares together as in the 
ase of standard plane partitions, in [8℄ we 
onsid-ered 
on�gurations shown in Fig. 2. In the present paper we shall study the natural generalization
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a3 a6 a9 a3na4 a7 a10 a3n�2: : :� R�R � R�R � R�R � R�RFigure 2. A plane partition diamond of length ndepi
ted in Fig. 4 where we use k-elongated diamonds, depi
ted in Fig. 3, instead of squares asbuilding blo
ks of the 
hain.


a1 ���AAA�U 
a2������-�
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a4������-�
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a2k�2������-� 
a2k+1AAAU
a2k���� 
 a2k+2

Figure 3. A k-elongated partition diamond of length 1De�nition 2. For n; k � 1 de�neHn;k := f(a1; : : : ; a(2k+1)n+1) 2 N(2k+1)n+1 : the ai satisfy the order relationsin Fig. 4g,hn;k := hn;k(x1; : : : ; x(2k+1)n+1) := X(a1;:::;a(2k+1)n+1)2Hn;k xa11 xa22 � � �xa(2k+1)n+1(2k+1)n+1;andhn;k(q) := hn;k(q; : : : ; q):
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a(2k+1)n�1AAA�
a(2k+1)n

���U 
a(2k+1)n+1Figure 4. A k-elongated partition diamond of length nIn Se
tion 2 we shall derive a 
losed form, Theorem 6, for the full generating fun
tion hn;k. Asa 
orollary, we will dire
tly dedu
e thatTheorem 1. For n; k � 1,hn;k(q) = Qn�1j=0 (1 + q(2k+1)j+2)(1 + q(2k+1)j+4) � � � (1 + q(2k+1)j+2k)Q(2k+1)n+1j=1 (1� qj) :In Se
tion 3, we shall prove a general theorem about partitions related to dire
ted graphs fromwhi
h a sour
e is deleted. In Figures 2, 3 and 4, a1 is a unique sour
e.De�nition 3. For n; k � 1 de�neH�n;k := f(a2; : : : ; a(2k+1)n+1) 2 N(2k+1)n : the ai satisfy the order relations inFig. 4 where the vertex labelled a1 has been deletedg,h�n;k := h�n;k(x2; : : : ; x(2k+1)n+1) := X(a2;:::;a(2k+1)n+1)2H�n;k xa22 xa33 � � �xa(2k+1)n+1(2k+1)n+1;andh�n;k(q) := h�n;k(q; q; : : : ; q).In Se
tion 4 we shall derive a 
losed form for the full generating fun
tion h�n;k, Theorem 8, andfrom this we proveTheorem 2. For n; k � 1,h�n;k(q) = Qn�1j=0 (1 + q(2k+1)j+1)(1 + q(2k+1)j+3) � � � (1 + q(2k+1)j+2k�1)Q(2k+1)nj=1 (1� qj) :This then suggests the broken k-diamond in Fig. 5; it 
onsists of two separated k-elongatedpartition diamonds of length n where in one of them the sour
e is deleted.
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MACMAHON'S PARTITION ANALYSIS XI: HEXAGONAL PLANE PARTITIONS 5De�nition 4. For n; k � 1 de�neH�n;k := f(b2; : : : ; b(2k+1)n+1; a1; a2; : : : ; a(2k+1)n+1) 2 N(4k+1)n : the ai and bisatisfy all the order relations in Fig. 5g,h�n;k := h�n;k(x2; : : : ; x(2k+1)n+1; y1; y2; : : : ; y(2k+1)n+1):= X(b2;:::;b(2k+1)n+1;a1;a2;:::;a(2k+1)n+1)2H�n;k xb22 � � �xb(2k+1)n+1(2k+1)n+1� ya11 ya22 � � � ya(2k+1)n+1(2k+1)n+1;andh�n;k(q) := h�n;k(q; q; : : : ; q).Now it is immediate from the fa
t that Fig. 5 is made up of two dis
onne
ted dire
ted graphsthat h�n;k = hn;kh�n;k:Owing to Theorem 1 and 2 this immediately impliesTheorem 3. For k � 1, h�1;k = 1Yj=1 (1 + qj)(1� qj)2(1 + q(2k+1)j)= q k+112 �(2�) ��(2k + 1)���(�)3 ��(4k + 2)�� ;where q = e2�i� , and �(�) := q 124 Q1n=1 (1� qn) is Dedekind's �-fun
tion.De�nition 5. For n � 0 and k � 1 let �k(n) denote the total number of broken k-diamondpartitions, i.e., h�1;k = 1Xn=0�k(n)qn:In Se
tion 5 we shall prove the following two theorems.Theorem 4. For n; k � 1, �k(n) + 2 1Xj=1(�1)j�k(n� j2)is equal to the number of ordinary partitions of n into parts not 
ongruent to 2k+1 modulo 4k+2.Theorem 5. For n � 0, �1(2n+ 1) � 0 (mod 3):The following observations about 
ongruen
es suggest strongly that there are undoubtedly amyriad of partition 
ongruen
es for �k(n). This list is only to indi
ate the tip of the i
eberg.Conje
ture 1. For n � 0, �2(10n+ 2) � 0 (mod 2):Conje
ture 2. For n � 0, �2(25n+ 14) � 0 (mod 5):Conje
ture 3. For n � 0, �2(625n+ 314) � 0 (mod 52):



6 GEORGE E. ANDREWS AND PETER PAULE2. A 
losed form for hn;kIn this se
tion we shall prove the following theorem whi
h provides a representation of thegenerating fun
tion hn;k as a produ
t. Throughout we shall use the 
onvention(2.1) X0 := 1; and Xm := x1x2 � � �xm (m � 1);Theorem 6. For n; k � 1,hn;k(x1; x2; : : : ; x(2k+1)n+1) = (2k+1)n+1Yj=1 11�Xj� n�1Yi=0 kỲ=1 1�X(2k+1)i+2`�1X(2k+1)i+2`+11� X(2k+1)i+2`+1x(2k+1)i+2` :(2.2)The proof of Theorem 6 requires some ba
kground preparation. Consider the k-elongated par-tition diamond of length n = 1 in Figure 3. Similarly as in the proof of (1.2), the inequalitiesrepresented by the arrows 
an be 
oded into the form�(�1; : : : ; �4k) := �a1�a21 �a1�a32 �a2�a43 �a2�a54 �a3�a45 �a3�a56 � � �� �a2k�2�a2k4k�5 �a2k�2�a2k+14k�4 �a2k�1�a2k4k�3 �a2k�1�a2k+14k�2� �a2k�a2k+24k�1 �a2k+1�a2k+24k :We shall use this notation subsequently in our treatment of the 
ase n = 1 of Theorem 6; seeLemma 2.2 and its proof.The key to our Partition Analysis proof of Theorem 6 is the following elimination rule.Lemma 2.1. 
� 1�AB�1�2(1�A�1)(1�B�2)(1� C�1�2)(1�D�1�2)(1� E�1�2 )= (1�AB)(1� CDE)(1�A)(1�B)(1� C)(1�D)(1� CE)(1�DE) :(2.3)We remark that (2.3) may be proved automati
ally using the Omega pa
kage. A dire
t proof isalso easy to produ
e. First prove the 
ase D = 0 of (2.3) by su

essively applying rule (1.4) andthe similar rule [6, eq. (2.2)℄
� �(1�A�)(1�B�)(1� C� ) = 1 + C �AC �BC(1�A)(1� B)(1�AC)(1�BC) :Lemma 2.1 then follows from the 
ase D = 0 of (2.3) after rewriting the left-hand side of (2.3) byinserting the partial fra
tion de
omposition1(1� C�1�2)(1�D�1�2) = C(C �D)(1� C�1�2) � D(C �D)(1�D�1�2) :Our proof of Theorem 6 will be by mathemati
al indu
tion on n. The initial n = 1 
ase westate as a separate lemma.Lemma 2.2. For k � 1,h1;k(x1; x2; : : : ; x2k+2) = 2k+2Yj=1 11�Xj kỲ=1 1�X2`�1X2`+11� X2`+1x2` :



MACMAHON'S PARTITION ANALYSIS XI: HEXAGONAL PLANE PARTITIONS 7Proof. We now pro
eed by indu
tion on k. The 
ase k = 1 is identity (1.2). To pass from step kto step k + 1, we note thath1;k+1(x1; x2; : : : ; x2k+4)= 
� Xai�0xa11 � � �xak2kxa2k+12k+1 xa2k+22k+2 xa2k+32k+3 xa2k+42k+4� �(�1; : : : ; �4k)�a2k�a2k+34k+1 �a2k+1�a2k+34k+2 �a2k+2�a2k+44k+3 �a2k+3�a2k+44k+4= 
� Xa1;:::;a2k+2�0 xa11 � � �xa2k�12k�1 (x2k�4k+1)a2k (x2k+1�4k+2)a2k+1� (x2k+2�4k+3)a2k+2�(�1; : : : ; �4k)� Xa2k+3;a2k+4�0�x2k+3 �4k+4�4k+1�4k+2�a2k+3� x2k+4�4k+3�4k+4�a2k+4= 
�h1;k(x1; : : : ; x2k�1; x2k�1; x2k+1�2; x2k+2�3)(1� x2k+3 �4�1�2 )(1� x2k+4 1�3�4 ) ;where for brevity we have written �i instead of �4k+i in the last line. We now apply the indu
tionhypothesis and obtain,h1;k+1(x1; x2; : : : ; x2k+4)= 2k�1Yj=1 11�Xj k�1Ỳ=1 1�X2`�1X2`+11� X2`+1x2`�
� 1(1�X2k�1)(1�X2k+1�1�2)(1�X2k+2�1�2�3)� 1�X2k�1X2k+1�1�21� X2k+1�2x2k � 1(1� x2k+3 �4�1�2 )(1� x2k+4 1�3�4 ) :Eliminating �3 and �4 by rule (1.3) with s = 1, the 
� portion of the above expression redu
esto 11�X2k+4 
� 1�X2k�1X2k+1�1�2(1�X2k�1)(1� X2k+1x2k �2)� 1(1�X2k+1�1�2)(1�X2k+2�1�2)(1� x2k+3�1�2 )= 2k+4Yj=2k 11�Xj � (1�X2k�1X2k+1)(1�X2k+1X2k+3)(1� X2k+1x2k )(1� X2k+3x2k+2 ) ;where the last line follows by Lemma 2.1. This then 
ompletes the proof of Lemma 2.2 byindu
tion. �Proof of Theorem 6. We pro
eed by indu
tion on n. The 
ase n = 1 is Lemma 2.2. For theindu
tion step we pro
eed similarly to the proof of Lemma 2.2. Namely,hn+1;k(x1; : : : ; x(2k+1)n+1; x(2k+1)n+2; : : : ; x(2k+1)n+2k+2)= 
� Xai�0xa11 � � �xa(2k+1)n+1(2k+1)n+1 xa(2k+1)n+2(2k+1)n+2 � � �xa(2k+1)n+2k+2(2k+1)n+2k+2� �a1�a21 � � ��a(2k+1)n�a(2k+1)n+14kn �a(2k+1)n+1�a(2k+1)n+24kn+1� �a(2k+1)n+1�a(2k+1)n+34kn+2 � � ��a(2k+1)n+2k+1�a(2k+1)n+2k+24k(n+1)= 
� hn;k(x1; : : : ; x(2k+1)n; x(2k+1)n+1�1�2)



8 GEORGE E. ANDREWS AND PETER PAULE� Xb2;:::;b2k+2�0 xb2(2k+1)n+2xb3(2k+1)n+3 � � �xb2k+2(2k+1)n+2k+2� �0�b21 �0�b32 � � ��b2k+1�b2k+24k ;where again for brevity we have written bi for a(2k+1)n+i, and �i for �4kn+i. We now apply theindu
tion hypothesis and obtain,hn+1;k(x1; x2; : : : ; x(2k+1)(n+1)+1)= (2k+1)nYj=1 11�Xj n�1Yi=0 kỲ=1 1�X(2k+1)i+2`�1X(2k+1)i+2`+11� X(2k+1)i+2`+1x(2k+1)i+2`�
� 11�X(2k+1)n+1�1�2 Xb2;:::;b2k+2�0 xb2(2k+1)n+2 � � �xb2k+2(2k+1)n+2k+2� �0�b21 �0�b32 � � ��b2k+1�b2k+24k :Noting by the geometri
 series that11�X(2k+1)n+1�1�2 = Xb1�0Xb1(2k+1)n+1�b11 �b22 ;we see that the above 
� expression be
omesh1;k(X(2k+1)n+1; x(2k+1)n+2; : : : ; x(2k+1)n+2k+2);whi
h by Lemma 2.2 equals(2k+1)(n+1)+1Yj=(2k+1)n+1 11�Xj kỲ=1 1�X(2k+1)n+2`�1X(2k+1)n+2`+11� X(2k+1)n+2`+1x(2k+1)n+2` :This 
ompletes the indu
tion step and thus the proof of Theorem 6. �Proof of Theorem 1. In Theorem 6 repla
e ea
h xi with q. �3. Sour
e deletionWe propose here to prove a general theorem that we shall subsequently apply to the k-diamonds
onsidered in Se
tion 2.We now 
onsider a general dire
ted graph D with N verti
es v1; : : : ; vN . As in the spe
ial 
ases
onsidered in Se
tion 1, we asso
iate partitions by 
onsidering as parts non-negative integers aipla
ed at ea
h vertex vi with the understanding that the dire
tion arrows between verti
es areinterpreted as \�" between the related summands.Let the asso
iated generating fun
tionP(D) =X xa11 xa22 � � �xaNNwhere the sum is over all partitions asso
iated with D.Theorem 7. Suppose v1 is a sour
e in D (i.e., a vertex with no edges dire
ted into v1). Let D�be the dire
ted graph obtained by deleting v1 from D. ThenP(D�) = limx1!1�(1� x1)P(D):Proof. P(D) = 1Xa1=0xa11 X� xa22 xa33 � � �xaNN



MACMAHON'S PARTITION ANALYSIS XI: HEXAGONAL PLANE PARTITIONS 9where \ � " denotes the 
ondition that we are summing over all partitions asso
iated with D�whi
h have the added restri
tion that ea
h ai asso
iated with a vertex in D dominated by a1 is,in fa
t, � a1. Hen
e by Abel's Lemma [1, p. 190, Th. 14{7℄limx1!1�(1� x1)P(D)= lima1!1X� xa22 xa33 � � �xaNN= P(D�);be
ause any partition asso
iated to D� will be 
ounted on
e a1 is large enough. �4. k-diamonds with deleted sour
eHaving established Theorem 7, the 
ase of k-diamonds with deleted sour
e is immediate fromTheorem 6.Theorem 8. Now X1 := 1 and Xn := x2x3 : : : xn. For n � 2 and k � 1,h�n;k = (2k+1)n+1Yj=2 11�Xj n�1Yi=0 kYl=1 1�X(2k+1)i+(2l�1)X(2k+1)i+(2l+1)1� X(2k+1)i+(2l+1)x(2k+1)i+2l :Proof. By Theorem 7, h�n;k = limx1!1�(1� x1)hn;k;and the desired result follows immediately on
e we observe that the denominator fa
tor (1�X1)in hn;k is 
an
elled by (1� x1). �Proof of Theorem 2. Theorem 2 is now an immediate 
onsequen
e of Theorem 8 be
ause in theabove ea
h Xj ! qj�1. �5. Broken k-diamondsAs we noted in the introdu
tion, the �rst line of Theorem 3 follows immediately by multiplyingtogether the generating fun
tions in Theorems 1 and 2 and letting n!1. The exa
t formulationsof the in�nite produ
ts follow by algebrai
 simpli�
ation.Proof of Theorem 4. We begin with the 
lassi
 theta series identity [1, p. 178, Ex. 1℄1Xn=�1 (�1)nqn2 = (q; q)1(�q; q)1 ;where (A; q)1 = 1Yj=0(1�Aqj):



10 GEORGE E. ANDREWS AND PETER PAULEBy Theorem 3,  1Xn=0�k(n)qn! 1Xn=�1(�1)nqn2!= (�q; q)1(q; q)21(�q2k+1; q2k+1)1 � (q; q)1(�q; q)1= 1(q)1(�q2k+1; q2k+1)1= (q2k+1; q4k+2)1(q)1 �by [1, pp. 164{165℄ �= 1Yn=1n6�2k+1 (mod 4k+2) 11� qn :The �rst entry in the above sequen
e of equations 
learly has�k(n) + 2 1Xj=1�k(n� j2)(�1)jas the 
oeÆ
ient of qn, and the �nal entry is 
learly the generating fun
tion for ordinary partitionsin whi
h no part is 
ongruent to 2k+1 modulo 4k+2. CoeÆ
ient 
omparison 
on
ludes the proofof Theorem 4. �Proof of Theorem 5.1Xn=0�1(n)qn = (�q; q)1(q; q)21(�q3; q3)1= (q2; q2)1(q; q)31(�q3; q3)1� (q2; q2)1(q3; q3)1(�q3; q3)1 (mod 3) �be
ause (1�X)3 � 1�X3 mod 3�= (q2; q2)1(q6; q6)1 :The latter expression is 
learly an even fun
tion of q. This means that the 
oeÆ
ients of oddpowers of q are all zero. Hen
e for all n � 0,�1(2n+ 1) � 0 (mod 3): �6. Con
lusionThe 
ulmination of our study led to an in�nite family of modular forms. These, in turn, led tointeresting arithmeti
 theorems and 
onje
tures for the related partition fun
tions. As we said inthe introdu
tion, Conje
tures 1, 2 and 3 suggest a true wealth of arithmeti
 theorems 
on
ernedwith �k(n).We 
on
lude with a remark that 
onne
ts to previous work. Namely, in [10℄ we 
onsideredplane partitions with diagonals, i.e., the generating fun
tion of partitions into parts ai where theai satisfy the order relations depi
ted in Fig. 6. As stated in [10, Thm. 1℄ its rational fun
tionrepresentation involves 
ompli
ated irredu
ible numerator polynomials of total degree 2. We wantto note that despite the ni
e stru
ture of the rational fun
tion representation of h�n;k in Theorem 4above, the poset H�n;2 
an be viewed as a variation of the poset des
ribed by Figure 6 if drawn inan equivalent alternative to Figure 4. For instan
e, for n = 3 the poset H�3;2 
an be depi
ted as inFigure 7.
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