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Abstract. Configuration space obstacles are regions in a configuration
space which represent forbidden configuration of the object due to the
presence of other objects. They can be regarded as geometric objects
which are representable using Boolean combinations of equations and
inequalities. Moreover, they can also be represented using existential
quantifiers which correspond to geometric projections. If the projected
variables only occur algebraically then it is possible to eliminate quan-
tifiers and represent configuration space obstacles in the semi-algebraic
form. However, no matter how it is done, the quantifier elimination is
computationally hard and the output in semi-algebraic representation is
often large and cumbersome. Therefore, we are looking for a possibility
to work directly with the quantified representation of the configuration
space obstacles.

We investigate combination of tools which can be used in conjunction
with this quantified representation. The main idea is the use of interval
evaluation on equations and inequalities involving some transcendental
functions. We suggested an extended version of Constructive Solid Ge-
ometry system which has trigonometric functions as well as the usual
Boolean operators. The combination of this system together with inter-
val arithmetic allows simplification and spatial subdivision and pruning
to be done in a natural way. We also raise the possibility of an extended
Constructive Solid Geometry system which would have projection and
boundary formation as operators. This would allow compact represen-
tation of the configuration space, but presents computational problems
which are, as yet, unsolved.
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1 Background

Spatial planning problems are a class of geometric problems which involve plac-
ing an object among other objects or moving an object from one place to another
without colliding with other objects in the process. We refer to the problem of
placing an object among obstacles as a Find-space problem and refer to the
problem of finding a collision-free path for an object as a Find-path problem or
Movers’ problem.

Movers’ problem is a computationally difficult problem. Not only that the
complexity of the computation increases with the number of dimensions and
the number of objects involved, it also depends on the representation and the
complexity of the objects. Much research has been devoted to the complexity
aspect of the Movers’ problem. For example, it was studied by Canny [8], Dav-
enport [10], Hopcroft, Schwartz and Sharir [20], Lozano-Pérez [24], Reif [37, 38],
Schwartz and Sharir [39, 40] and Vanderstappen, Halperin and Overmars [51].

Due to the high computational complexity of the problem, many applicable
algorithms are probabilistic in nature. For example, Amato [1], Branicky [4, 5],
Kavraki, Svestka, Latombe and Overmars [23]. However, there are no guarantee
that these algorithms will find a collision-free path, even if one exists. This gave
rise to a classification of levels of completeness for Movers’ problem algorithms.
For example, a complete algorithm correctly returns a path when one exists and
declares that no path exists otherwise. An algorithm is resolution complete if
it correctly returns a path when one exists at a chosen discretisation level and
returns failure otherwise. An algorithm is probabilistically complete if a path
exists but the probability that the method does not find one converges to zero
as computation time increases.

1.1 Configuration Space Approach to Movers’ Problem

In order to describe the position and orientation of the moveable object, one
approach is to give this object a reference point. The position and orientation of
this object in space can now be specified by a set of parameters which corresponds
to the configuration of the object and its reference point, in relation to a reference
frame, fixed in the environment. Thus a point, specified by these parameters,
encapsulates both a position and an orientation of the original object. The space
where the moveable object and the obstacles reside is often referred to as the
Workspace. The parameter space of the moveable object is called Configuration
Space or C-space.

This idea of mapping the original problem from lower dimension to a rel-
atively simpler problem in higher dimension was first introduced by Udupa in
[50] and later formalised by Lozano Pérez in [24]. By convention, a position of a
translated object in the Workspace is the distance from the coordinate frame in
each translational dimension to the reference point of the object. Similarly, the
orientation of the object is specified by the angular displacement, relative to the
original orientation of the object itself, in each rotational possibilities. Generally,
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Fig. 1. A configuration of a polygon which may translate and rotate can be specified by
three parameters; two parameters correspond to the two dimensions of the translation
and one parameter corresponds to the rotation.

this orientation of an object is the anti-clockwise angle about the reference point
of the object in each of the rotational dimension.

Figure 1 illustrates the relationship between Workspace and C-space of a
2-dimensional object P which can translate and rotate freely. The distance from
the reference point rvP relative to the origin of the coordinate frame and the
degree of rotation around rvP correspond directly to a position of a single point
in C-space. Thus the configuration of P in the Workspace can be captured by
three parameters (z, w, θ) where (z, w) correspond to the position of rvP and θ
corresponds to the angle of rotation of P about rvP .

Dimension of C-space is governed by the dimension of the Workspace. In turn,
the dimension of the Workspace is depended on the maximum degrees of freedom
of an object. Since the degrees of freedom of an object is the number of ‘ways’ in
which a particular object can ‘move’ in space, this is also the minimum number
of independent parameters required to specify every conceivable position and
orientation of an object, relative to a frame of reference. Since a configuration of a
particular object refers to its position and its orientation, the degrees of freedom



of an object, which allow to translate and rotate, is a combination of degrees of
freedom of its translational and rotational movement. An object moving freely in
n-dimensional Workspace has at most n translational movements and ( 1

2n(n−1))
rotational possibilities. Therefore, it has at most n + ( 1

2n(n − 1)) degrees of
freedom.

Configuration Space Obstacles or C-space obstacle is a set of points in C-
space which correspond to configurations which cause the moveable object to
overlap with obstacles. Let P be a moveable object and let Oj be a set of static
obstacles. All points in C-space that are not in C-space obstacle will correspond
to the configuration of the objects P where it does not intersect with obstacles
Oj . The collection of these points is called C-free. The boundary between C-space
obstacle and C-free is referred to as the contact surface.

Definition 1. Let C be a C-space. Define C-space obstacles of an object P due
to an obstacle O as a collection of points x ∈ C such that P(x) ∩O 6= φ, denoted
by COP (O).

To solve a movers’ problem, further work is needed. That is a path in the
C-free needs to be constructed. The algorithm for Movers’ problem using con-
figuration space approach are often similar to Algorithm 1.

Algorithm 1 C-space Approach to Movers’ Problem
Input: Bounding box B, Object P and Obstacle O ∈ B, Pinit, Pgoal ∈ B
Output: Continuous path from Pinit ∈ C to Pgoal ∈ C or false

1: Construct C-space C
2: Verify Pinit ∈ C and Pgoal ∈ C
3: Establish C-space obstacle region in COP (O) ∈ C
4: Find continuous path Ppath /∈ COP (O) from Pinit to Pgoal

5: return Path from Pinit to Pgoal or false

An important aspect of spatial planning systems that use C-space approach
is the method of representing the C-space. The representation needs to be able
to classify regions of C-space into at least 2 sub-regions; the C-space obstacle and
C-free, and enable the search for positions within these regions. Many C-space
representations exist, each has advantages and disadvantages over the other.
Recent surveys, for example by Hwang [21] and Wise [52, 53], described many
techniques used to compute and represent C-space which can be classified into
many sub-categories, in many different ways. One of the major technique of
representing C-space is cell decomposition which were studied extensively in, for
example [7, 14, 24, 39–43]. Most technique is based on discretising the C-space
into a finite number of cells and use some tests to classified each cells whether
it belongs to the C-free or the C-space obstacle. By building a connectivity
graph which represent adjacency relation of these cells, path planning become a
graph-search problem in which many efficient algorithms exist.



1.2 Constructive Solid Geometry

Constructive Solid Geometry or CSG describes the geometry of a complex object
by combining simple objects using operators of Set Theory. Primitive shapes can
be expressed implicitly by polynomial inequalities. Object of zero thickness such
as wires and sheets can be represented as well as solids. It also allows the use
of sine, cosine and exponential functions when building descriptions of objects.
Complicated CSG objects can be treated as though they were a single object
and can be combined to make more complicated objects in the same manner.
CSG method is useful both as a method for representing geometric object and
as an intuitive user interface technique.

CSG is widely studied and CSG models are regarded as more stable than oth-
ers because the properties of its Boolean operators are well understood. Gomes
and Teixeira described in details in [16], the mathematical framework for com-
putable CSG primitives using levels of decreasing abstraction from Boolean al-
gebra of sets, set-point topology and geometry to semi-algebraic sets. The theory
of Boolean algebra can be extended to the theory of sets. For example, a Boolean
algebra 〈S;∩,∪, \〉 in which elements of S are sets and the operations on sets
are union (∪), intersection (∩) and complement(\), is called a Boolean algebra
of sets. The concept of Boolean algebra of sets is useful for geometric modelling
since the basic idea of CSG is also to represent sets in Rn by Boolean combina-
tions of primitive sets. If the geometric objects which need to represented can be
considered as sets then Boolean algebra of geometric objects allows us to define
primitive geometric objects as sets and combining them together using Boolean
operators.

A major approach of CSG to spatial planning is to construct C-space obsta-
cles, which can be regarded as geometric objects in C-space, as a Boolean com-
bination of CSG primitives. Each point inside this object represents the position
of the actual object that causes collision with the obstacles in the Workspace.
Given C-space obstacles, Find-space and Find-path correspond to the simpler
problems of finding a single point, a position of the object, and a path, a sequence
of position of the object, outside the obstacles.

Wise investigated in [53] the application of CSG to the problem of generating
the global C-space map and demonstrated two approaches which semi-algebraic
CSG can be used to compute global map of the C-space for a system of rigid
bodies. The first is an approximate calculation of C-space obstacles and the
second is a precise representation of C-space obstacles by formulating the contact
surfaces analytically. The potential for combining the two approaches were also
highlighted.

1.3 Interval Methods

One fundamental problem in computing is of representing real numbers accu-
rately. In many cases, it is sufficient to compute with countable subsets of the
reals, such as integers and rational numbers because computation is always pos-
sible as long as the requested memory is available. However, the computing time



of arithmetic operations of these subsets depends on the length of the arguments
which are not always constant. Thus computing with such set of numbers has
limited efficiency.

For a more efficient computation, accuracy has to be compromised. That is,
real numbers have to be approximated and represented by a fixed-length repre-
sentation. This finite subset of real numbers is often called represented numbers.
Clearly, the input numbers and intermediate results of algorithms have to be
approximated before they can be further computed. Additionally, arithmetic
operations of represented numbers generally yield a represented number with
some errors. These errors can accumulate during the chain of computations,
making it a non-trivial problem to estimate the magnitude of the error in the
final output.

Interval Arithmetic has been introduced by Moore [28] to control the round
off errors of numerical computations and uncertainty in representing real num-
bers with floating points numbers. In the interval arithmetic framework, a real
number is represented by two floating point numbers. These intervals are called
represented intervals. Similar to the the case of computing with represented num-
bers, arithmetic operations on represented intervals generally yield represented
intervals with some approximation. However, with some careful considerations
of the operations, it is possible to guarantee that the final output of a chain of
computation contains the correct real numbers.

Let R be the real line and let F ⊂ R be a finite subset of rational number
corresponding to rational or floating-point numbers in a certain binary represen-
tation. For every a ∈ R let a be the smallest element in F such that a ≥ a, and a
be the greatest element in F such that a ≤ a. Called a the left bound and a the
right bound. A finite interval on the real line is a subset of R defined in terms
of end-points a and a. Given a ∈ F and a ∈ F such that a ≤ a, let the interval
[a, a] be a closed and connected subset of real numbers {x|x ∈ R ∧ a ≤ x ≤ a}.
An interval can be regarded as a finite region of one dimension. We refer to a
region defined in this way as a box. Let I denote the set of intervals. The left
bound of an interval I is denoted by I and the right bound by I.

Definition 2. For all [X,X], [Y , Y ] ∈ IR the natural interval extensions of the
elementary operations of arithmetic are

[X,X] + [Y , Y ] = [X + Y ,X + Y ]
[X,X]− [Y , Y ] = [X − Y ,X − Y ]
[X,X]× [Y , Y ] = [min(XY ,XY ,XY ,XY ),max(XY ,XY ,XY ,XY )]

[X,X]/[Y , Y ] = [min(X/Y ,X/Y ,X/Y ,X/Y ),max(X/Y ,X/Y ,X/Y ,X/Y )],
undefined if 0 ∈ [Y , Y ].

A box can be defined as a tuple of interval I = (I1, . . . , Ik) which is the
Cartesian product I1 × Ik. For example, two intervals, one along each Cartesian
coordinate axes represent 2-dimensional coordinate aligned box, which is an



area between 4 line segments. In the same fashion, three interval can represent
a cuboid. Additionally, given an interval I, let w(I) be the width of I defined by
(I − I). By convention, the width of a box is the width of its biggest interval.

Denote the set of intervals over R by IR and the set of n dimensional interval
vectors by IR. Every continuous function f : Rn → R can be extended to
IRn → IR by

f(I) = {f(x)|x ∈ I}.

This allows us to embed R into IR by the morphism m(x) = [x, x] which is also
defined for each component for tuples of intervals.

1.4 Movers’ Problem and Quantifier Elimination

Quantifier elimination in the first order theory of real closed fields is a decision
procedure of solvability of constraints over real numbers. It can also be used
for eliminating non-query variable from answer constraints and to process the
solution set in order to provide convenient solutions.

Let LR be the first order language of the ordered field of the reals. A formula
of this language is the expression which are built up from atomic formulae using
the logical operators ∧,∨,¬. An atomic formula is the expression of the form
p(x1, . . . , xn) � 0 where p(x1, . . . , xn) is a polynomial in variables x1, . . . , xn

with integral coefficients and � ∈ {>,≥, 6=, <,≤}. Additionally, some or all of
the variables in a formula may be quantified over the field by universal (∀) and
existential (∃) quantifier.

An occurrence of a variable x in A is bound if it occurs in a sub-formula B
of the form ∃x[B(x)] or ∀x[B(x)]. An occurrence of a variable is free if it is not
bound. In the above example, occurrences of variable x1 and x2 are bound and
the occurrence of the variable x3 is free. Suppose the formula A(x1, . . . , xn) has
free variables among x1, . . . , xn. This formula is semi-algebraic and defines a set
{(x1, . . . , xn) : A(x1, . . . , xn)} ⊂ Rn .

A formula in which all variables are quantified is called a sentence which
has a definite truth value. When free variables are substituted by specific values
leaving only bound variable in the formula, it becomes a sentence. A set of values
is a solution for the formula if the sentence, obtained by substituting all variables
in the formula by the values, is true. Two formulae are equivalent if they have
the same solutions.

In 1930, Tarski showed in [47] that all quantified formulae can also be defined
without quantifiers and presented an algorithmic quantifier elimination (QE)
method. The algorithm accepts any formula of real closed field as an input and
outputs an equivalent formula containing the same variables with no quantifiers.
The output formula is true for the same values of its free variables as the input
formula. If the input formula contains free variables then the output formula
expresses a necessary and sufficient algebraic condition of the input formula to
hold. For example, applying the quantifier elimination to the formula of LR:
a 6= 0 ∧ ∃x[ax2 + bx + c = 0] produces the well-known necessary and sufficient
condition a 6= 0 ∧ b2 − 4ac ≥ 0 where a, b, c are free variables.



In 1973, Collins [9] has used Cylindrical Algebraic Decomposition (CAD)
to eliminate quantifiers. The CAD method for quantifier elimination consists of
three main phases. The first phase extracts the polynomials occurring in the
input formula and factoring them into irreducible factors, assuming that each
atomic formula of the input formula is of the form p = 0 or p < 0 where p
is a multivariate polynomial with integer coefficients. The second phase con-
structs a decomposition of real r-dimensional space, where r is the number of
variables in the formula, into a finite number of connected regions, called cells.
Each polynomial in all cells is invariant in sign. These cells are arranged in a
certain cylindrical manner. From this cylindrical decomposition, it is then quite
straightforward to apply the quantifiers by using a sample point from each cell
to determine the invariant truth value of the input formula in that cell. This
application of quantifiers reveals which cells in the subspace of the free variables
are true. The final phase constructs an equivalent quantifier-free formula from
this knowledge.

In Collins’ original method, this problem was solved by a method called
augmented projection that provided a quantifier-free formula for each of the
true cells. In 1990, Hong [18] has devised a generally more efficient method which
appears to work in most cases. In 1995, Hong [19] also proposed and implemented
a more efficient approximate quantifier elimination using interval arithmetic. The
algorithm was later improved and implemented by Ratschan [34–36]. However,
beyond linear case and a few variables, quantifier elimination is very difficult,
or produces such large output as to be hard to manage. Additionally, it is only
possible in principle to eliminate quantifier if the bound variables only occur
algebraically.

The mathematical and computational structures of the spatial planning prob-
lem when stated in algebraic terms are reasonably well-understood [8]. Objects
defined by semi-algebraic sets are highly flexible and expressive but they are
computationally expensive to compute. Existential quantifiers, which correspond
to geometric projection, and semi-algebraic sets with Boolean operators can be
used to describe C-space obstacles. We can outline the method as follow:

1. Represent C-space obstacle in quantified form.
2. Decompose C-space into semi-algebraic cells so that each cell is either entirely

contained in the C-space obstacle or disjoint from it.
3. Determine adjacency relation between cells in C-space obstacle.
4. Represent obstacle connectivity as finite graph.
5. Solve Find-path problem by standard graph searching techniques.

Both step 2 and 3 are difficult in practice. For example, in step 3, the set of
collision-free points is a semi-algebraic set that can be determined by quantifier
eliminations. Since it is necessary to decide all cells adjacencies in the CAD in
order to determine whether two points are in the same component, one approach
is to decide if cell C1 is adjacent to cell C2. Cell C1 and C2 are adjacent if
closure(C1) intersects C2 or if C1 intersects closure(C2). The closures can be
expressed in quantified form, and then the quantifiers can be eliminated.



Several methods based on generating a cylindrical cell decomposition of C-
free were first proposed by Schwartz and Sharir [40]. Attempts to solve simple
two dimensional spatial planning problem using CAD to eliminate quantifiers,
for example, by Davenport [10], Davenport, Siret and Tournier [11], Kalkbrener
and Stifter [22], McCallum [27], Sturm and Weispfenning [46], achieved limited
results because of excessive computational resource requirement.

1.5 Binary Space Partitioning

Binary Space Partitions tree or BSP tree which was introduced by Fuch, Kedem
and Naylor in [15] offers a simple way to implement a geometric divide-and-
conquer strategy. The method of BSP divides the space into two parts, with a
hyperplane or subplane. This action may bisect the objects if necessary. Parts of
the objects belongs only to one of side of the bisection. The two resulting parts
may get divided recursively in a similar manner. The process continues until
some conditions are met. This division process can be naturally represented as
a binary tree. A node represents a part of the space and stores the cut splits the
space into two parts and both children represent the spaces. Consequently, the
number of regions in the final configuration is the number of leaves in the BSP
tree. Each leaf of the BSP tree represents the final partitioning of the space and
usually stores very small fragments of the original object. Such rectangle leaves
form a very important class of objects in application domains because complex
objects can often be replaced by their bounding rectangles.

Since the number of leaves in the trees is a fundamental aspect for most BSP
applications, the problem of bounding the size of BSP trees is an important
research topic. There has been a considerable interest in proving tight lower and
upper bounds on the exact size of the BSP trees for various objects. For example
in Berman, DasGupta and Muthukrishnan [2], Dumitrescu, Mitchell, and Sharir
[13], Paterson and Yao [32, 33]. In CSG related application, Thibault and Naylor
demonstated in [48] that regular sets can be represented using BSP trees and
how BSP trees can also provide an exact representation of arbitrary polyhedra
of any dimension.

2 Geometric Models of Configuration Space Obstacles

Configuration space obstacles of the moveable object among obstacles can be
regarded as geometric objects. The solid part of the geometric model could
correspond to the configuration that would cause the object to collide with
the obstacles where empty space outside the solid corresponds to the possible
configuration of the object in the Workspace.

The idea is to characterise the position and the geometric constraints of the
object due to the obstacles by some conditions imposed on the entire object by
the presence of the obstacle in the same Workspace. This can be done by stating
the conditions of every point of the object using quantifiers.



For example, to represent two dimensional moving object P and obstacles O
in two dimensional Workspace using implicit representation can be proceed as
followed.

For a point z, w ∈ R2, define P and O as subsets of the Workspace R2 by
P = {(z, w) : p(z, w)} and O = {(z, w) : o(z, w)} where p(z, w) and o(z, w) are
some conditions for (z, w). That is, in the Workspace the moving object is a set
of points {(z, w) | P (z, w)} and the obstacle is {(z, w) | O(z, w)}.

It is clear that a position of the object P is impossible if and only if, there
is a point (z, w) in P such that, if this point is translated by (x, y) and rotated
about the reference point rvP by θ, it will be in O. Such a point represents the
overlapping of the moving object and the obstacle. The collection of these points
forms a C-space obstacle.

The above statement can be represented in quantified form as:

∃z∃w(P (z, w) ∧ O(x + (zcosθ − wsinθ), y + (zsinθ + wcosθ)) )

Thus the C-space obstacle is a set of points

{(x, y, θ) | ∃z∃w(P (z, w) ∧ O(x + (zcosθ − wsinθ), y + (zsinθ + wcosθ))}

To represent C-space obstacles in this way leads to an object that has more
variables than the degrees of freedom of the problem. The Boolean combina-
tions of the formulae with variables z, w, x, y, θ define a geometric object called
the omnimodel. The space which contain the omnimodel is referred to as the
omnispace [29–31].

Assume now that O(z, w) and P (z, w) do not involve any of the trigonometric
or exponential functions. By using quantifier elimination on the above represen-
tations, an extended semi-algebraic representation of the C-space obstacle in
(x, y, θ) can be obtained. The C-space obstacle can be represented as the re-
sult of a projection from 5-dimensional space with coordinates (z, w, x, y, θ) to
the 3-dimensional space with coordinates (x, y, θ). The variables z and w were
projected out.

However, quantifier elimination is computationally hard, and the output in
semi-algebraic representation is large and cumbersome. It seems that we should
learn to work directly with the implicit representation of the C-space obstacle.
In any case, if the moving object or part of the obstacle is not algebraic, we
must be able to deal with quantified representation of the C-space obstacle,
since elimination of quantifiers may not be possible.

2.1 Alternative Representation

By convention, P is usually connected, that is P is always either entirely outside
the obstacle or entirely inside the obstacle or is intersected with at least an
edge of the obstacle. Thus the position of the object P is also impossible if and
only if, either there is a point (z, w) in P such that, if this point translated and



rotated, it will be on the edge of the obstacle, or the reference point of P is in
the obstacle. We can also represent the collection of these points as:

O(x, y, θ)∨ ∃z∃w(P (z, w)∧ edge(O(x + (zcosθ−wsinθ), y + (zsinθ + wcosθ))))

Here edge(z, w) refers to extended semi-algebraic representation of the edges of
the obstacle. We call this representation edge formulation. This edge operator is
the boundary formation operator which need to be defined.

3 Extended Semi-algebraic Sets as CSG Primitives

CSG models in higher dimensions can represent configuration-space obstacles.
Simple objects in CSG are referred to as primitives. In order to represent CSG
primitives, we need to consider a computable representation. Any set defined
by multivariate polynomial inequality or equality involving some transcendental
functions appears to be an appropriate candidate since they have good expressive
power. For example, primitives such as half-spaces, spheres and cylinders are easy
to represent in semi-algebraic form. Additionally, polynomial functions together
with sine and cosine is a natural tool to describe geometric constraints.

Semi-algebraic sets are subsets of some Rn defined by Boolean combinations
of a finite number of polynomial equations and inequalities. In 1930, Tarski [47]
showed that every set in some Rn, which can be defined using Boolean op-
erators and quantifiers starting with polynomial equalities and inequalities, is
semi-algebraic. Existential quantifiers correspond to geometric projection. Thus
semi-algebraic sets are closed under finite union, intersection, negation and pro-
jection. Geometric objects can be built not only from Boolean combinations of
equations and inequalities but also with projection, i.e. using existential and
universal quantification. This makes it possible to represent objects and their
motion constraints.

Let Z[x1, . . . , xn] denotes the set of polynomials in variables x1, . . . , xn with
integral coefficients. A semi-algebraic primitive is a subset of Rn which ad-
mits some representation of the form {(x1, . . . , xn) : p(x1, . . . , xn) � 0} where
p(x1, . . . , xn) ∈ Z[x1, . . . , xn] and � ∈ { ≤, <, =, 6=, >, ≥ }. An expression of
the form p(x1, . . . , xn) � 0 is called an atomic formula.

A semi-algebraic set is a semi-algebraic primitive or a Boolean combination of
semi-algebraic primitives. The semi-algebraic sets of Rn form a Boolean algebra
with + as set union (∪), · as set intersection (∩), − as a set complement (−), 0
as an empty set (φ) and 1 as the universal set (Rn).

Boolean algebra of semi-algebraic sets provides a finite description of geomet-
ric objects and a set of operators capable of manipulating them. Semi-algebraic
sets can be used as a CSG primitive. Object in CSG can be viewed as a set-
theoretic composition of elementary semi-algebraic sets in Rn. By definition, the
Boolean combinations of semi-algebraic sets are closed under elementary set-
theoretic operators; finite intersection, finite union and complement. We can use
these semi-algebraic sets and its operators to define geometric objects.



Since we would like to allow, as a CSG primitive, any set defined by mul-
tivariate polynomial inequality or equality involving some transcendental func-
tions such as sine and cosine, we have to extend the CSG primitives beyond the
semi-algebraic.

Let
Z[x1, . . . , xn, sin(x1), . . . , sin(xn), cos(x1), . . . , cos(xn)]

denote the set of polynomials with integral coefficients in x1, . . . , xn, and the
sines and cosines of these variables. An extended semi-algebraic primitive is a
subset of Rn which admits some representation of the form

{(x1, . . . , xn) : p(x1, . . . , xn) � 0}

where p(x1, . . . , xn) ∈ Z[x1, . . . , xn, sin(x1), . . . , sin(xn), cos(x1), . . . , cos(xn)], and
� ∈ { ≤, <, =, 6=, >,≥ }.

An extended semi-algebraic set is an extended semi-algebraic primitive or a
Boolean combination of extended semi-algebraic primitives. Boolean algebra of
extended semi-algebraic sets, which includes trigonometric functions, has good
expressive power. Not only that it is capable of representing static objects but it
is also natural to describe motion constraints of objects in this form. However,
the subsets of Rn which can be represented by Boolean combinations of the
extended primitives do not always have good closure properties. For example,
although we can represent the trigonometric functions, we cannot, as far as we
know, represent the primitive {(x, y) : y − sin(x2) ≤ 0}.

4 CSG System and Interval Methods

It is clear that, Boolean algebra of extended semi-algebraic sets provide a finite
description of geometric objects and a set of operators capable of manipulating
them. Call this system CSG system.

The configuration space obstacles are geometric objects that can be repre-
sented using Boolean combinations of inequalities. Moreover, they can also be
represented using existential quantifiers which correspond to geometric projec-
tions. If the projected variables only occur algebraically then it is possible to
eliminate quantifiers and represent configuration space obstacles in the semi-
algebraic form. However, no matter how it is done, the quantifier elimination
is computationally hard and the output in semi-algebraic representation is of-
ten large and cumbersome. Therefore we are looking for a possibility to work
directly with the quantified representation of the configuration space obstacles
using interval arithmetic.

Since its inception, interval computations were employed in many different
manners and in many different application fields. We are interested in using in-
terval mainly as a tool to approximate the value of some functions over regions
of a space. There are several investigations which employed interval analysis in
this fashion. For example Bowyer, Berchtold, Eisenthal, Voiculescu, and Wise
[3], Duff [12], Martin, Shou, Voiculescu, Bowyer and Wang [26], Snyder [44] and



Tupper [49] discussed how interval analysis could be a useful tools for geometric
modelling and can be used to solve a wide variety of problems in computer graph-
ics, including ray tracing, plotting algebraic curve, graphing two-dimensional
implicit equations and inequalities, interference detection, polygonal decomposi-
tion of parametric surfaces, and Constructive Solid Geometry on solids bounded
by parametric surfaces.

The property of C-space obstacle in which:

COP (O1 ∪O2) ≡ COP (O1) ∪ COP (O2)

where P is the object and Oi are obstacles, gives rise to the idea of generating
C-space obstacle of many simple objects and combining the results together.
Branicky showed in [6] that the validity of this property holds regardless of
convexity or connectedness of the actual obstacles. This property is particularly
useful with the CSG representation of the C-space obstacles since it is natural
to build complicated object using Boolean combinations of many simple ones.

Complicated CSG objects can be represented by a tree structure with Boolean
operators on the internal nodes, and primitives at the leaves. The usual oper-
ators include ∪ (or), ∩ (and), ¬ (not), and − (difference). To answer a query
about an object represented in this way is computationally expensive since every
node and leaf has to be consulted. One way to overcome this problem is based
on the assumption that ‘representation of objects may be globally complicated
but locally simple’, objects can be much simpler within ”small enough” region.
The restrictions of the number of nodes and leaves that need to be considered
can be imposed by dividing the space that contains the tree into smaller spaces,
and by pruning the tree for each space. Pruning and subdivisions can lead to
simpler representations of objects. Each time the subdivision occurs, the smaller
sub-space may have simpler objects while the combinations of all spaces still
represent the more complicated original model. Although it is likely, there is no
guarantee that the object will be simpler in a smaller region of interest. How-
ever, at least the union of all regions still represent the more complicated original
model.

The method we used is a combination of two processes. The first divides the
original region of interest into many regions; each has the original object inside.
This process is called spatial subdivision. The second process reduces the number
of primitives which made up the object in each region by systematically removing
unnecessary primitives. This process is called pruning. The subdivision process
can be applied recursively or adaptively, each time with the pruning process to
simplify the object to its region, until a certain condition is met.

4.1 Models and Boxes

In order to use the pruning and recursive subdivision technique, we introduce
the concept of models and boxes.

Definition 3. A CSG model M is a tree structure with Boolean operations on
the internal nodes and atomic formulae on the leaves.



Additionally, we will assume some list (x1, . . . , xn) of variables which may appear
in M . CSG object trees define subset of Rn but a CSG model trees such as M
describe conditions of variable (x1, . . . , xn) available to them. For example, for
a variable list (x1, x2, x3) a model M could take the form similar to Figure 2.

M =

intersection

HH
H

��
�

x2
1 + x2

2 ≤ 1 intersection

HHH
���

sin(x3) ≥ 0 sin(x3) ≤ 1

Fig. 2. Simple model tree.

The atomic formulae may define semi-algebraic primitives, or extended semi
algebraic primitives. We might also wish to restrict the primitives to a subset
of the semi-algebraic, such as, for example, linear half-spaces and cones. The
geometric operations are n-ary union and intersection and unary complement.

Definition 4. Let B be a list of m closed intervals ([a1, b1], . . . , [am, bm]). Call
B a box. Each interval in B represents a coordinate-aligned edge of the box. The
correspondence is determined by the ordering of the intervals and the ordering
of variables in a specified ordered list.

Suppose an m-dimensional box is ([a1, b1], . . . , [am, bm]) and the ordered list
of variables are x1, . . . , xn where m ≤ n. By convention, the interval [a1, b1]
corresponds to the variable x1, the interval [a2, b2] corresponds to x2, and the
correspondence carry on respectively to [am, bm] which corresponds to xm. The
variables xm+1, . . . , xn, if exist will be ignored. Additionally, the ordered list of
variables also label the coordinate axes of this set in Rn and if the length of the
list of interval which defines the box is m, the box is said to be m-dimensional.

For example, suppose the ordered list of variables is (x1, x2, x3, x4) and the
box B is ([a1, b1], [a2, b2]). Figure 3 depicted B, a 2-dimensional coordinate-
aligned box.

The box can also be represented in semi-algebraic form. For example, suppose
the ordered list of variables is x1, . . . , xn and a box B of closed intervals is
([a1, b1], . . . , [am, bm]) where m ≤ n. The box B can be written in semi-algebraic
form as:

(x1 ≥ a1 ∧ x1 ≤ b1) ∧ . . . ∧ (xm ≥ am ∧ xm ≤ bm).

Definition 5. Let M be a model with variable from x1, . . . , xn and let B be an
m-dimensional box where m ≤ n. Define the model M over the box B to be the
set of points in B that satisfy M . Denote this set in Rn by (M,B).
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Fig. 3. A coordinate-aligned box which corresponds to a list of two intervals.

Since the set (M,B) is the collection of points in B that satisfy M , (true, B)
is the box B itself and (false, B) is the empty set. We will use a pair (M,B),
where M is a model and B is a box, to define a subset of Rn. This (M,B) is our
primitive CSG object; the building block of our geometric language which can
also be regarded as an extended semi-algebraic set.

It can happen that (M,B) defines a set which does not depend on one or more
of the variables from the variable list. This is necessary if we want intersection
to be defined in a natural way. We have described a model as a tree. If we climb
up the tree, the number of variables visible below us may change. We do not
in general wish to change space every time this happens. Therefore, we work
always in subsets of the box B.

The sets defined by (M,B) form a Boolean algebra of the subsets of B. This
set definition is recursive on the structure of M . That is, if M is an atomic
formula, (M,B) will be the subset of B in which M is true and it follows that:

(union(M1,M2), B) = (M1, B) ∪ (M2, B)
(intersection(M1,M2), B) = (M1, B) ∩ (M2, B)

(complement(M), B) = B − (M,B)

Note that we distinguished between the two types of tree structure by the
introduction of the following notations:

CSG Tree Model Tree
Primitives Semi-algebraic Sets Atomic Formulae
Operators ∪ union

∩ intersection
− complement

4.2 Evaluation

For each pair (M,B), the box B limits the scope in which the model M is defined.
It also provides intervals which correspond to variables in M from which we can



determine the value of each atomic formula in the model tree by using interval
arithmetic.

In order to reduce the number of atomic formulae of a model in a box, all
the formulae that make up the model need to be evaluated. This is to determine
the value of each atomic formula over the box and decide if it can be simplified.
The evaluation is done by using interval arithmetic on each atomic formula. By
substituting each variable of the formulae with the corresponding interval, the
range of values of the function in the atomic formula can be calculated. This
range will also be an interval. The value of the atomic formula can be evaluated
according to its operator. This process is referred to as evaluating the formula
over a box. The value of the atomic formula after the substitution is either true,
false or undecided.

Table 1. Value of atomic formula according to the range of intervals

[−, 0] [0, +] [−, +] [−,−] [+, +]

p = 0 undecided undecided undecided false false
p < 0 undecided false undecided true false
p ≤ 0 true undecided undecided true false

Table 1 shows the value of output intervals corresponding to the operator of
the formula. The simplifications of models occur when some formula evaluate
to true or false and there is no simplification when the formula evaluated to
undecided.

Since this set definition is recursive on the structure of M , when M is an
atomic formula, (M,B) will be the subset of B in which M is true. That is,
when the formula evaluated to true it can be interpreted as M is true inside the
box B and the intersection of the model and the box is the box itself. In this case
we replace the formula with true. When the formula evaluated to false, M is
false inside the box B and we can replace it with false. The original primitive
is returned if the evaluation result is undecided.

For example, consider M = 2x−3y+4z+12 ≤ 0 and the box ([−1, 4], [1, 3], [0, 4]).
Over the box the M , in this case – an atomic formula, is:

2([−1, 4])− 3([1, 3]) + 4([0, 4]) + 12 ≤ 0
[− 2, 8]− [−9,−3] + [0, 16] + [12, 12] ≤ 0

[1, 33] ≤ 0

which evaluated to false.
This process can be thought of as a function which takes an atomic formula

P and a box B as the arguments and return either a value true, false or the
original primitive along with the box:

Eval(P,B) → {(true, B), (false, B), (P,B)}.



By convention, an atomic formula of a model M will be evaluated to undecided
if the atomic formula has an instance of a variable which does not correspond
to an interval.

4.3 Pruning

The evaluation process maybe able to replace some formulae of the model in
the box by true or false. As a consequence, this can lead to a reduction of the
number of formulae that made up a model. This is because a model consisted
of unions, intersections and complements of formulae. Once each formula in
the model has been evaluated and some replaced with true or false, we can
work up the model tree applying the operators to each leaf and achieve some
simplification.

The pruning process ensures that inside the box there are no unnecessary
formulae while the simplified model is still representing the original one. We can
simplify the model over the box by applying the rules of the operators to the
primitives.

The simplification rules of the CSG Boolean operators are:

union(undecided, true) = true

union(undecided, false) = undecided

intersection(undecided, true) = undecided

intersection(undecided, false) = false

complement(true) = false

complement(false) = true

complement(undecided) = undecided

The process of pruning the model to the box takes a model and a box (M,B)
and produces another model over the same box (M ′, B). In the box B, the new
model M ′ is either the same as M or simpler than M . Also, (M,B) and (M ′, B)
define the same set.

Algorithm 2 is an example of the pruning procedure. It starts at the root of
the model and recursively works down to all the leaves. While the node is still
an operator, the evaluation is deferred by calling the procedure Prune() again.

Since CSG operators are n-ary union, n-ary intersection and unary comple-
ment, the algorithm can exploit many known properties. For example, it can take
into account the simplification that can be made in the case where one of the
operand of union simplified to true and similarly, where one of the operand of
intersection simplified to false. If the node is not one of CSG operators then we
have reached the leaf and procedure Eval() is called to evaluate that particular
formula to the box.

4.4 Recursive Subdivision

Since we are representing boxes using intervals, we consider using isothetic or
axially-aligned box division for it is straightforward to perform subdivision tech-



Algorithm 2 Prune(M,B)
Input: (M, B)
Output: (M ′, B) {(M ′, B) defines the same set as (M, B)}

1: S ← φ
2: if (M = union{M1, . . . , Mk}) then
3: for i = 1 to k do
4: (M ′

i , B)← Prune(Mi, B)
5: if (M ′

i = true) then
6: return(true, B)
7: else if (M ′

i 6= false) then
8: S ← union(S, M ′

i)
9: end if

10: end for
11: if (S = φ) then
12: return(false, B)
13: else
14: return(S, B)
15: end if
16: else if (M = intersection{M1, . . . , Mk}) then
17: for i = 1 to k do
18: (M ′

i , B)← Prune(Mi, B)
19: if (M ′

i = false) then
20: return(false, B)
21: else if (M ′

i 6= true) then
22: S ← intersection(S, M ′

i)
23: end if
24: end for
25: if (S = φ) then
26: return(true, B)
27: else
28: return(S, B)
29: end if
30: else if (M = complement{M1}) then
31: (M ′

1, B)← Prune(M1, B)
32: if (M ′

1 = true) then
33: return(false, B)
34: else if (M ′

1 = false) then
35: return(true, B)
36: else
37: return(complement{M ′

1}, B))
38: end if
39: else
40: return(Eval(M, B), B)
41: end if



nique and to determine adjacencies between boxes. This spatial subdivision
process of the original regions of interest takes the form called Binary Spatial
Partition (BSP). The BSP tree is a binary tree representing a recursive parti-
tioning of n-dimensional space hyperplane or sub-plane, for any dimension n.
Regions which are n-dimensional coordinate-aligned boxes defined by n closed
intervals are divided equally into two adjacent regions along an axis. These in-
tervals are subsets of R defined in terms of their end-points. A closed interval
{x|x ∈ R and a ≤ x ≤ b} usually denoted by [a, b].

We first consider a simple subdivision technique called recursive subdivision
which divides a box into two sub-boxes and the divisions carry on recursively
until the termination conditions are met. There are two subdivision decision
strategies; blind and adaptive. The blind strategy determines the position of the
subdivision by relatively fixing the point for each sub-division, for example, sub-
dividing at a mid-point between two vertices. The adaptive strategy determines
subdivision points by taking the contents of the box into account.

Regardless of the division strategy, when a box is divided, we get two or
more adjacent sub-boxes with the same model inside. Each model can then be
simplified over its own box by the pruning process and hopefully will be simpler
than the original model. In this way, at any point of the process, the union of all
sub-boxes with their models results in the original box with the original model.

Since the set definition of (M,B) is recursive on the structure of M , if B =
union(B1, B2) it follows that: (M,B) = union((M,B1), (M,B2))

For example, given a box B and a model M = union(intersection(M1,M2),M3),
if the box is subdivided into two sub-boxes, B1 and B2 along one of its coordi-
nate, then:

(M,B) = (union(intersection(M1,M2),M3), B)
= union(

union(intersection((M1, B1), (M2, B1)), (M3, B1)),
union(intersection((M1, B2), (M2, B2)), (M3, B2)))

The algorithm, which divides the longest side of the box, can be expressed
in algorithmic form as in Algorithm 3.

After the pruning process, the union of the sets defined by (M,B1) and
(M,B2) is the same as the set defined by (M,B). The division can be carried on
recursively along with the pruning process until some conditions are met. There
are a few options to consider as a termination condition of the process. For
example, the recursive subdivision could stop when all the boxes are sufficiently
small. It is also possible to determine if the model is simple enough that is there
are a certain number of atomic formulae left in the model.

The Algorithm 4 recursively subdivides the longest side of the box until the
box is small enough or the model is simple enough.

When we extend the primitive to extended semi-algebraic sets, pruning and
recursive subdivision are still applicable. This is because the evaluation is done
by interval arithmetic which sine, cosine and exp functions are also defined.



Algorithm 3 SubDivide(M,B)
Input: M, B
Output: (M, B1), (M, B2)

1: position←MaxSidePosition(B)
2: interval← Part(B, position)
3: lower ← LowerEnd(interval)
4: upper ← UpperEnd(interval)
5: midpoint← lower + Size(interval)/2
6: B1 ← Part(B, position)← [lower, midpoint]
7: B2 ← Part(B, position)← [midpoint, upper]
8: return (M, B1), (M, B2)

Algorithm 4 RecurSubDivision(M,B)
Input: M, B
Output: (M1, B1), . . . , (Mk, Bk)

1: (M ′, B)← Prune(M, B)
2: if IsSimple(M ′) or IsSmall(B) then
3: return(M ′, B)
4: else
5: (M, B1), (M, B2)← SubDivide(M, B)
6: return(RecurSubDivision(M, B1), RecurSubDivision(M, B1))
7: end if

5 Extended Operators

Whether or not we extend the semi-algebraic primitives to include trigonometric
functions, we may wish to extend the set of operators. We now wish to add two
new operators: boundary and projection, to represent complex objects using
extended semi-algebraic primitives.

5.1 Boundary Operator

Definition 6. Let S be a subset of Rn. Define Closure(S) to be the set of points
which are either in S or which have elements of S arbitrarily near them.

For example, if S = {x : x < 0} then Closure(S) = {x : x ≤ 0} whereas if
S = {x : x = 1} then Closure(S) = φ.

Definition 7. Let S be a subset of Rn. Define

Boundary(S) = Closure(S) ∩ Closure(S)

where S = Rn − S. A point is in Boundary(S) if it is arbitrarily close to points
in S and also close to points in S.



However, since set complement operator depends on the universe, so does
the boundary operator. If the universe is B and S ⊆ B then

Boundary(S) = Closure(S) ∩ Closure(B − S).

Additionally, if S is a semi-algebraic set then Closure(S) and Boundary(S) are
semi-algebraic.

For example, for S1, S2 ⊆ R2 the set S1 = {(x, y) : x2 + y2 − 1 ≤ 0} defines
a disc and Boundary(S1) = {(x, y) : x2 + y2 − 1 = 0} defines the circle in R2.
Similarly, the set S2 = {(x, y) : y ≤ x2} defines a region below the parabola and
Boundary(S2) = {(x, y) : y = x2} defines the parabola in R2.

5.2 Projection Operator

Define the projection operator as follows:

Definition 8. Let S be a subset of Rn. Suppose V = {y1, . . . , yk} is a subset of
the variables {x1, . . . , xn}. Let W = {w1, . . . , wj} be the variables in {x1, . . . , xn}
but not in V . Define a projection of variables in V of set S as:

ProjectionV (S) = {(w1, . . . , wj) : (x1, . . . , xn) ∈ S}for some{y1, . . . , yk}.

Define cylindrical projection of variable in V of set S as:

CylProjectionV (S) = {(x1, . . . , xn) : (w1, . . . , wj) ∈ ProjectionV (S)}

Both projection operators have two arguments, a subset of Rn and a set of
variables to be projected out. The interpretation of Projection is as the usual
projection operator where the result of the projection is in the space of the
remaining variables. On the other hand, the interpretation of CylProjection
projects the specified variables in the set S and leave the result in the same
space. The result of this projection is regarded as “cylindrical”. In other words,
ProjectionV (S) is a subset of Rk obtained by taking all points (x1, . . . , xn) in S
and forgetting all coordinates of variables in V . In contrast, CylProjectionV (S)
is the set of points (x1, . . . , xn) in Rn which can be transformed into points of S
by changing values of variables in V . Therefore CylProjectionV (S) is a cylinder
in Rn whose base is ProjectionV (S).

For example, the set S = {(x, y, z) : x2 + y2 + z2 − 1 ≤ 0} defines a sphere.
From the definition above

Projection{z}(S) = {(x, y) : x2 + y2 − 1 ≤ 0}

is a disc in xy-space, whereas

CylProjection{z} = {(x, y, z) : x2 + y2 − 1 ≤ 0}

is a cylinder in xyz-space which has the disc Projection{z}(S) as a base.
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5.3 Relationship Between Operators

Subsets of Rn obtained from extended semi-algebraic primitives using combina-
tions of Boolean operators; n-ary union, n-ary intersection, unary complement,
and the two new operators; unary boundary and unary projection, provide finite
description of geometric objects and a set of operators capable of manipulating
them. The extended CSG system is a Boolean algebra of extended semi-algebraic
sets, therefore CSG models is stable since the Boolean operators are supported
by well-defined set of axiom. In contrast, we do not at present know how to
compute with the extended CSG system with the two new operators. However,
we can establish some relationship between the two new operators and the usual
Boolean operators as follow:

Projection{V }(S1 ∪ S2)) = Projection{V }(S1) ∪ Projection{V }(S2)
CylProjection{V }(S1 ∪ S2)) = CylProjection{V }(S1) ∪ CylProjection{V }(S2)

Boundary(S) = Boundary(complement(S))
Boundary(φ) = Boundary(universe) = φ

Boundary(S1 ∪ S2)) ⊆ (Boundary(S1) ∪Boundary(S2))
Boundary(S1 ∩ S2) ⊆ (Boundary(S1) ∩Boundary(S2))

Although the above expressions appear to be true, similar expressions are
not. For example, as illustrated in Figure 4.

Projection{y}(S1 ∩ S2) 6= Projection{y}(S1) ∩ Projection{y}(S2)

Similarly,

ProjectionV (S1 ∩ S2) 6= Projection(S1) ∩ Projection(S2)
Boundary(S1 ∪ S2) 6= Boundary(S1) ∪Boundary(S2)
Boundary(S1 ∩ S2) 6= Boundary(S1) ∩Boundary(S2)



6 Results and Observations

The simplest types of Movers’ problems are those that concerned with a single
moving convex object among known static convex obstacles. We consider several
example cases of a single 2-dimensional object avoiding several 2-dimensional
static obstacles in a 2-dimensional Workspace. Thus the dimensions of the Om-
nispaces are between four and six, depending on the degrees of freedom of the
object and the resulting C-space. After the projection the resulting C-space is
at most 3-dimensional.

The main concern of our experiments is to gain an insight into how to use
pruning and spatial subdivision technique by Interval Analysis in conjunction
with projection operators on Omnimodels. Algebraically, the projections elimi-
nate two variables from the total of three to five variables.

The experiments were conducted using computer logic system REDLOG im-
plemented in REDUCE computer algebra system. REDUCE is a powerful Com-
puter Algebra system available for many operating systems. The elementary
functions are easy to use and for non-interactive mode users can write new pro-
cedures using REDUCE syntax. The system was described in more details in, for
example [17] [25]. REDLOG which stands for REDuce LOGic system provides
an extension to REDUCE computer algebra system so that logical expressions
and quantifiers can be dealt with. It provides many functions for the symbolic
manipulation of first order formula over some temporarily fixed languages and
theories. The focus of the system is on simplification of quantifier-free formula
and effective quantifier elimination.

The algorithm was implemented using REDUCE syntax. The procedures are
relatively high-level which allow input of the form:

procedure_name(object,
obstacle,
box,
number_of_bound_varialble,
variable);

where object and obstacle are semi-algebraic descriptions, box is a list of
intervals, number_of_bound_variable is an integer and variable is a list of
variables available to object and obstacle.

Figure 5 shows the 2-dimensional Workspace which has one moveable object
with 2 degrees of freedom. The translation is only allowed in 1-dimension, along
the x-axis. The rotation is possible around its reference vertex. The three ob-
stacles are of infinitesimal width. The result Configuration Space obtained from
the Omnimodel by using Projection operator. The vertical and horizontal lines
represent the division decisions that took place. The vertical and horizontal axis
corresponds to the rotational range of 2π and the translation range from 0 to
14 respectively. The shaded areas represent C-free while the lighter areas were
undecided. The recursive subdivision algorithm was adaptive but only termi-
nated at a specified size of boxes. Thus, it was clear from the result that C-space
obstacles or the forbidden regions were not detected.
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This result reveals limitations of standard interval arithmetic similar to those
found by Stahl in [45] and similarly by Tupper in [49]. Due to the conservative-
ness of the interval arithmetic, the evaluation processes could not simplify the
Omnimodel to determine if the box is completely inside the C-space obstacles.

6.1 Remarks

When the CSG primitive are extended semi-algebraic sets, pruning and recur-
sive subdivision are still applicable. This is because the evaluation is done by
interval arithmetic which sine and cosine functions are also defined. Thus it
seems possible to work directly with the representation of the C-space obstacle
as a projection, in an extended CSG system, using Interval Analysis.

Recently, there are many works which address the problem of the overesti-
mation of interval arithmetic. One research direction is to look further into the
application of those proposed solutions. In any case, if the moving object or part
of the obstacle is not algebraic, C-space obstacle must be represented as a projec-
tion, since elimination of quantifiers may not be possible. A useful research topic
would be the investigation of an extended Constructive Solid Geometry system
which would have both bounded projection and boundary formation as opera-
tors, as well as the usual Boolean operators. In such a lazy system, quantifier
elimination could be deferred, and might never be carried out.
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