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Abstract

We present invariant formulation of the Beals-Kartashova factorization procedure (BK-
factorization) which allows to factorize simultaneously classes operators equivalent to
the initial one under gauge transformations. We compare two factorization methods -
Hensel descent and Beals-Kartashova factorization procedure (BK-factorization) aiming
to emphasize the constructiveness of BK-factorization. We also show the possibility to
use the same procedure for the construction of the approximate factorization of LPDE in
the case when corresponding LPDO is not exactly factorizable and point out the problems
to solve while factoring approximately noncommutative polynomials.

Keywords: linear partial differential operator, Hensel descent, BK-
factorization, invariant transformations, approximate factorization

1 Introduction

Factorization of ordinary and partial linear differential operators (LODOs
and LPDOs) is a very well-studied problem and a lot of pure existence

theorems are known. For LODOs it is proven that a factorization is unique
up to factor permutation while for LPDOs even uniqueness is not true any

more and in fact parametric families of factorizations can be constructed
for a given LPDO as will be demonstrated below.

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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First constructive method of factoring second order hyperbolic LPDO
in the form

∂x∂y + a∂x + b∂y + c, (1)

belong to Laplace who formulated it in terms of invariants â = c − ab −
ax and b̂ = c−ab− by now called Laplace invariants. An operator (1) is
factorizable if at least one of its Laplace invariants is equal to zero. Various

algorithms are known now for factoring LPDOs over different differential
fields beginning with the simplest field of rational functions [1].

Recently two papers ([2], [3]) on factoring arbitrary order LPDOs have

been published. In [2] a modification of well-known Hensel lifting algo-
rithm (see, for instance, [4]) is presented and sufficient conditions for

the existence of intersection of principal ideals are given. These results
are applied then to re-formulate the factorization formulae for second and

third order operators from the ring D = Q(x, y)[∂x, ∂y] obtained by Miller
(1932) in terms of principal intersections.

In [3] necessary and sufficient conditions are given for factoring

of bivariate LPDOs of arbitrary order with coefficients being arbitrary
smooth functions. In [5] it was shown that this procedure called now

BK-factorization principally can not be generalized on the case of more
than two variables. In was also shown that conditions of factorization

found in [3] are invariants under gauge transformation and classical Laplace
invariants are particular case of this generalized invariants.

In this paper we re-formulate BK-factorization in more suitable for appli-
cations invariant form and illustrate it with a few examples, give a sample
of the symbolical implementation of this method in MATHEMATICA and

also discuss some possibilities to use this method for approximate factor-
ization of LPDOs.

2 Hensel descent and BK-factorization

Hensel descent, the latest known to us new method published before BK-

factorization, has been considered as constructive. There also exist an
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opinion that BK-factorization is a minor generalization of the Hensel de-
scent. To clarify the matter, we begin this paper with comparative analysis

of these two methods in order to show merits and draw-backs of each of
them.

• In [3] factorization of a bivariate LPDO is looked for in the form

An =
∑

j+k≤n

ajk∂
j
x∂

k
y = (p1∂x + p2∂y + p3)

( ∑

j+k<n

pjk∂
k
x∂

j
y

)
(2)

and in [2] - operator of m ≥ 2 independent variables is regarded and

for m = 2 factorization is looked for in the form

An =
∑

j+k≤n

ajk∂
j
x∂

k
y =

( ∑

j+k≤l

pjk∂
k
x∂

j
y

)( ∑

j+k≤r

pjk∂
k
x∂

j
y

)
with l+r = n.

(3)

• In [3] coefficients ajk are arbitrary smooth functions, for instance

trigonometric functions; in [2] conditions for reducibility of an oper-
ator are studied when ”coefficients are from a universal field of zero
characteristic” , while ”studying factorization algorithms we will as-

sume that the input operators are from the ring Q(x1, ..., xm)[∂1, ..., ∂m]”
This suggestion is necessary:”From now on the coefficients of a given

second-order operator are assumed to be from the base field Q(x, y).
This is necessary if the goal is to obtain constructive answers allow-

ing to factorize large classes of operator” ([2], Sec.3);”In this section
we study third-order LPDOs from the ring D = Q(x, y)[∂x, ∂y].” ([2],

Sec.4).

• In [3] it was shown that in generic case factorization can be con-

structed explicitly and algebraically, while in [2] (Sec.5) it is con-
cluded that ”the factorization problem for second- and third-order

differential operators in two variables has been shown to require the
solution of a partial Riccati equation, which in turn requires to solve
a general first-order ODE and possibly ordinary Riccati equation.
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The bottleneck for designing a factorization algorithm for a LPDO is
general first-order ODE which make the full problem intractable at

present because in general there are no solution algorithm available”

• In [5] it is pointed out that BK-factorization procedure has to be

modified in some way (presently unknown to authors) in order to
proceed with operators of more than 2 independent variables, while

in [2] (Sec.5) it is written that ”some of the results described in this
article may be generalized to any number of independent variables”

• In [5] it shown that BK-factorization procedure gives rise to con-
struction of the whole class of generalized invariants particular case
of them being classical Laplace invariants. This leads to a possibility

to factorize simultaneously the whole class of operators equivalent
under gauge transformation (see next Section) while Hensel descent

is used for factoring of a one specific operator.

We summarize all this in the Table below.

Property / Method BK-factorization Hensel descent
Order of operator n n

Coefficients of operator arbitrary smooth functions rational functions
Number of variables 2 possibly > 2

Conditions necessary and sufficient sufficient
Form of factors of order 1 and (n − 1) of order k and (n − k)
Formulated as explicit formulae ideals intersection

In the next Sections we demonstrate some other interesting properties
of BK-factorization - first of all, that it has invariant form and can be

used therefore to factorize simultaneously the whole classes of equivalent
LPDOs. Second, the use of this invariant form of BK-factorization for con-
struction of approximate factorization for LPDEs to be solved numerically.

4



Invariant Form of BK-factorization and its Applications

3 Invariant Formulation

We present here briefly main ideas presented in [3], [5] beginning with the
definition of equivalent operators.

Definition. The operators A, Ã are called equivalent if there is a gauge
transformation that takes one to the other:

Ãg = e−ϕA(eϕg).

BK-factorization is then pure algebraic procedure which allows to to

construct explicitly a factorization of an arbitrary order LPDO A in the
form

A :=
∑

j+k≤n

ajk∂
j
x∂

k
y = L ◦

∑

j+k≤(n−1)

pjk∂
j
x∂

k
y

with first-order operator L = ∂x−ω∂y +p where ω is an arbitrary simple

root of the characteristic polynomial

P(t) =

n∑

k=0

an−k,kt
n−k, P(ω) = 0. (4)

Factorization is possible then for each simple root ω̃ of (4) iff

for n = 2 ⇒ l2 = 0,

for n = 3 ⇒ l3 = 0, & l31 = 0,
for n = 4 ⇒ l4 = 0, & l41 = 0, & l42 = 0,
and so on. All functions l2, l3, l31, l4 l41, l42, ... are explicit functions

of aij and ω̃.

Theorem. All l2, l3, l31, .... are invariants under gauge transformations.

Definition. Invariants l2, l3, l31, .... are called generalized invariants of a
bivariate operator of arbitrary order.

In particular case of the operator (1) its generalized invariants coincide
with Laplace invariants.
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Corollary. If an operator A is factorizable, then all operators equivalent
to it, are also factorizable.

As the first step of BK-factorization, coefficients pij are computed as

solutions of some system of algebraic equations. At the second step, equal-
ity to zero of all generalized invariants lij = 0 has to be checked so that

no differential equations are to be solved in generic case. Generic
case corresponds to a simple root of characteristic polynomial, and each

simple root generates corresponding factorization. Moreover, putting some
restrictions on the coefficients of the initial LPDO ai,j as functions of x and
y, one can describe all factorizable operators in a given class of functions

(see Example 5.3 in [3]). The same keeps true for all operators equivalent
to a given one. Equivalent operators are easy to compute:

e−ϕ∂xe
ϕ = ∂x + ϕx, e−ϕ∂ye

ϕ = ∂y + ϕy,

e−ϕ∂x∂ye
ϕ = e−ϕ∂xe

ϕe−ϕ∂ye
ϕ = (∂x + ϕx) ◦ (∂y + ϕy)

and so on. Some examples:

• A1 = ∂x∂y + x∂x + 1 = ∂x(∂y + x), l2(A1) = 1 − 1 − 0 = 0;

• A2 = ∂x∂y + x∂x + ∂y + x+ 1, A2 = e−xA1e
x; l2(A2) = (x+ 1) −

1 − x = 0;

• A3 = ∂x∂y + 2x∂x + (y + 1)∂y + 2(xy + x+ 1), A3 = e−xyA2e
xy;

l2(A3) = 2(x+ 1 + xy) − 2 − 2x(y + 1) = 0;

• A4 = ∂x∂y +x∂x+(cosx+1)∂y+x cosx+x+1, A4 = e− sin xA2e
sin x;

l2(A4) = 0.

Generic case which can be treated pure algebraically by BK-factorization
corresponds to a simple root of characteristic polynomial. Each

multiple root leads to necessity of solving some Ricatti equation(s) (RE).
If appeared RE happens to be solvable, such a root generates a parametric

family of factorizations for a given operator. For instance, well-known
Landau operator

∂3
xxx + x∂3

xxy + 2∂xx + (2x+ 2)∂2
xy + ∂x + (2 + x)∂y

6



Invariant Form of BK-factorization and its Applications

has characteristic polynomial with one distinct root ω1 = −x and one
double root ω2,3 = 0. Factorization then has form

(∂x + r)(∂x − r + 2)(∂x + x∂y)

where r is a solution of Ricatti equation

1 − 2r + ∂x(r) + r2 = 0

which is easily solvable:

r = 1 +
1

x+ Y (y)

with arbitrary smooth function Y (y) of one variable y so that factorization

has form

A = (∂x + 1 +
1

x + Y (y)
)(∂x + 1 − 1

x+ Y (y)
)(∂x + x∂y).

Notice that to factorize an ordinary differential operator it is al-

ways necessary to solve some RE. Nevertheless, just formal application
of BK-factorization will produce all the linear factors in the case when
corresponding RE are solvable. For instance, the factorization has been

constructed in [6]

x∂xxx +(x2−1)∂xx−x∂x +
2

x2
−1 = (∂x +

x2 − 1

x
)(x∂x−

√
2)(∂x +

√
2 − 1

x
).

while both RE appearing at the intermediate steps are solvable.

These two last examples show the main difference between factorizing

of ordinary and partial differential operators - LODO has always unique
factorization while LPDO may have many. An interesting question here

would be to compute the exact number of all possible factorizations of a
given LPDO into all linear factors (its upper bound is, of course, trivial:

n!). A really challenging task in this context would be to describe some
additional conditions on the coefficients of an initial operator which lead
to solvable RE.
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4 Left and Right Factors

Factorization of an operator is the first step on the way of solving cor-
responding equation. But for solution we need right factors and BK-

factorization constructs left factors which are easy to construct. On the
other hand, the existence of a certain right factor of a LPDO is equivalent

to the existence of a corresponding left factor of the transpose of that op-
erator. Moreover taking transposes is trivial algebraically, so there is also
nothing lost from the point of view of algorithmic computation. In our

paper [3] we just used the transpose in one example assuming that the op-
eration is well known. Apparently, it is not, and some new works appeared

quite recently on the construction of a complicated new right-factor algo-
rithms (i.e. [7] and others) for bivariate operators of order 2 and 3 though

our left-factor algorithm gives the explicit formulae for arbitrary order n.
This is the reason why we decided to include the explicit formula for the

adjoint in our present text.

Definition. The transpose At of an operator A =
∑
aα∂

α, ∂α = ∂α1

1 · · · ∂αn
n .

is defined as

Atu =
∑

(−1)|α|∂α(aαu).

and the identity

∂γ(uv) =
∑ (

γ

α

)
∂αu ∂γ−αv

implies that

At =
∑

(−1)|α+β|
(
α + β

α

)
(∂βaα+β)∂α.

Now the coefficients are

At =
∑

ãα∂
α,

ãα =
∑

(−1)|α+β|
(
α + β

α

)
∂β(aα+β).
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with a standard convention for binomial coefficients in several variables,
e.g. in two variables

(
α

β

)
=

(
(α1, α2)

(β1, β2)

)
=

(
α1

β1

) (
α2

β2

)
.

In particular, for order 2 in two variables the coefficients are

ãjk = ajk, j+k = 2; ã10 = −a10+2∂xa20+∂ya11, ã01 = −a01+∂xa11+2∂ya02,

ã00 = a00 − ∂xa10 − ∂ya01 + ∂2
xa20 + ∂x∂xa11 + ∂2

ya02.

For instance, the operator

∂xx − ∂yy + y∂x + x∂y +
1

4
(y2 − x2) − 1 (5)

is factorizable as [
∂x + ∂y + 1

2(y − x)
] [
...

]

and its transpose At
1 is factorizable then as

[
...

] [
∂x − ∂y + 1

2(y + x)
]
.

Implementation of the BK-factorization for bivariate operators of order

n ≤ 4 is therefore quite straightforward and has been done in MATHE-
MATICA while all roots of characteristic polynomial are known in radicals.

For instance, for the operator (5) with 2 simple roots we get one factoriza-
tion [

∂x − ∂y + 1
2(y + x)

] [
∂x + ∂y + 1

2(y − x)
]
.

corresponding to the first root while in the case of the second root, gener-

alized invariant is equal to 2.
If n ≥ 5 the problem is generally not solvable in radicals and very simple

example of non-solvable case is: x5− 4x− 2 = 0. Thus, to find solutions in
radical for n > 4 one needs some constructive procedure of finding solvable
Galois group but this lies beyond the scope of the present paper.
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5 Approximate Factorization

An interesting possible application of the invariant form of BK-factorization
is to use it for construction of approximate factorization of a given LPDE,

in the case when exact factorization of corresponding LPDO does not ex-
ists. Indeed, as a results of BK-factorization one gets

(1) factorization coefficients {p(i)
ij } for the i-th factorization of a given

operator, and

(2) generalized invariants l
(i)
2 p

(i)
ij , with all p

(i)
ij , l

(i)
(kj)

being explicit func-
tions of the coefficients of initial operator aij.

In numerical simulations coefficients aij of the equation are always given

with some non-zero accuracy, say ε > 0, which means that it is enough to
construct an approximate factorization in the following sense. One has to

find restrictions on the coefficients aij of an initial LPDO which provide

|l(j)kj
| < ε with a given accuracy 0 < ε << 1. Many different strategies are

possible here, we just give a brief sketch of two approaches we are working
on right now:

5.1 Quantifier Elimination

We illustrate this idea on the simple example of a hyperbolic operator
∂xx − ∂yy + a10∂x + a01∂y + a00 with linear polynomial coefficients.

What we have is:

a00(x, y) = b3x+ b2y + b1,

a10(x, y) = c3x+ c2y + c1,

a01(x, y) = d3x+ d2y + d1;

a function constructed from general invariants

R =
s3 − s2

2
+

(s3x+ s2y + s1)
2

4

with si = ci − di.
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What we need is:

To find some function(s) F = F (aij) such that if F (ai,j) = 0, then

−ε < a00 −R < ε, for some constant 0 < ε << 1,

i.e. to find some conditions on the initial polynomials which provide that
function R differs not too much from one these polynomials, namely a00.

Notice that simple symmetry considerations allowed us to reduce number

of variables needed for CAD calculations. Initially we had 9 variables
b3, b2, b1, c3, c2, c1, d3, d2, d1 but in fact it is enough to regard only 6 variables

s1, s2, s3, b1, b2, b3. Nevertheless, the computation time may become crucial
while using this approach due to the substantial number of variables. On

the other hand, this approach allows us to work generally on the operator
level including initial and/or boundary conditions first at some later stage.

5.2 Auxiliary Operator

Another approach is to construct a new auxiliary operator with coefficients

ãij = f(x, y))aij for all or for some of the coefficients aij of the initial op-
erator, keep invariants (almost) equal to zero and find function(s) f(x, y)
minimizing the differences between the coefficients of initial and new op-

erators. In this way an auxiliary operator is constructed which can be
regarded as an approximate operator for the initial operator. Of course,

it does not mean that solutions of the initial and approximate operators
will be also close but simple properties of linear operators show that it is

necessary (but not sufficient!) step on the way of construction of a good
approximate solution of a given LPDE - in the case of a well-posed prob-

lem, of course. In particularly, it means that one has to introduce proper
metrics in the space of operators and in the space of solutions. Choice
of the both metrics and of a function f will depend on (1) coefficients of

the initial operator; (2) class of functions in which we are looking for a
solution; (3) initial and/or boundary conditions.
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To demonstrate all this let us regard two different un-factorizable mod-
ifications of the operator (5):

A = ∂xx − ∂yy + y∂x + x∂y +
1

2
(y2 − x2) − 1 (6)

with l2(A) = 1
4(y

2 − x2) and

B = ∂xx − ∂yy + sin y ∂x + cosx ∂y +
1

2
(sin2 y − cos2 x) (7)

with l2(B) = 1
2
(cos y − sinx) (see Fig.1). One can see immediately that

l2(B) is a bounded function of two variables and l2(A) is an unbounded.
This means that quite different choice of function f is needed for these two

cases in order to minimize the invariants. Influence of initial/boundary
conditions is now also very clear - for instance, best approximation of

l2(B) can be obtained in the narrow belts of the lines parallel to one of the
coordinate axis while for l2(A) these directions are in no way special.
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Figure 1: Invariant l2(A) = 1

4
(y2 − x2) (left) and invariant l2(B) = 1

2
(cos y − sin x)

(right), in the domain −10 ≤ x, y ≤ 10
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Figure 2: Upper panel: l2(B̃) (left) and a10 − ã10 (right); lower panel: a01 − ã01 (left)
and a00 − ã00 (right); in the domain 10 ≤ x, y ≤ 100

To construct a sample of such an approximate factorization for the oper-

ator (7) we just suppose intuitively that auxiliary operator B̃ is ”good” if
its coefficients differ from the coefficients of (7) not much, and its invariant
is small. Our MATHEMATICA implementation of the BK-factorization

includes simple graphic functions to display the differences between all the
parameters of the initial and auxiliary operators. A choice of the function

f(x, y) = sin 1
xy

gives an auxiliary operator B̃ of the form

B̃ = ∂xx − ∂yy + sin y sin
1

xy
∂x + cosx sin

1

xy
∂y (8)

+
1

2
(sin2 y − cos2 x) sin

1

xy
.
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It is demonstrated at the Fig.2 that for 10 ≤ x, y ≤ 100 opera-
tor B̃ gives good enough approximation and correspondingly approximate

factorization of the initial operator B has form

B ∼
[1

2

(
− cosx sin

1

xy
+ sin

1

xy
sin y

)
+ ∂x + ∂y

]

·
[1

2

(
cosx sin

1

xy
+ sin

1

xy
sin y

)
+ ∂x − ∂y

]

with |l2(B̃)| ∼ 5 · 10−4. On the other hand, in the domain 0.001 ≤ x, y ≤
1 qualitatively different approximation is needed while in this domain

|l2(B̃)| ∼ 102 (see Fig. 3).
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Figure 3: Invariant l2(B̃) in the domain 0.0001 ≤ x, y ≤ 1

Obviously, if we get enough approximate factorizations of the given
LPDE with different solvable first-order factors we can write out explicitly
general solution of the initial LPDE. Otherwise, one gets a chain of the

linear first-order equations

Ai0,nψ0 = 0, Ai0,n−1ψ1 = ψ0, ....

to be solved numerically which is a great numerical simplification, of course,
specially for higher order LPDEs. On the other hand, while performing
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numerical simulations, one has to take into account a lot of other factors,
first of all, initial and boundary conditions. It would be a nontrivial task

to include them into the exact formulae given by BK-factorization. In
order to estimate usefulness of this approach from numerical point of view

we still have to answer all the questions concerning computation time,
stability, computation error, etc. For instance, coming back to the example
of approximate factorization given in the previous section, one have to

estimate what is numerically more reasonable for a given set on initial and
boundary conditions - to solve numerically the system of equations

{
[12(cosx sin 1

xy
+ sin 1

xy
sin y) + ∂x − ∂y] ◦ ψ0 = 0

[12(− cosx sin 1
xy

+ sin 1
xy

sin y) + ∂x + ∂y] ◦ ψ1 = ψ0

or one equation B ◦ ψ = 0. Some answers can be given by the method
presented in [9] where a symbolic approach is used to generate automati-

cally finite difference schemes for LPDEs and to check their von Neumann
stability. Some preliminary steps to be taken in this direction might be

following: (1) to take a non-factorizable but solvable operator, for instance,
A1 = ∂x∂y + x∂x + 2, then LPDE A1(ψ) = 0, has general solution

ψ = −∂x

(
X(x)e−xy +

∫
ex(y′−y)Y (y′)dy′

)

with two arbitrary functions X(x) and Y (y); (2) to construct its approx-
imate factorization Ã1 = L1 ◦ L2; (3) to get computational schemes using

[9] - for A1 and Ã1; (4) compute both numerically; (5) to compare results
for A1 and Ã1 with the general solution for some classes of initial data and

for a fixed choice of computational scheme.

6 Summary

We presented here invariant formulation of BK-factorization and formu-
lated some ideas about using it for approximate factorization of LPDOs,
i.e. non-commutative polynomials. The great number of results is known
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on factorization of commutative polynomials (see, for instance, [10] and
others) where measure of the difference between factorizable and non-

factorizable polynomials can be introduced as a function of the coefficients
of a polynomial. It is not the case for non-commutative polynomials the

reason being that infinitesimal changes in the coefficients can change dras-
tically the solution of the corresponding LPDE, as well as changes of the
initial and boundary conditions. The problem of defining a reasonable

measure for non-commutative polynomials is under the study.
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