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Abstract. We describe the non–commutative extension of the computer
algebra system Singular, called Plural. In the system, we provide
rich functionality for symbolic computation within a wide class of non–
commutative algebras. We discuss the computational objects of Plural,
the implementation of main algorithms, various aspects of software en-
gineering and numerous applications.

Singular:Plural or, shortly, Plural [19] is a subsystem of a computer algebra
system Singular [20]. It provides the framework for symbolic computations
with one– and two–sided ideals and modules over non–commutative GR–algebras
(Def. 2). Most of Gröbner basics (Sect. 2.5) are available in the kernel of the
implementation, ranging from the elimination of variables to the free resolutions.
Additional functions and libraries provide advanced algorithms and tools for
non–commutative algebra. The powerful implementation and rich functionality
make Plural a very helpful system for supporting the research in many fields
of mathematics and its applications.

1 Past

In 1997, Gert–Martin Greuel and Yuriy Drozd proposed to modify the experi-
mental branch of Singular, called SingularD, which contained implementa-
tions of Gröbner bases and syzygies for modules over Weyl and exterior algebras.
One needed to extend the class of available algebras, and implement Gröbner
bases and of related algorithms for these algebras as efficient as possible.

In the year 2000, the author defended his Master Thesis and presented the first
version of Plural. The class of implemented algebras was bigger, than it was
originally planned. Indeed, it constituted the class, studied by J. Apel under the
name of G–algebras [1], and by A. Kandri–Rody and V. Weispfenning under the
name algebras of solvable type [23]. T. Mora investigated these algebras among
other in his works [34,35] without giving them a special name. It is important,
that many quantum groups and different flavors of quantizations, applied to
various algebras [5,26,32], are G–algebras (Def. 1) or their factor algebras, GR–
algebras (Def. 2).
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As a name, Plural originates from a wordplay. In the funny informal discus-
sion on the 1st of April 1999 (the fool’s day), among other jokes around maths,
it appeared suddenly as the contrary to the word ”Singular” in the meaning of a
grammar category. Therefore, the question ”how to call the new–born Singular

extension” has got a quick answer.
Until the 2005, Plural was separated from Singular de jure, but de facto

Plural was included in the development structure of Singular, although it was
built in a different way, it kept its own separate documentation and so on. During
2001–2005 a standalone Singular:Plural was released several times and used
by the community. Many new algorithms were developed and implemented. A
Gröbner basis algorithm was enhanced and profited from all the novelties in the
kernel of Singular like different kinds of geobuckets, fast internal maps etc.
The development of the kernel of Plural was done by the author together with
Hans Schönemann, and we have reported on some aspects of our work in [30].

Finally, in mid 2005 Singular version 3-0-0 was released, with Plural as an
integral part of it. Almost at the same time the Ph.D. Thesis [26] was defended
by the author, where most of the theoretical and algorithmic research, connected
to Plural, together with applications were described in detail.

2 Present

2.1 GR–Algebras and Their Properties

Let K be a field, and T = Tn = K〈x1, . . . , xn〉 a free associative K–algebra,
generated by {x1, . . . , xn} over K. Among the monomials xi1xi2 . . . xis , 1 ≤
i1, i2, . . . , is ≤ n, spanning T as vector space over K, we distinguish the stan-
dard monomials xα1

i1
xα2

i2
. . . xαm

im
, where 1 ≤ i1 < i2 < . . . < im ≤ n and

αk ∈ N. Via the correspondence xα := xα1
1 xα2

2 . . . xαn
n �→ (α1, α2, . . . , αn) =: α

the set of standard monomials is in bijection with the monoid N
n.

Recall, that any finitely generated associative K–algebra is isomorphic to
Tn/I, for some n and some proper two–sided ideal I ⊂ Tn. If the set of stan-
dard monomials forms a K–basis of an algebra A = T/I, we say that A has
a Poincaré–Birkhoff–Witt (shortly, PBW) basis in the variables x1, . . . , xn. As
one can immediately see, the commutative polynomial ring K[x1, . . . , xn] does
have a PBW basis, while the free associative algebra K〈x1, . . . , xn〉 does not.
The existence of a PBW basis is an important property of an algebra.

A total ordering ≺ on N
n is called a monomial ordering on the algebra A with

the PBW basis {xα | α ∈ N
n}, if ∀ α, β, γ ∈ N

n, α ≺ β ⇒ xα ≺ xβ ⇒ xα+γ ≺
xβ+γ . By lm(f) we denote the leading monomial of f ∈ T .

Definition 1. Let K be a field, T = K〈x1, . . . , xn〉 and I be a two–sided ideal of
T , generated by the set of elements {xjxi − cij · xixj − dij , 1 ≤ i < j ≤ n},
where cij ∈ K \ {0} and every dij ∈ T is a polynomial, involving only standard1

monomials of T . A K–algebra A = T/I is called a G–algebra, if the following
conditions hold:
1 We assume this only for simplicity of presentation.
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– Ordering condition: there exists a monomial well–ordering ≺ on N
n, such

that ∀ 1 ≤ i < j ≤ n lm(dij) ≺ xixj .
– Non–degeneracy condition: ∀ 1 ≤ i < j < k ≤ n , to the sets {cij} and

{dij} we associate a polynomial NDCijk = cikcjk ·dijxk−xkdij +cjk ·xjdik−
cij · dikxj + djkxi − cijcik · xidjk. A condition is satisfied, if each NDCijk

reduces to zero with respect to the generators of I.

The PBW Theorem (from e.g. [28]) generalizes the classical Poincaré–Birkhoff–
Witt Theorem from the case of universal enveloping algebras of finite dimensional
Lie algebras to the case of general G–algebras. Hence, a G–algebra in variables
x1, . . . , xn has a canonical PBW basis {xα1

1 xα2
2 . . . xαn

n | αk ∈ N}.

Definition 2. Let B be a G–algebra and I ⊂ B be a proper nonzero two–sided
ideal. Then, a factor algebra B/I is called a GR–algebra.

Remark 1 (Setup for G–algebras). There are several ways to input a G–algebra
in Plural. The Singular type ring is extended to the non–commutativity.
1) A generic way for setting up a G–algebra follows the definition above. First,
one defines a commutative ring K[x1, . . . , xn] with the monomial ordering. Then,
one inputs two n×n matrices C =(cij) and D=(dij), and types ncalgebra(C,D).
The command ncalgebra accepts shortcuts for C or D, i.e. if one passes an
argument of type number or poly, it is interpreted by ncalgebra as a matrix
with entries of the upper triangle equal to the given argument.
2) Many families of algebras are predefined in Plural libraries like ncalg.lib,
nctools.lib, and qmatrix.lib. Moreover, we add new algebras regularly.
3) We also provide the possibility to build tensor products of two GR–algebras
over the field K and the construction of the opposite and the enveloping algebra
(Sect. 2.3) from the given GR–algebra.

Remark 2 (Setup for GR–algebras). When the G–algebra has been set up, one
can define a factor algebra modulo a two–sided ideal, that is a GR–algebra, which
will be of the type qring. It is required, that a two–sided ideal must be given in
its two–sided Gröbner basis, which can be achieved with the command twostd.
The simplest syntax for defining a GR–algebra reads as qring Q = twostd(I);.

Theorem 1. Let A be a G–algebra in n variables. Then

1) A is left and right Noetherian,
2) A is an integral domain,
3) A is Auslander–regular and Cohen–Macaulay,
4) the Gel’fand–Kirillov dimension GKdim(A) = n + GKdim(K),
5) the global homological dimension gl. dim(A) ≤ n,
6) the Krull dimension Kr.dim(A) ≤ n.

We refer to [14], [26], [33] for corresponding definitions and proofs. There are
examples, where the inequalities 5) and 6) are strict. In particular, 1) and 2)
imply that every G–algebra satisfies a left and a right Ore conditions, hence
there exist a total Ore localization, producing a left and a right quotient ring.
It is known since [1], that one can use Gröbner bases on a G–algebra A for the
arithmetic operations with fractions of its left or right quotient ring.
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Remark 3. As for computation of dimensions, one can count only on the
algorithm for the calculation of Gel’fand–Kirillov dimension [5], which is im-
plemented in gkdim.lib (Lobillo and Rabelo, 2004). The generalized Krull di-
mension is known for its difficulty and, to the best of our knowledge, there is no
algorithm for its computation for a general GR–algebra. We have proved in [26],
that the global homological dimension gl. dim(A) = n provided there exist finite
dimensional representations of A over K. It is still an open question, whether
the opposite direction is true. Another open problem is the exact computation
of gl. dim of a given algebra in the case, when gl. dim(A) < n. The phenomenon,
demonstrated by n–th Weyl algebras Wn over a field of characteristic 0, is quite
interesting. In this case gl. dim(Wn) = n, while Wn is generated by 2n variables
and is of Gel’fand–Kirillov dimension 2n. This behavior is extremal in the sense
that the global dimension of a G–algebra in 2n variables seems to be at least n.

The class of G–algebras unifies many very important and quite different al-
gebras under one roof, among them quasi–commutative polynomial rings like
multiparameter quantum affine spaces, universal enveloping algebras of finite
dimensional Lie algebras, some iterated Ore extensions, many quantum groups
and quantum deformations, many algebras associated to the classical operators.

One of the reasons for such unification lies in the common structural properties
of these algebras. And the second reason is the Gröbner bases theory.

2.2 Gröbner Bases in GR–Algebras

We stress the similarities between G–algebras and commutative polynomial rings
and use the similarities, when possible. We follow the approach to Gröbner bases,
presented in [18]. Let A be a G–algebra in n variables. We say that a monomial
of a free module Ar (involving component i) is an element of the form xαei, where
α ∈ N

n and ei is the canonical i–th basis vector. We say, that m1 = xαej divides
m2 = xβek and denote it by m1|m2, if j = k and αi ≤ βi ∀i = 1 . . . n. Actually
it is rather a pseudo–division on A, since if m1|m2, then there exist c ∈ K \ {0},
a monomial p ∈ A and q ∈ Ar such that lm(q) ≺ m1 and m2 = c · p · m1 + q,
where q �= 0 in general.

From the properties of G–algebras it follows, that any f ∈ Ar
� {0} can be

written uniquely as f = cαxαei + g, with cα ∈ K
∗, and xβej ≺ xαei for any

nonzero term cβxβej of g. Then we define in the usual fashion lm(f) = xαei,
the leading monomial of f , and lc(f) = cα, the leading coefficient of f . Note,
that ∀ α, β ∈ N

n, lm(xαxβ) = lm(xα+β) = lm(xβxα).

Definition 3. Let ≺ be a monomial ordering on the free module Ar, I ⊂ Ar a
left submodule, and G ⊂ I a finite subset. G is called a left Gröbner basis of
I if and only if for any f ∈ I �{0} there exists g ∈ G, satisfying lm(g) | lm(f).

In order to come up with the more constructive definition, one has to use the
notion of a monoideal of leading exponents [5] or a span of leading monomials [26]
instead of the leading ideal. The latter works well in the commutative and even
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in the free associative algebras, but fails in general G–algebras for the reasons,
which we discussed in detail in [26].

The normal form, the s–polynomial and the Buchberger’s algorithm can be
generalized for the left or right ideals in almost the same form as they appear in
the literature for the commutative case. However, the proofs of main theorems in
the Gröbner bases theory are different in spite of similarity. One has to develop
a specific intuition, working with G–algebras, even though they are in many
senses close to commutative algebras. As the simplest indication of the intrinsic
difference we can take the Product Criterion: if the leading monomials of two
polynomials f and g do not divide each other, we have spoly(f, g) →{f,g} 0.
Hence, this is the easiest situation in the set of pairs, built in the Buchberger’s
algorithm: discard the pair (f, g) if the condition holds.

In G–algebras with some extra assumptions, we can show [30], that
spoly(f, g) →{f,g} g · f − f · g =: [g, f ]. Of course, it allows to discard the pair
(f, g) from the pair set if f commutes with g. However, this happens rather rarely
in general. Otherwise, the number of multiplications and reductions shows that
we are perhaps in the worst situation, which might occur in the set of pairs.

On the contrary, the Chain Criterion and its variations generalize to G–
algebras in its full generality [5,24,26,32]. The Chain Criterion is actually the
most important criterion, used in Plural.

2.3 Left, Right and Two–Sided Structures

The three kinds of ideals and modules (left, right and two–sided) might make the
life of a developer quite complicated. The two–sided ideals and, more generally,
bimodules are very special structures. The notion of a two–sided Gröbner basis
is different from the one of a one–sided Gröbner basis [1,23,30]. The two–sided
Gröbner basis is computed with a special algorithm and is in general harder
to compute, then the one–sided. A recent algorithm [12] shows superior perfor-
mance, compared to the variations of the classical approach and will be used in
the future. This algorithm utilizes the opposite algebras.

Let A be an associative algebra over K. The opposite algebra Aopp is defined
by taking the same vector space as of A, and by introducing a new ”opposite”
multiplication ∗ on it, defined by f ∗ g := g ·f . Then, Aopp is an associative K–
algebra, and (Aopp)opp = A holds. Moreover, A⊗KAopp is called the enveloping
algebra of A.

Lemma 1. Let B = A/I be a GR–algebra. Then Bopp is a GR–algebra, and
Bopp = Aopp/Iopp.

For right–sided computations with a module like a Gröbner basis, a syzygy
module etc., it suffices to implement a left–sided functionality together with
procedures for the effective treatment of opposite algebras and transfer of objects
between an algebra and its opposite. In Plural, we provide the commands
opposite and envelope for constructing the algebras and oppose for the objects
transfer. There are several methods for representing the opposite algebra of a
given algebra constructively, see [26] for their description.
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2.4 Gröbner Trinity and Gröbner Engine

We can compute Gröbner basis of an ideal, Gröbner basis of its first syzygy
module, and the transformation matrix between the original set of generators
and the Gröbner basis (sometimes called a lifting matrix ) basically with the
same algorithm. We call these three powerful algorithms a Gröbner trinity.
The same applies for one–sided Gröbner trinity for ideals over GR–algebras and
is inherited by Plural from Singular. The Gröbner trinity is extremely im-
portant for further applications of Gröbner bases. For example, a free resolution
can be computed as the sequence of syzygies, while a lifting matrix allows to
control the critical constellations of parameters, or, in other words, to observe
the genericity of Gröbner basis computation [31] and so on.

The algorithm, which is able to compute all of the Gröbner trinity, is essen-
tially the general version of Gröbner basis algorithm. It must be able to compute
with free modules, hence it must accept monomial module orderings as input.
Moreover, it is important to have the switch for dividing the set of module com-
ponents into two disjoint groups. Having such a switch, one can compute Gröbner
basis only of those vectors, which lie inside of one group and do not compute
it for the other group, since the latter will be ignored at the end. Among other
cases, this idea is used for computing both the syzygy module and the lifting
matrix more easily. The same algorithm must be able to perform computations
in a factor algebra, to use extra weights for the ordering or for the generators of
a module, to interpret and to use on demand the supplemented information on
Hilbert polynomial et cetera.

We call an implementation of the algorithm, which computes a (left) Gröbner
basis and which complies with the requirements above, a Gröbner engine. The
examples of Gröbner engines in Singular are: Gröbner bases (non–negatively
graded orderings), standard bases (local and mixed orderings), and Plural

(left Gröbner bases for non–negatively graded orderings over G–algebras). All
of these are called with the same command, namely std. Yet more methods
for computing Gröbner bases are on their way to become someday Gröbner
engines.

If the internal implementation of a variant of Gröbner basis algorithm is done
in the form of Gröbner engine, one gets all the Gröbner basics (Sect. 2.5) available
in a much shorter time, compared with the adjustment of every single application
to the new Gröbner basis routine. Moreover, if the internal structure of the
implementation of e.g. Gröbner basics is tuned for the use of generic Gröbner
engine, one can use different engines for different applications.

The importance of having not only a fast Gröbner basis algorithm, but also
fast Gröbner basics (for working with practice–relevant applications) is clear.
The concept of Gröbner engine has been used implicitly in Singular. Hans
Schönemann and the author are working of the formalization and further devel-
opment of this concept, providing an interface between Gröbner bases, Gröbner
trinity and Gröbner basics. Our experience can be illustrated with two algo-
rithms, available in Singular, namely janet and slimgb.
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janet. The possibility to compute Gröbner basis via involutive basis was pro-
posed independently by Apel and Gerdt et. al. [13]. The corresponding al-
gorithm has been implemented and enhanced by the group of V. P. Gerdt
(http://invo.jinr.ru) for ideals of commutative rings, and demonstrated
quite a good performance. With the help of the principal developer of the project
JB (”Janet involutive bases”), Denis Yanovich, in 2003 we have incorporated
their routines, written in C, into Singular. We have learned a lot during that
process; the amount of re-engineering we needed to do, together with several
other factors, led us to the idea of Gröbner engine.

The Singular command janet computes a Gröbner basis of an ideal through
the computation of Janet basis and interreduction of the output. The same
command, run in the G–algebra, returns a left Gröbner basis of a two–sided
ideal. The cooperation with the group of Gerdt continues, and perhaps some
day janet routines will evolve to the Gröbner engine.

slimgb. Slim Gröbner basis is the algorithm of M. Brickenstein [3,4]. It uses
many interesting ideas and techniques, which have been proved to provide an
impressive performance, especially over transcendental field extensions and also
for elimination orderings. One of particular aims was to minimize, if possible,
the intermediate coefficient swell. The methods, used in slimgb, were general
enough to be applied for the non–commutative case. slimgb can compute a left
Gröbner basis of a left module. Its performance has been successfully tested on
many problems; using slimgb we obtained solutions for several long–standing
computational challenges. Due to very good timings on examples, where elimina-
tion orderings were used, slimgb is the primary engine for the dmod.lib (Sect.
3.5). The development of slimgb goes further intensively and, as it seems, will
lead to the Gröbner engine in the nearest future.

2.5 Gröbner Basics

Bernd Sturmfels called ”Gröbner basics” the most important, yet basic appli-
cations of Gröbner bases. We adopt this notion to the non–commutative GR–
algebras and remove from this list ”too commutative” applications (such as
Zariski closure of the image of a map, solving polynomial equations and radical
membership). All the algorithms below have been generalized to the context of
GR–algebras and implemented in Plural.

• Ideal (resp. module) membership problem
• Intersection with subrings (elimination of variables)
• Intersection of ideals (resp. submodules)
• Quotient and saturation of two–sided ideals
• Kernel of a module homomorphism
• Kernel of a ring homomorphism
• Algebraic relations between pairwise commuting polynomials
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Definition 4. Let A be a K–algebra and F ⊆ A a set. The subalgebra CA(F ) =
{a ∈ A | [f, a] = 0 ∀f ∈ F} is called the centralizer of F in A. Moreover,
Z(A) = CA(A) = {z ∈ A | za = az ∀a ∈ A} is called the center of A.

In addition to the classical Gröbner basics, there are typically non–commutative
Gröbner basics (all of them are implemented in Plural):

• Two–sided Gröbner basis of a bimodule
• Gel’fand–Kirillov dimension of a module
• Annihilator of finite dimensional module
• Central quotient resp. saturation of ideals (if the center is non–trivial)
• Preimage of a left ideal under the morphism of algebras
• Graded Betti numbers (for graded modules over graded algebras)
• Left and right kernel of the presentation of a module
• Central Character Decomposition of the Module

It is interesting, whether it is possible to give an algorithm, which computes
N–dimensional irreducible representations of a GR–algebra for a positive N . We
have proposed an algorithm, which computes all the one–dimensional represen-
tations [27].

For a modern computer algebra system, specializing on the non–commutative
algebras, it is quite important to have also non–Gröbner functionality, like the
operations with opposite and enveloping algebras (described above), computa-
tions with centralizers and even more. Many applications (of e.g. representation
theory) require an explicit knowledge of the generators of the center of a GR–
algebra as well as the generators of centralizers of finite sets. These algorithms
have been implemented in the library center.lib by O. Motsak. The imple-
mentation demonstrated quite a good performance.

While studying algebraic dependence of pairwise commuting polynomials, the
method of Perron polynomial was widely used. It has been implemented in the
library perron.lib. With this library we have been able to compute several hard
examples, which contributed to the progress in studying algebraic dependence
in the situation, described in the Sect. 3.2.

3 Work in Progress and Future Development

3.1 Preimage of a Left Ideal

ncpreimage.lib is dedicated to the computation of the preimage of a left ideal
under a morphism of GR–algebras, as it is described in [29]. The implementation
of the main algorithm of the article requires, among other, the procedure for the
computation of a tuple of strictly positive weights (w1, . . . , wm), such that the
elimination ordering with the extra weight vector (w1, . . . , wm, 0, . . . , 0) satisfies
the ordering condition of the Def. 1. If one works with a positively weighted
degree ordering, a similar computation of weights can be achieved with the help
of the method, described in e.g. [5]. It is implemented as the procedure Gweights
in the library nctools.lib.
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3.2 Algebraic Dependence of Pairwise Commuting Polynomials

Consider the universal enveloping algebra A of a finite dimensional simple Lie
algebra over a field K. If char K > 0, it is known from the dimension argument
assures, that the generators of the center are algebraically dependent. There
are several open questions on the ideal of dependence polynomials which we
investigate by using computer algebraic methods. We were able to compute the
dependence polynomials explicitly for many prime p over the algebras U(sl2) (see
[26]) and U(so3). Up to now, the case of U(sl3) remains unsolved and constitutes
an important challenge.

There are more situations, when these methods can be applied. For instance,
the algebraic dependence of the generators of the center appears also in quantum
algebras, when one considers a quantum parameter q (usually assumed to be
transcendental over K) to be some primitive root of unity.

3.3 Homological Algebra in GR–Algebras

For two left A–modules M, N , Exti
A(M, N) for i ≥ 0 carries no A–module struc-

ture in general. However, it turns out [5], that in the case, when either M or N
is a centralizing bimodule, ExtiA(M, N) is an A–module and its presentation can
be computed algorithmically. In many applications, one of the modules M, N is
often appears to be a centralizing bimodule.

Together with G. Pfister we are working on the implementation of the methods
above in the library nchomolog.lib. It is planned to have procedures for the
computation of Ext and Tor modules in the setup as above, accompanied by other
useful tools for homological algebra. We will use these also for the algorithmic
computation of Hochschild cohomology of bimodules. We need to compute left
and right Gröbner bases, and two–sided bases for bimodules; the need for them
motivated, among other, the deeper study and the enhanced implementation of
opposite and enveloping algebras.

With the help of the library, we are going to check the long–standing conjec-
ture, starting with algebras of rank 2 and 3:

for any simple weight module M over a complex finite–dimensional sim-
ple Lie algebra g, dimC Hi(g, M) < ∞ holds for all i.

All the computations, related to this conjecture can be done in the universal
enveloping algebra U(g), which is a G–algebra. Among other, the library will be
applied to the problems, arising in the systems and control theory.

3.4 Systems and Control Theory

The algorithmic methods of algebraic analysis can be applied to systems of equa-
tions involving linear operators like the (partial) differentiation, shift, difference
and so on [8,9]. The algorithms for the case, when a system of equations involves
only constant coefficients (hence, the system algebra is commutative), have been
implemented in the library control.lib (Becker, L., and Yena, 2004).
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When treating systems with variable polynomial coefficients, the system al-
gebra becomes a GR–algebra. Together with E. Zerz we are working on the
library ncontrol.lib. This library will provide the procedures for the algebraic
analysis of systems over not only G–algebras (like it is done in the package Ore-

Modules, [9]), but also in GR–algebras. The latter requires more efforts and a
thorough inspection of the theory and its implementation.

In order to treat systems with rational coefficients, we have to provide Gröbner
bases, Gröbner basics, and algorithmic homological algebra for modules over
Ore–localized G–algebras (see Sect. 3.7).

3.5 D–Modules

The library dmod.lib (V. L. and J. Morales, 2006) contains procedures for com-
putations with D–modules. Let char K=0. Given a polynomial F ∈K[x1, . . . , xn],
one is interested in computing the D–module structure of the localization
K[x1, . . . , xn, F s] for negative integer s. That is, one looks for the left ideal I
in the Weyl algebra D := An in 2n variables {x1, . . . , xn, ∂1, . . . , ∂n}, such that
K[x1, . . . , xn, F s] ∼= A/I as D–modules. The algorithm for the computation of
such I is often called Ann F s.

We have implemented two variants of this algorithm, namely the algorithm
of Oaku and Takayama [6,36] in the procedure annfsOT, and the algorithm of
Briançon and Maisonobe (e.g. [6]) in the procedure annfsBM. One can use both
std and slimgb as underlying Gröbner engine for these complicated algorithms.
With the current implementation of dmod.lib and slimgb, we were recently
able to compute several hard examples, e.g. proposed by Castro and Ucha in
[6]. In particular, the cases of F being a cusp xp − yq (for coprime p, q ∈ N),
a Reiffen curve xp + yq + xyq−1, q ≥ p + 1 ≥ 5, or a hyperplane arrangement
are studied. We plan to extend the functionality of the library in the direction,
described in [36] and [38]. We are going to use the families of examples above as
benchmarks and compare the performance of computer algebra systems such as
kan/sm1, Macaulay2 and Singular:Plural.

3.6 Applications to Algebraic Geometry

W. Decker, C. Lossen and G. Pfister created the library sheafcoh.lib, de-
voted to the computation of the cohomology of coherent sheaves. The procedure
sheafCohBGG utilizes the Bernstein–Gel’fand–Gel’fand (BGG) correspondence
and the Tate resolution [11]. This algorithm, which uses computation of free
resolutions over non–commutative exterior algebra (which is a GR–algebra), is
sometimes much faster, than the commutative one, implemented in the proce-
dure sheafCoh, which is based on local duality, following the ideas of Eisenbud.

D. Eisenbud and F.-O. Schreyer presented an algorithm for the computation
on higher direct image complex of a coherent sheaf under a projective morphism.
The implementation of this algorithm in Singular will appear soon. Like in
the sheafcoh.lib, the BGG correspondence and hence, the computations over
exterior algebras are used.
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3.7 Directions of Future Work

Context–Based Multiplication. In [30] we have described our approaches to
the multiplication of polynomials in general G–algebra. The next enhancement in
this field is the implementation of formula–based multiplication for the simplest
contexts. Namely, for an affine G–algebra with the relation yx = q·xy+ax+by+r,
q, a, b, r ∈ K, q �= 0, it seems possible to derive a symbolic formula in a closed
form for the multiplication ys ·xt =

∑
cijx

iyj . To the best of our knowledge, no
general closed–form formula is known yet. Using a formula instead of the updated
tables will clearly require less memory, but eventually will consume more time.
Subalgebras of affine type as above occur very often in big G–algebras, and the
impact of the formula–based multiplication in such subalgebras on the overall
performance of Gröbner basis algorithms is very interesting to investigate.

Combined Computations. Singular is one of the few systems, being able to
perform combined computations, that is both commutative and non–commutative
computations in one system. It is important to develop this ability further by im-
plementing context–based operations, that is computations, which will derive the
subalgebra, where the concrete input resides (e.g. a commutative subalgebra of a
G–algebra), and provide the set of most optimized and relevant routines for the
concrete computation. A similar method is implemented in Singular as so–called
p-Procs for polynomial operations over different ground fields.

Ore Localizations. We are working on extending Plural to a bigger class of
non–commutative algebras, connected with G–algebras by means of localization.
Since from every G–algebra we can built left and right quotient rings, one can
extend the machinery we have developed to partial localization of G–algebras.
Let B ⊂ A be two G–algebras, then we can perform the localization of A with
respect to e.g. B\{0}, by means of Ore. If B happens to be commutative, we can
apply different localization, e.g. the localization with respect to a maximal ideal.
Note, that variables, not belonging to B, remain polynomial. Such algebras are
needed in many algebraic constructions and used in various applications.

For example, let R be a ring, containing K[x1, . . . , xn] as a subring. Then
the Weyl algebra with coefficients in R is defined to be R〈∂1, . . . , ∂n | [∂i, xi] =
1, [∂j, xk] = 0〉. Very important examples are rational Weyl algebras, where R =
K(x1, . . . , xn) or local polynomial Weyl algebras, with R = K[x1, . . . , xn]〈x1,...,xn〉.
The standard basis algorithm for the latter has been recently discussed in [15].

PBW rings [5,24] constitute a general framework, describing such algebras and
Gröbner bases for modules over them. Under some assumptions, which reflect the
common setup for many applications, such an algebra is called an Ore algebra [8],
which has nice properties and is much easier to implement, than a general PBW
ring. However, Ore algebras do not cover various important cases of algebras.
Therefore, we concentrate ourself on investigating the algorithmic aspects of
computations in partial Ore localizations of G–algebras.

The computations in PBW rings are more complicated, than in G–algebras.
Even basic arithmetics with one–sided fractions requires the computation of
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syzygies and hence Gröbner bases [1]. Therefore, the implementation of Gröbner
bases in such algebras must be done quite carefully. On the other hand, the
powerful implementation opens new perspectives for applications of symbolic
computation in this segment of non–commutative algebra.

Non–commutative Computer Algebra Systems

We have reviewed in detail the modern Computer Algebra Systems with the
non–commutative abilities in [26]. The following systems are designed for the
computations in free associative algebras and path algebras:

◦ Bergman by J. Backelin et.al. [22] is a powerful and flexible tool to calculate
Gröbner bases, Hilbert and Poincaré–Betti series, Anick resolution, and Betti
numbers in non–commutative algebras and in modules over them,

◦ NCGB by J. W. Helton et.al. [21] is a Mathematica package, being a part
of the NCAlgebra suite,

◦ Opal by B. Keller et.al. [17] is the specialized standalone system for Gröbner
bases in free and path algebras,

◦ GBNP (Grobner) by A. Cohen and D. Gijsbers [10] is a package for Gap

4 with the implementation of non–commutative Gröbner bases for free and
path algebras, following the algorithmic approach of Mora [34,35].

The systems below are mostly restricted to some classes of non–commutative
associative algebras, but the computations with them are usually more efficient.

◦ Felix by J. Apel and U. Klaus [2] provides generalizations of Buchberger’s
algorithm to free K–algebras, polynomial rings and G–algebras. Also, the
syzygy computations and basic ideal operations are implemented.

◦ MAS by H. Kredel and M. Pesch [25] contains a large library of Gröbner
basis algorithms for computing in non–commutative polynomial rings,

◦ Groebner by F. Chyzak [7] is a Maple package, providing Gröbner basis
algorithms (including elimination) for Ore algebras,

◦ a Maple package by R. Pearce [37] contains an implementation of Faugère’s
F4 algorithm for Ore algebras,

◦ Kan/sm1 by N. Takayama [39], distributed as a part of the system OpenXM,
provides Gröbner basis computations in polynomial rings, rings of differential
operators, rings of difference and q-difference operators.

◦ Macaulay2 by D. Grayson and M. Stillman [16] includes Gröbner basis al-
gorithms for exterior and Weyl algebras and a package for D–module theory.
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Universität Kaiserslautern, 2004.
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