
REGULAR LANGUAGES AND THEIR GENERATING

FUNCTIONS: THE INVERSE PROBLEM

CHRISTOPH KOUTSCHAN

Abstract. The technique of determining a generating function for an unam-

biguous context-free language is known as the Schützenberger methodology.

For regular languages, Elena Barcucci et al. proposed an approach for inverting

this methodology. This idea allows a combinatorial interpretation (by means

of a regular language) of certain positive integer sequences that are defined by

C-finite recurrences.

In this paper we present a Maple implementation of this inverse method-

ology and describe various applications. We give a short introduction to the

underlying theory, i.e., the question of deciding N-rationality. In addition,
some aspects and problems concerning the implementation are discussed; some

examples from combinatorics illustrate its applicability.

1. Introduction

This paper essentially deals with sequences of positive integers that are defined
by a linear recurrence with constant coefficients (C-finite recurrence), and which
can be identified with the power series expansion of some rational function. The
focus of attention is the interrelation between such sequences and regular languages:
A formal power series S corresponds to a formal language L, if

sn =
∣

∣

∣
{w ∈ L : |w| = n}

∣

∣

∣
, where S =

∞
∑

n=0

snxn,

i.e., if the nth coefficient sn gives the number of words in L with length n.
How to find the power series corresponding to a given language (of certain type) is

known as the Schützenberger methodology: Let G = (V,Σ, P, I) be an unambiguous
context free grammar of the language LG, where V denotes the set of nonterminals,
Σ the set of terminals, P the set of production rules, and I the initial symbol. The
morphism Θ is defined by

Θ(a) = x ∀a ∈ Σ

Θ(λ) = 1 (λ denotes the empty word)

Θ(A) = A(x) ∀A ∈ V

and is applied to all elements of P . Any production rule A → e1|e2| . . . |ek yields
an algebraic equation in the A(x), B(x), . . . :

Θ(A) =

k
∑

i=1

Θ(ei).

This system has to be solved for I(x) and gives the generating function correspond-
ing to LG. In [CS63] it is proved that if G is an unambiguous regular grammar,
then the corresponding generating function is rational.

In this paper, we consider the inverse problem by using the approach of Bar-
cucci et al. [BLFR01]: Given a formal power series generated by some rational

Koutschan@risc.uni-linz.ac.at, supported by grant SFB F1305 of the Austrian FWF.
1

2 CHRISTOPH KOUTSCHAN

function, how can we obtain a regular expression for the corresponding regular lan-
guage (in the case that such a language exists at all), and thus get a combinatorial
interpretation of the series?

Section 2 is a short introduction to the underlying theory which will end up with
an exact characterization of N-rational series; solely for such series our inverse prob-
lem is solvable. In Section 3 we discuss some aspects concerning the implementation
of the inverse Schützenberger methodology. At some points the methods described
in [BLFR01] are sketchy and needed deeper investigation in order to describe them
algorithmically. Also some mistakes had to be corrected. Summarizing, our work
can be viewed as an algorithmic streamline of the approach of Barcucci et al. In
addition, it resulted in a computer algebra implementation; the first one we know
of. In order to illustrate the described algorithms and to demonstrate the function-
ality of our implementation, some examples from combinatorics are presented in
Section 4.

2. Formal Power Series and Regular Languages

This section presents a condensed list of definitions and resulats, stated without
proofs, that set the stage for the discussion of the method and its application. All
these results can be found in [Niv69], [SS78], and [BR88].

2.1. General setting. We will mainly deal with the free monoid Σ∗ generated
by an alphabet Σ. Σ∗ contains all finite sequences x1 . . . xn of elements xi ∈ Σ,
including also the empty sequence denoted by λ. The elements of Σ∗ are called
words, which can be linked by concatenation. Of course, the empty word λ acts as
neutral element of Σ∗. Every subset L ⊆ Σ∗ is referred to as a formal language.
Further we need the notion of a semiring, i.e., roughly speaking, a ring without
subtraction. For example, the natural numbers N form a semiring.

Definition 2.1. Given an alphabet Σ and a semiring K. A formal power series
(or formal series) S is a function S : Σ∗ → K. The image of a word w under S is
called the coefficient of w in S and is denoted by sw. S is written as a formal sum

S =
∑

w∈Σ∗

sww.

The set of formal power series over Σ∗ with coefficients in K is denoted by K〈〈Σ∗〉〉.
On the set K〈〈Σ∗〉〉 the sum and Cauchy product are defined in the usual way;

these operations induce the structure of a semiring on K〈〈Σ∗〉〉. The set of words
which have nonzero coefficients is referred to as the support of a series. The set of
all series with finite support, i.e., all polynomials, is denoted by K〈Σ∗〉, which is a
semiring, too. If K is a ring, then so are K〈〈Σ∗〉〉 and K〈Σ∗〉. The support of any
series S ∈ K〈〈Σ∗〉〉 is a formal language over the alphabet Σ. On the other hand for
any formal language L we define its characteristic series char(L) =

∑

sww by

sw =

{

1 if w ∈ L
0 if w 6∈ L

∀w ∈ Σ∗

Definition 2.2. A power series (especially a polynomial) S ∈ K〈〈Σ∗〉〉 is called
quasiregular if the coefficient of the neutral element of Σ∗ vanishes, i.e., if sλ = 0.

Now let S be a quasiregular series. Then the limit

S∗ = lim
m→∞

m
∑

n=0

Sn

exists (the sequence S0, S1, S2, . . . is called summable) and is named the star of S.
In the theory of formal languages this expression is termed Kleene closure.

REGULAR LANGUAGES AND THEIR GENERATING FUNCTIONS 3

Definition 2.3. The rational operations in K〈〈Σ∗〉〉 are the sum, the product, and
the star. A subsemiring of K〈〈Σ∗〉〉 is rationally closed if it is closed for the rational
operations. The rational closure of a subset M ⊆ K〈〈Σ∗〉〉 is the smallest subset
of K〈〈Σ∗〉〉 containing M and being rationally closed. A formal series S ∈ K〈〈Σ∗〉〉
is K-rational if it is an element of the rational closure of K〈Σ∗〉. This set of all
K-rational series is denoted by Krat〈〈Σ∗〉〉.

The following two theorems state the strong connection between regular lan-
guages and K-rational series.

Theorem 2.4. [SS78, Chap. II, Theorem 5.1] Let L be a regular language and K

a semiring. Then char(L) is K-rational.

Theorem 2.5. [SS78, Chap. II, Theorem 5.3] The support of any formal power
series S ∈ Nrat〈〈Σ∗〉〉 is a regular language.

We will now leave this general multivariate and noncommutative setting.

2.2. Rational Series in One Variable. From now on we examine rational series
over an alphabet that consists only of one single letter: Σ = {x}. Instead of K〈〈Σ∗〉〉
we write K〈〈x∗〉〉. Of course, x∗ is a commutative monoid that is isomorphic to

(N0,+). Therefore, a series S ∈ K〈〈x∗〉〉 is written as S =
∞
∑

n=0

snxn.

A rational function p(x)/q(x) is called normalized if p and q have no common
factor in K〈x∗〉 and if q(0) = 1. In the following we consider rational functions to
be given always in normalized form.

Definition 2.6. Let S be a rational power series and f(x) = p(x)/q(x) its normal-
ized generating function with q(x) = 1 − q1x − · · · − qkxk. Then the roots of q are
called poles of S. The inverse values of the poles, i.e. the roots of the reciprocal
polynomial q̄(x) = xk − q1x

k−1 − · · · − qk−1x − qk are called roots of S.

In the case that K is a commutative ring, there are three different characteriza-
tions of K-rational series which are quite easy to verify. Let K〈〈x∗〉〉 3 S =

∑

snxn.
Then S ∈ Krat〈〈x∗〉〉 if and only if one of the following three properties holds:

(1) S has a rational generating function p(x)/(1 − q(x)), where p, q ∈ K〈x∗〉
are polynomials and q is quasiregular.

(2) There is a C-finite recurrence for the coefficients of S, i.e.,
sn = q1sn−1 + · · · + qksn−k, qi ∈ K, which holds for large n.

(3) The coefficients sn can be expressed by the exponential polynomial :

sn =

r
∑

i=0

Pi(n)λn
i (for large n),

where λ0, . . . , λr are the distinct roots of S with multiplicities m0, . . . ,mr,
and the Pi’s are complex nonzero polynomials with deg Pi = mi − 1 and
with coefficients that are algebraic over K.

Note that changing finitely many coefficients of a K-rational series preserves
K-rationality.

2.3. Positive Series. We demonstrated that for a formal power series the question
of K-rationality is not difficult to decide if K is a commutative ring. Let now K be
a subring of R. We want to examine series over K+ which is only a semiring (e.g.
K+ = N or K+ = R+). This case is much more difficult and it will take some efforts
to work out a criterion for deciding K+-rationality. In general it is not sufficient to
show that a series in Krat〈〈x∗〉〉 has positive coefficients. It may well happen that
such a series is not K+-rational.

4 CHRISTOPH KOUTSCHAN

Example 2.7. Consider the series [Slo, A094423]:

x + 4x2 + x3 + 144x4 + 361x5 + 484x6 + 19321x7 + 28224x8 + 128881x9 + . . .

which is generated by the rational function (x+5x2)/(1+x−5x2−125x3). Although
all coefficients of this series are positive integers it is not N-rational.

The following theorem states a very important property of K+-rational series.

Theorem 2.8. [BR88, Chap. V, Theorem 2.2] Let S ∈ Krat
+ 〈〈x∗〉〉\ K+〈x∗〉 have the

generating function f(x) and the roots λ0, . . . , λr and let % := min
0≤i≤r

|λ−1
i |. Then:

% is a pole of S (let m% be its multiplicity) and all other poles of modulus
% have the form %ϑ and a multiplicity ≤ m%. ϑ denotes a complex root of
unity, i.e., ∃ p∈N : ϑp = 1.

(∗)

We now introduce the operations of decomposing and merging series. The next
theorem states that these operations preserve K-rationality, and additionally char-
acterizes the roots of the decomposed series.

Definition 2.9. Given a formal series S =
∑

snxn. For any p ∈ N the list of
subseries S0, . . . , Sp−1 is called a decomposition of S if

Si =
∞
∑

n=0

si+npx
n.

On the other hand S is termed the merge of S0, . . . , Sp−1:

S(x) =

p−1
∑

i=0

xiSi(x
p).

Thus to build up the subseries Si one has to take every pth coefficient, beginning
at index i. How to obtain a generating function for the Si will be described in
Theorem 3.1.

Theorem 2.10. [BR88, Chap. V, Theorem 2.5] Let K be a semiring. S ∈ K〈〈x∗〉〉
is K-rational if and only if there exist for any p ∈ N a set of K-rational power
series S0, S1, . . . , Sp−1 and their merge is S. Moreover, if K is commutative and
λ0, . . . , λr are the roots of S with multiplicities m0, . . . ,mr, then each of the Sj’s has
the following properties: The roots µ0, . . . , µs (s ≤ r) of Sj are among the numbers
λp

0, . . . , λ
p
r, and any root µl of Sj has the multiplicity m′

l ≤ max
0≤i≤r

{mi : λp
i = µl}.

The notion of a dominating root will play an extremely important role:

Definition 2.11. Let λ0, . . . , λr be the roots of S. λ0 is called the dominating root
of S if λ0 ∈ R+ and λ0 > |λi|, 1 ≤ i ≤ r holds.

The following two theorems give us the complete characterization of K+-rational
series. The important case for our work is K+ = N.

Theorem 2.12. [SS78, Chap. II, Theorem 10.4] Let S ∈ K+〈〈x∗〉〉 be K-rational
with dominating root λ0. Then S is K+-rational.

Theorem 2.13. [BR88, Chap. V, Theorem 2.10] A series S ∈ K+〈〈x∗〉〉 is K+-
rational if and only if it is a merge of K-rational series each of them having a
dominating root.

If a series generated by f is N-rational then there is a regular language L cor-
responding to it. We want to compute a regular expression for L. In fact, we
transform f into an expression which we shall call pseudoregular, since it is not the
same as one unterstands by regular expression in the narrow sense of the definition.

REGULAR LANGUAGES AND THEIR GENERATING FUNCTIONS 5

An expression is called pseudoregular if it involves only polynomials from N[x],
connected by addition, multiplication and star operation. This can be translated
into a regular expression using the procedure ren proposed in [BLFR01, p. 133]:

First of all, an alphabet Σ is initialized with the empty set.

ren(1) = λ

ren(a) =

{

a if a 6∈ Σ. Then set Σ := Σ ∪ {a}
b, b 6∈ Σ if a ∈ Σ. Then set Σ := Σ ∪ {b}

ren(X + Y) = ren(X) ∨ ren(Y)

ren(X · Y) = ren(X)ren(Y)

ren(X∗) = (ren(X))∗

Herein X and Y denote arbitrary pseudoregular expressions.

Example 2.14. Consider the pseudoregular expression 2 (x∗)
3 · x

(

x∗x2 + 1
)

. Ap-
plying the procedure ren yields the regular expression (a∗b∗c∗ ∨ d∗e∗f∗) g (h∗ij ∨ λ)
and the alphabet Σ = {a, b, c, d, e, f, g, h, i, j}.

3. Realization with Maple

This section describes some problems we had to overcome in our implementa-
tion which is presented in more details in [Kou05]. This thesis contains also the
manpages for the usage of our package. Throughout this section we consider the
following rational function to demonstrate our program:

> f:= 1/(1-2*x)^2/(1-10*x^2);

f :=
1

(1 − 2x)2(1 − 10x2)

We use our procedure getCoefficients for a fast computation of the first co-
efficients of the corresponding series:

> getCoefficients(f, 10);

[1, 4, 22, 72, 300, 912, 3448, 10144, 36784, 106560, 379104]

3.1. Getting the Roots. First of all, we need a procedure for determining all
(different) roots of a polynomial (or a rational function). The multiplicities of
the roots need not be respected. Instead of using the Maple command solve,
which can lead to time-consuming computations and unwieldy results (think of
the general case of a polynomial with degree 4), we use without exception Maple’s
RootOf expressions. For this purpose the polynomial is made squarefree, and then
factorized. We implemented this in the procedures getRoots (for polynomials) and
getRootsRat (for rational functions); both return the roots as an unsorted list:

> lambda:= getRootsRat(f);

λ :=

[

2,
1

RootOf(−1 + 10 Z2, index = 1)
,

1

RootOf(−1 + 10 Z2, index = 2)

]

3.2. Decomposition. Consider the case that a given series S has no dominating
root, but several different roots with maximal modulus; we denote these roots by
%ϑ0, . . . , %ϑk, where % is a positive real number, and the ϑi’s are complex numbers
with |ϑi| = 1. To decide that S is N-rational we must find an integer p such
that each subseries of the decomposition S0, . . . , Sp−1 has a dominating root (see
Theorem 2.13); this is fulfilled by all numbers p for which ϑp

0 = · · · = ϑp
k = 1

holds. By Theorem 2.8 we know that if S is N-rational then the ϑi’s are complex
roots of unity. We first describe how this number p can be found and then how the
decomposition itself can be computed.

6 CHRISTOPH KOUTSCHAN

3.2.1. The Symmetric Polynomial. We define the symmetric polynomial R by

R(x) :=
∏

0≤i,j≤r

i6=j

(λi − λjx).

where λ0, . . . , λr are again the roots of S. R can be computed by means of a
resultant, and thus has integral coefficients. It has the roots λi/λj (0 ≤ i, j ≤ r),
and in the case that S is N-rational among them the roots of unity ϑ0, . . . , ϑk, since
then % itself is a root of S. It is easy to show that if an nth root of unity ϑi is a
root of R, then R must be divisible by the nth cyclotomic polynomial Φn(x).

Our strategy is the following: The polynomial R is factorized over Z in order
to find all cyclotomic polynomials Φn1

, . . . ,Φnj
that divide it; for this purpose the

Maple function numtheory[invphi] is used. Then we set p = lcm(n1, . . . , nj).
These steps are performed in the procedure commonUnityRoots:

> commonUnityRoots(denom(f));

2

3.2.2. Computing the Decomposition. We know now that we have to decompose S
into p subseries, but we need these in an explicit form, i.e., given by their generating
functions. This is carried out by means of the multisection formula:

Theorem 3.1. [Rio58, Chap. 4] Given a series S by its generating function f(x)
and an integer p. Let S0, . . . Sp−1 denote the decomposition of S. Then

fi(x) =
1

pxi/p

p
∑

j=1

sp−ijf(sjx1/p), s = e2πi/p

is the generating function for the subseries Si.

There arise some problems concerning the implementation that we solved in the
following way: If the above formula for the fi’s is fed one-to-one into Maple, then in
many cases the system does not succeed in simplifying the resulting expression, and
even if so, the computation is very slow. A first speed-up is obtained by substituting
x1/p by a new variable y. But still, Maple often fails to simplify when roots of unity
are involved.

In [Ber89] we get a hint on how to handle this problem: Consider an expression
containing several pth roots of unity (let s be a primitive one). Thus our compu-
tations take place in the field Q[s] which is isomorphic to Q[x]/〈Φp(x)〉. For our
purposes this means that we introduce a new variable s that represents the root of
unity e2πi/p; then we reduce modulo Φp(s). Thanks to the above isomorphism we
obtain the correct result in a fraction of computation time compared to before.

> f0:= decomposition(f, 2, 1); f1:= decomposition(f, 2, 2);

f0 :=
−(4x + 1)

(18x + 160x3 − 96x2 − 1)

f1 :=
−4

(18x + 160x3 − 96x2 − 1)

> getCoefficients(f0, 5);

[1, 22, 300, 3448, 36784, 379104]

Here we see that in fact every second coefficient of f appears in the subseries f0.
We can as well verify the statement from Theorem 2.10 concerning the roots of the
subseries:

> lambda0:= getRootsRat(f0);

λ0 := [10, 4]

REGULAR LANGUAGES AND THEIR GENERATING FUNCTIONS 7

3.3. Deciding N-Rationality. To find out if a given series is N-rational, according
to Theorem 2.12, two properties must be verified: The existence of a dominating
root and the nonnegativeness of all coefficients.

3.3.1. Existence of a Dominating Root. The problem of deciding if the absolute
values of two roots λi and λj are equal is nontrivial, because in general Maple is
not capable to solve this by symbolic computation. So, let’s compute the roots
numerically and compare them. But what to do if

∣

∣|λi| − |λj |
∣

∣ is smaller than our
numerical precision? We will make use of the following result that tells us how
small this distance theoretically can be:

Theorem 3.2. [GS96, p. 9] Let p be a polynomial over the integers, α1, . . . , αn its
roots and thus deg p = n > 0 its degree. Define κ(p) to be the following quantity

κ(p) =

√
3

2

(

n(n + 1)

2

)−(1

4
n(n+1)+1)

· M(p)−
1

2
n(n2+2n−1),

then |αi| 6= |αj | =⇒
∣

∣|αi|−|αj |
∣

∣ ≥ κ(p) and
∣

∣Im(αi)
∣

∣ is either 0 or larger than κ(p).

Herein M(p) is defined by M(p) := |pn|
n

∏

i=1

max{1, |αi|}.

This formula has to be used carefully; consider the generating function from
Section 4.2: Applying Theorem 3.2 we get κ(q) ≈ 2.159917528 · 10−287579. Thus
we had to compute with a precision of 287580 digits! But the dominating root
(we will see that there is one) differs already in the second digit from the absolute
values of all other roots. This gives us reason for proceeding in the following way:
First, numerical values with low precision are computed for all roots. If this is not
enough for deciding the dominating root property, the precision is increased up to
1 − blog10 κc + blog10 λ0c digits. The procedure hasDominatingRoot carries out
these steps and outputs an integer s which has to be interpreted in the following
way:
s = 0: There is a dominating root.
s = 1: None of the roots with maximal modulus is positive real.
s = 2: Several roots with maximal modulus and one of them is positive real.

Furthermore a partial sorting on the list of the roots is performed. “Partially
sorted” means that the roots having maximal modulus are on the head, and in the
case that there is a dominating root, it is followed by one of the roots having second
greatest modulus. Some other procedures need this partially sorted list as input.

> hasDominatingRoot(reciprocal(denom(f)), lambda, ’lambdaSorted’);

2

> lambdaSorted;
[

1

RootOf(−1 + 10 Z2, index = 1)
,

1

RootOf(−1 + 10 Z2, index = 2)
, 2

]

> hasDominatingRoot(reciprocal(denom(f0)), lambda0, ’lambdaSorted0’);

0

3.3.2. Nonnegative Coefficients. The second important property we have to verify
is that all coefficients of the series S are nonnegative. If the series is finite then this
is easy to check. In the other case we first compute a boundary n0 such that all
coefficients sn with n > n0 are nonnegative. The remaining coefficients s0, . . . , sn0

are tested one by one.
Assume that the given rational function f has a dominating root. We compute

the exponential polynomial P0(n)λn
0 +· · ·+Pr(n)λn

r = sn and verify that the leading

8 CHRISTOPH KOUTSCHAN

coefficient of the polynomial P0(n), which corresponds to the dominating root λ0,
is positive; otherwise no such boundary n0 exists. Then we distinguish two cases:

(1) f has exactly one root (with multiplicity ≥ 1). Hence the coefficients of
the series can be written as sn = P0(n)λn

0 , (λ0 > 0). We have to choose n0

such that P0(n) > 0 for all n > n0.
(2) f has several different roots. This case is the most complicated one. Know-

ing the coefficients of the polynomials Pi we again can compute the bound
n0. Since this is quite technical, we skip it here and refer to [Kou05].

All this is implemented in the procedure boundaryForNonnegCoeffs which first
computes the boundary n0, and then identifies the minimal n1 such that all coef-
ficients sn with n > n1 are nonnegative, i.e., n1 = −1 in case that there are no
negative coefficients at all:

> boundaryForNonnegCoeffs(f0, lambdaSorted0);

−1

3.4. Regular Expressions. After verifying the N-rationality of a series S gen-
erated by f we want to compute a pseudoregular expression for a corresponding
regular language. The transformation of f into such a pseudoregular expression
is quite complicated. In some cases S has to be decomposed, and in the end, the
pseudoregular expressions for the subseries have to be combined. In general, this
procedure works recursively on the multiplicity of the dominating root of f . The
algorithm that we worked out is described in detail in [Kou05], and is implemented
in the procedure regularExpression (herein the star operation x∗ is denoted by
the function star(x)):

> regularExpression(f0, lambdaSorted0, 0);

25600star(36x2)2star(96x2 + 25600x6star(36x2))x6 + 264star(36x2)star(96x2 +
25600x6star(36x2))x2 + 640star(36x2)star(96x2 + 25600x6star(36x2))x4 +

36x2star(36x2) + 1 + x(563200star(36x2)2star(96x2 + 25600x6star(36x2))x6 +
2656star(36x2)star(96x2 + 25600x6star(36x2))x2 + 792x2star(36x2) + 22)

We see that the coefficients in the resulting pseudoregular expression are often
not as small as in Example 2.14, and therefore it does not make sense to implement
the procedure ren. Otherwise we would get extremely huge regular expressions and
alphabets containing thousands of letters.

The above pseudoregular expression is just the first subseries f0. In the same
way we would have to examine f1 and put both results together in order to get a
pseudoregular expression for f .

3.5. Conclusion. For convenience we assembled all the steps from the previous
sections in the procedure analyze: It decides if a given rational function f(x) is
N-rational, and in the affirmative case computes a pseudoregular expression for f .
It returns false if f is not N-rational, and the pseudoregular expression otherwise:

> analyze(1/(1-x));

x star(x) + 1

Note that this is equivalent to star(x), and thus exactly what we expect here.

4. Further Examples

4.1. The MIU System. In [Hof79] Douglas Hofstadter introduces the famous
MIU system. This formal system defines a language LMIU over the alphabet Σ =
{M, I,U}. Its words can be obtained by starting with the axiom MI and by applying
the following rules:

REGULAR LANGUAGES AND THEIR GENERATING FUNCTIONS 9

(1) wI → wIU

(2) Mw → Mww
(3) III → U

(4) UU → λ

where w denotes an arbitrary word w ∈ Σ∗. The language LMIU turns out to be
regular, since every word begins with an M, followed by a string containing only I’s
and U’s, where the number of I’s is not divisible by 3:

w ∈ LMIU ⇐⇒ w = Mw′ ∧ w′ ∈ {I,U} ∧ #I(w
′) 6≡ 0 mod 3.

By analyzing the finite automaton that accepts the language LMIU , we find out
that (x2)/(1−3x+3x2−2x3) is the generating function of the corresponding power
series [Slo, A024495]:

x2 + 3x3 + 6x4 + 11x5 + 21x6 + 42x7 + 85x8 + . . .

We feed our program with this function and obtain a pseudoregular expression:

> analyze(x^2/(1-3*x+3*x^2-2*x^3);

star(x2)star(2x2 + 5x4 + 9x6star(x2))x2(1 + 3x2)
+x3star(x2)star(2x2 + 5x4 + 9x6star(x2))(3 + 2x2)

By factoring and replacing the unconvenient star notation, this simplifies to

(x2)∗
(

x2
(

2 + 5x2 + 9x4(x2)∗
))∗

x2(2x + 1)(x2 + x + 1).

4.2. Look and Say. A very interesting sequence discovered and examined by John
Conway in [Con87] is the so-called Look and Say Sequence. It starts with 1, and
every subsequent element is the “description” of the previous one. The elements
are considered to be strings over the alphabet of digits (it turns out that solely the
digits 1, 2, and 3 appear). Then the “description” of an element can be written by
the rule

xm1

1 xm2

2 · · ·xmk

k → m1x1m2x2 · · ·mkxk.

So, the initial string 1 can be described by 11 (“one one”), which itself can be
described by 21 (“two ones”). The first elements of the Look and Say Sequence
[Slo, A005150] are

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, . . .

We are interested in the formal power series SLS obtained by writing down the
lengths of the words in the Look and Say Sequence [Slo, A005341]:

SLS = 1 + 2x + 2x2 + 4x3 + 6x4 + 6x5 + 8x6 + 10x7 + . . .

The series SLS is generated by the rational function fLS = p/q where p and q are
polynomials of degree 78 and 72 respectively. This monstrous function is quite a
challenge for our program! We first find out that it has a dominating root:

> r:= reciprocal(denom(fLS)):

hasDominatingRoot(r, getRootsRat(fLS), ’lambdaSorted’);

0

> evalf(lambdaSorted[1]);

1.3035772690342963913

This number (we denote it by γ) is known as Conway’s constant. It indicates
that the word lengths in the Look and Say Sequence grow asymptotic to Cγn,
where C can be computed by our procedure exponentialPolynomial:

10 CHRISTOPH KOUTSCHAN

> op(1, exponentialPolynomial(fLS, lambdaSorted));

2.0421600768578803676

We now try to determine a pseudoregular expression for the series SLS . Indeed,
after a few hours of computation time, we get a result that fills lots of pages. For
computing the pseudoregular expression the series has to be decomposed into 8
subseries which inflates the length of the result by the factor 8. We can verify its
correctness by assigning the function x 7→ 1/(1 − x) to the star symbol and by
subsequent simplifying: Voilà, we obtain the original function fLS !

5. Conclusion

Our Maple package RLangGFun is freely available at
http://www.risc.uni-linz.ac.at/research/combinat/software/RLangGFun/

This paper emerged from my master’s thesis [Kou05] which is available in the
RISC activity database (http://www.risc.uni-linz.ac.at). I want to thank my advisor
Volker Strehl, who gave valuable hints and took much time to discuss occurring
problems.

References

[Ber89] François Bergeron. A story about computing with roots of unity. In Proceedings of

the third conference on Computers and mathematics, pages 140–144, New York, 1989.
Springer-Verlag.

[BLFR01] Elena Barcucci, Alberto Del Lungo, Andrea Frosini, and Simone Rinaldi. A technology
for reverse-engineering a combinatorial problem from a rational generating function.
Advances in Applied Mathematics, 26(2):129–153, 2001.

[BR88] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages.
Springer-Verlag, Berlin, 1988.

[Con87] John H. Conway. The weird and wonderful chemistry of audioactive decay. In

Thomas M. Cover and B. Gopinath, editors, Open Problems in Communication and

Computation, pages 173–188. Springer-Verlag, 1987.
[CS63] Noam Chomsky and Marcel P. Schützenberger. The algebraic theory of context-free

languages. In P. Braffort and D. Hirschberg, editors, Computer Programming and For-

mal Languages, pages 118–161. North Holland, 1963.

[GS96] Xavier Gourdon and Bruno Salvy. Effective asymptotics of linear recurrences with
rational coefficients. Discrete Mathematics, 153(1–3):145–163, 1996. Extended version

of an article published in the proceedings of the 5th conference on Formal Power Series
and Algebraic Combinatorics, FPSAC’93, Florence, July 1993.

[Hof79] Douglas R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books,

Inc., New York, 1979.
[Kou05] Christoph Koutschan. Regular languages and their generating functions: The inverse

problem. Diplomarbeit, Friedrich-Alexander-Universität Erlangen-Nürnberg, August
2005. http://www.risc.uni-linz.ac.at/people/ckoutsch/research/en da.html.

[Niv69] Ivan Niven. Formal power series. American Mathematical Monthly, 76:871–889, 1969.

[Rio58] John Riordan. Combinatorial Identities. John Wiley & Sons, New York, 1958.
[Slo] Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.

http://www.research.att.com/˜njas/sequences/.

[SS78] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series.

Springer-Verlag, New York, 1978.

[Wil94] Herbert S. Wilf. generatingfunctionology. Academic Press Inc., Boston, second edition,
1994.

