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The model of laminated wave turbulence presented recently unites both types of turbu-
lent wave systems - statistical wave turbulence (introduced by Kolmogorov and brought
to the present form by numerous works of Zakharov and his scientific school since nineteen
sixties) and discrete wave turbulence (developed in the works of Kartashova in nineteen
nineties). The main new feature described by this model is the following: discrete effects
do appear not only in the long-wave part of the spectral domain (corresponding to small
wave numbers) but all through the spectra thus putting forth a novel problem - con-
struction of fast algorithms for computations in integers of order 1012 and more. In this
paper we present a generic algorithm for polynomial dispersion functions and illustrate
it by application to gravitational water waves and oceanic planetary waves.

PACS: 47.27.E-, 67.40.Vs, 67.57.Fg
Key Words: Laminated wave turbulence, discrete wave systems, computations in

integers, transcendental algebraic equations, complexity of algorithm
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1. INTRODUCTION

Statistical theory of wave turbulence begins with the pioneering paper 1 of Kol-
mogorov presenting the energy spectrum of turbulence as a function of vortex size
and thus founding the field of mathematical analysis of turbulence. Kolmogorov
regarded some inertial range of wave numbers between viscosity and dissipation,
k0 < k < k1 for wave numbers k where k = |~k|, and suggested that in this range
turbulence is locally homogeneous and isotropic which, together with dimensional
analysis, allowed Kolmogorov to deduce that energy distribution is proportional to
k−5/3.

Kolmogorov’s ideas were further applied by Zakharov for construction of wave ki-
netic equations 2 which are approximately equivalent to the initial nonlinear PDEs:

Ȧ1 =
∫
|V(123)|2δ(ω1 − ω2 − ω3)δ(~k1 − ~k2 − ~k3)(A2A3 −A1A2 −A1A3)d~k2d~k3

for 3-wave interactions, and similar equations for i-wave interactions where δ is the
Dirac delta-function and V(12..i) is the vortex coefficient in the standard represen-
tation of nonlinearity in the initial PDE:

Σi

V(12..i)δ(~k1 + ~k2 + ... + ~ki)
δ(ω1 + ω2 + ... + ωi)

A1A2 · · ·Ai. (1)

A wave here has a standard form

A exp i[~k~x− ωt] or A sin(~k~x− ωt)

with amplitude A, wave vector ~k and dispersion function ωi = ω(~ki). In the linear
problem setting, it is supposed that amplitude A = A(~k) does not depend on time
t and dispersion function can be found as a solution of linear PDE, for instance

ψt + ψx + ψxxx = 0 ⇒ ω(k) = k − k3.

In the weakly nonlinear problem setting, also called wave turbulence theory,
the main idea is to take into account only resonant interactions of waves described
by resonance conditions

{
ω(~k1)± ω(~k2)± ...± ω(~kn+1) = 0,

~k1 ± ~k2 ± ...± ~kn+1 = 0.
(2)

Now waves are (weakly) nonlinear, their amplitudes are slowly changing functions
A(T ) of time T = t/ε where ε is a small parameter of nonlinearity, for instance,
steepness of a wave. In this way, dispersion function keeps all the properties of
the linear part of the initial nonlinear PDE, and resonance conditions describe the
waves, or wave vectors, giving the greatest contribution into the nonlinear part of
the initial PDE. That is the reason why Eqs.(2) are the main subject to study in
the wave turbulence theory.
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Statistical wave turbulence theory deals with real solutions of Sys.(2) and one
of its most important discoveries in the statistical wave turbulence theory are sta-
tionary exact solutions of the kinetic equations first found in 3. These solutions have
the form k−α with α > 0 and are now called Zakharov-Kolmogorov (ZK) energy
spectra.

Discrete wave turbulence have been studied in the papers of Kartashova 4 where
properties of integer solutions of Sys.(2) have been studied. It was proven in par-
ticular that (1) the spectral space of the discrete wave system is decomposed into
the small disjoint groups of waves showing periodic energy fluctuations (depicted
with yellow squares); (2) the most part of the waves do not take part in nonlinear
interactions (depicted with blue diamonds). The model of laminated turbulence 5

includes both - statistical and discrete layers of turbulence, which co-exist simulta-
neously.

Fig. 1. Laminated Wave Turbulence Theory, arbitrary |~k|: Discrete and statistical layers
of turbulence co-exist in many wave systems. ZK-energy spectrum contains ”holes” in the nodes
of the integer lattice which are depicted by empty circles.

The most important result of the theory of laminated wave turbulence is follow-
ing: discrete effects do appear not only in the long-wave part of the spectral space
(corresponding to small wave numbers) as it was supposed before but all along the
wave spectra. Importance of the discrete layer of laminated turbulence is empha-
sized also by the fact that there exist many wave systems described only by discrete
waves approach (for instance, most wave systems with periodic or zero boundary
conditions).

From the computational point of view this theory gives rise to a completely
novel problem: construction of fast algorithms for computations of integer solutions
of Sys.(2) in integers of order 1012 and more. For instance, for 4-wave interactions
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of 2-dimensional gravitational water waves this system has the form
√

k1 +
√

k2 =
√

k3 +
√

k4, ~k1 + ~k2 = ~k3 + ~k4,

where ~ki = (mi, ni), ∀i = 1, 2, 3, 4 and ki = |~ki| =
√

m2
i + n2

i . It means that in
a finite but big enough domain of wave numbers, say |m|, |n| ≤ D ∼ 1000, direct
approach leads to necessity to perform extensive (computational complexity D8)
computations with integers of the order of 1012. These computations in a substan-
tially smaller domain |m|, |n| ≤ 128 took 3 days 6 with Pentium-4. A sketch of the
first fast algorithm for this problem is given in 7.

Probably the most often encountered context in which a physicist uses big nat-
ural numbers is generation of random numbers. However, finding numerical prop-
erties of big integer numbers is not as simple as random number generation. E.g.
generation of a random number of order 1019 is much faster than to establish that
a number of order 108 can be decomposed into the sum of two integer squares.
Computational problems in integers present some specific challenges. First of all,
the solution must be precise and not approximate as with ”reals” (i.e. floating-point
numbers). Consider a circle of some astronomic radius, say R = 10100. Its area can
be computed in microseconds with any reasonable precision. However, calculating
the precise number of integer points within that same circle by computer means
is an unrealistic task for modern means - ”full search” for multivariate problems
in integers consumes exponentially more time with each variable and size of the
domain to be explored. It is not a problem of a ”good approximation” - solution in
integers either exists or not. And there is no general theory for finding them. Even
equations of very simple form like x3 + y3 = z3 can have no solutions at all. This
last equation is the simplest case of the Last Fermat Theorem and the fact that it
has no integer solutions was used in 8 to show that there are no three-wave resonant
interactions among the capillary waves in the rectangular domain.

Last but not least, laminated turbulence problems often deal with irrational
equations in integers. Transforming them into ”normal” (Diophantine) equations in
integers leads to huge powers (far beyond the reach of either ordinary personal or
supercomputers) and is not always possible in principle.

Sometimes these difficulties are combined. E.g. four-wave interactions of gravi-
tational water waves have 8 variables and full search in the domain D ∼ 1000 would
imply some 1024 tries. What is still worse is, that the equation includes radicals and
straightforward transformation to a purely integer form would lead to operations
with huge integer numbers - for the said domain, of the order of 10120. All these
reasons make the need for effective algorithms unavoidable.

In this paper we present a generic algorithm for computing discrete layers of wave
turbulent systems with dispersion function being a function of the modulus of the
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wave vector ~k, ω = ω(k). The main idea underlying our algorithm is the partition
of the spectral space into disjoint classes of vectors which allows us to look for the
solutions of Sys.(2) in each class separately. In Sec.2 we describe this construction in
detail and with numerous examples because its brief description given in 8 is often
misunderstood by other researchers. In Sec. 3 the generic algorithm is presented with
gravitational water waves taken as our main example while in Sec. 4 modification of
this algorithm is given for the oceanic planetary waves. Results of the computations
and brief discussion are given at the end.

2. DEFINITION of CLASSES

For a given c ∈ N, c 6= 0, 1,−1 consider the set of algebraic numbers Rc =
±k1/c, k ∈ N. Any such number kc has a unique representation

kc = γq1/c, γ ∈ Z
where q is a product

q = pe1
1 pe2

2 ...pen
n ,

while p1, ...pn are all different primes and the powers e1, ...en ∈ N are all smaller
than c.

Definition. The set of numbers from Rc having the same q is called q-class Clq
(also called ”class q”). The number q is called class index. For a number k(c) = γq1/c,
γ is called the weight of k(c).

Obviously, for any two numbers k1, k2 belonging to the same q-class, all their
linear combinations with integer coefficients belong to the same class q. For instance,
let c = 2, q = 2, k1 =

√
8 and k2 =

√
18, then k1 + k2 = 2

√
2 + 3

√
2 = 5

√
2 , i.e.

k1, k2 ∈ Cl2 ⇒ k1 + k2 ∈ Cl2. On the contrary, it is not difficult to prove that
for any n numbers k1, k2...kn belonging to pairwise different q-classes, the equation

k1 ± k2...± kn = 0

has no nontrivial solutions. The general idea of the proof is very simple indeed: a
linear combination of two different irrational numbers

√
q1,
√

q2 can not satisfy any
equation with rational coefficients. For example, equation a

√
3 + b

√
5 = 0 has no

solutions for arbitrary rational a and b.

These nice properties of the classes allow us to substitute an irrational equation
by the system of linear algebraic equations, e.g. the equation

a1

√
8 + a2

√
12 + a3

√
18 + a4

√
24 + a5

√
48 = 0 (3)

is equivalent to

2a1

√
2 + 2a2

√
3 + 3a3

√
2 + 2a4

√
6 + 4a5

√
3 = 0 (4)
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and in its turn is equivalent to the system




2a1 + 3a3 = 0

2a2 + 4a5 = 0

a4 = 0

(5)

which is in every respect much simpler than the original equation.

The computational aspect of this transformation is an especially important
illustration to the main idea of the algorithm presented in this paper. Suppose
we are to find all exact solutions of (3) in some finite domain 1 ≤ ai ≤ D.
Then the straightforward iteration algorithm needs O(D4) floating-point operations,
ai = 1..D, i = 1, 2, 3, 4 (even ignoring difficulties with floating-point arithmetic pre-
cision for large D). On the other hand, solutions of Sys.(5) can, evidently, be found
in O(D) operations with integer numbers.

3. EXAMPLE ONE: GRAVITATIONAL WATER WAVES

To show the power of the approach outlined above in practice, we proceed as fol-
lows. First we give a detailed description of the algorithm which is used to find
all physically relevant four-wave interactions of the gravitational water waves. We
also estimate computational complexity and memory requirements for its imple-
mentation and present results of our computer simulations. In the next section we
discuss reusability of this algorithm and transform it to solve a similar problem
for three-wave interactions of oceanic planetary waves. Further we briefly discuss
applicability of our algorithm to other wave-type interactions.

3.1. Problem Setting

The main object of our studies are four-tuples of 2-dimensional gravitational water
waves. In this case it is well-known (see, e.g. 14) that dispersion function has the
form ω =

√
k where k = |~k| =

√
m2 + n2 is norm of a wave vector ~k. Eqs.(2) take

the following form

{√
k1 +

√
k2 =

√
k3 +

√
k4

~k1 + ~k2 = ~k3 + ~k4

(6)

where ~ki = (mi, ni), mi, ni ∈ Z ∀i = 1, 2, 3, 4, and ki = |~ki| =
√

m2
i + n2

i . We call
four wave vectors ~k1,~k2,~k3,~k4 a resonantly interacting four-tuple if the resonant
conditions (6) are fulfilled.

Sys. (6) is written in vector form and is equivalent to the following system of
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scalar equations:



(m2
1 + n2

1)
1/4 + (m2

2 + n2
2)

1/4 = (m2
3 + n2

3)
1/4 + (m2

4 + n2
4)

1/4

m1 + m2 = m3 + m4

n1 + n2 = n3 + n4

(7)

Sometimes (especially in numerical examples) it is convenient to represent the so-
lution four-tuple as

(m1L, n1L)(m2L,m2L) = (m1R, n1R)(m2R,m2R) (8)

We are going to find all resonantly interacting four-tuples with coordinates mi, ni

such that −D ≤ mi, ni ≤ D, i = 1, 2, 3, 4 for some D ∈ N. The set of numbers
d ∈ [−D, D] is further called the main domain or simply domain.

3.2. Computational Preliminaries

3.2.1. Strategy Choice

Numerically solving irrational equations in whole numbers is always an intricate
business. Basically, two approaches are widely used.

The first approach is to get rid of irrationalities (for equations in radicals typ-
ically taking the expression to a higher power, re-grouping members etc.). For an
equation like a

√
x = b

√
y this approach is reasonable: we simply raise both sides to

power 2 and solve the equation a2x = b2y. (Some attention should be paid to the
signs of a, b afterwards.) However, for Sys.(7), containing four fourth-degree roots,
this approach is out of question.

The second approach is, to solve the equations using floating-point arithmetic,
obtain (unavoidably) approximate solutions and develop some (domain dependent)
lower estimate for the deviation, which would enable us to sort out exact so-
lutions with deviation due only to the floating-point. As an example, consider
the equation

√
x = y in the domain 0 ≤ x, y ≤ D. If x is not a square then

|√x− [
√

x]| ≥ 1/2
√

(1/D)−1/8D, so each solution with smaller deviation is a per-
fect square. In other words, very small deviations are guaranteed to be an artefact
of floating point arithmetic.

This approach is more reasonable, though for Sys.(7) the corresponding estimate
would probably be not so easy to obtain. However, it has one crucial drawback,
namely, its high computational complexity. Indeed, Sys.(7) consists of 3 equations
in 8 variables and exhaustive search takes at least O(D5) operations, and many
time consuming operations (like taking fractional powers) at that.

Our primary goal is to find all solutions in the presently physically relevant
domain D ∼ 103 with a possibility of extension to larger domains. The algorithm
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should be generic, i.e. applicable to a wide class of wave types by simple trans-
formations. Studying resonant interactions of other physically important waves we
may have to deal with even more variables, e.g. for inner waves in laminated fluid
~k = (m,n, l) and for four-wave resonant interactions the brute force algorithm de-
scribed above has computational complexity O(D8).

Clearly we need a crucially new algorithm to cope with the situation; and here
classes come to our aid.

3.2.2. Application of Classes

Construction of classes, applied to the first equation of Sys.(7) readily yields the
following result. For the equation

4
√

t1 + 4
√

t2 = 4
√

t3 + 4
√

t4 (9)

with ti ∈ N, ti > 0, two situations are possible:

Case 1: all the numbers ti, i = 1, 2, 3, 4 belong to the same class Clq.

In this case Eq.(9) can be rewritten as

γ1
4
√

q + γ2
4
√

q = γ3
4
√

q + γ4
4
√

q (10)

with γ1, γ2, γ3, γ4 ∈ N and q an R4 class index (i.e. a natural number not divisible
by a fourth degree of any prime).

Case 2: all the numbers ti, i = 1, 2, 3, 4 belong to two different classes Clq1 , Clq2 .

In this case Eq.(9) can be rewritten as

γ1
4
√

q1 + γ2
4
√

q2 = γ1
4
√

q1 + γ2
4
√

q2 (11)

with γ1, γ2 ∈ N and q1, q2 being R4 class indexes.

The fact that only these two cases are possible can be proven as a strict math-
ematical statement. Physical interpretation of the classes is very transparent: Case
1 describes interactions of the waves with (possibly) different lengths while Case 2
describes the interactions among the waves whose lengths are pairwise equal and
only phases are different.

In this paper we concentrate on Case 1 being most interesting physically. For
this case we can do computations class-by-class, i.e. for every relevant q we take
all solutions of γ1 + γ2 = γ3 + γ4 such that γ4

i q can be represented as a sum of
squares γ4

i q = m2
i + n2

i , |mi|, |ni| ≤ D and for every decomposition into such sum
of squares we check the linear condition (7.2).
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3.3. Algorithm Description

At the beginning we have to compute a very important domain-dependent param-
eter we need for the computations.

Notice that in the main domain −D ≤ m, n ≤ D every number under the radical
ti ≤ 2D2 i.e, γ4

i q ≤ 2D2. For a given q, γmax(q) ≤ (2D2/q)1/4.

Definition. A number γmax(q) is called class multiplicity and denoted M(q).

For the main domain D = 103, class multiplicities are reasonably small numbers,
γmax(1) = 37 being the largest. Class multiplicities for the majority of classes
(starting with q = 125002) are equal to 1 - this fact will be later used to achieve a
major shortcut in computation time.

3.3.1. Step 1. Calculating Relevant Class Indexes

Class indexes of the module Rc as defined above are numbers not divisible by any
prime in c-th degree, in our case c = 4 not divisible by 4-th power of any prime. We
can further restrict relevant class indexes as follows.

First, in (9) every number under the radical ti = γ4
i q must have a representa-

tion as a sum of two squares of integer numbers, ti = m2
i + n2

i . According to the
well-known Euler’s theorem an integer can be represented as a sum of two squares
if and only if its prime factorization contains every prime factor p ≡ 4u + 3 in an
even degree. As γ4

i evidently contains every prime factor in an even degree, this
condition must also hold for q. This can be formulated as follows: if q is divisible by
a prime p ≡ 4u + 3, it should be divisible by its square and should not be divisible
by its cube.

The implementation of this step is accomplished with a sieve-type procedure.
Create an array Arq = [1, ...2D2] of binary numbers, setting the all the elements of
the array to 1. Make the first pass: for all primes p in the region 2 ≤ p ≤ 4

√
2D2

set to 0 the elements of the array p4, 2p4, ...κp4 where κ = b2D2/p4c. In the second
pass, for all primes p4u+3 ≡ 3 mod 4, p ≤ 2D2 and integer factors a = 1...amax

such that ap ≤ 2D2, do the following. If a 6= 0 mod p then set the ap-th element of
the array Arq to 0. If a ≡ 0 mod p, then if a ≡ 0 mod p2 then also set the ap-th
element of the array Arq to 0.

Notice that in the second pass the first check should only be done for primes
p ≤

√
2D2 and the second one - for p ≤ 3

√
2D2.

We create an array Wq of ”work indexes”. In the third pass, we fill it with in-
dexes of the array Arq for which the elements’ values have not been set to 0 in the
first two passes. We also create an array of class multiplicities M(q) and fill it with
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corresponding class multiplicities (see previous subsection). Notice that all numbers
q found above do have a representation as a sum of two squares; however, some do
not have representation with |m| ≤ D and |n| ≤ D. We do not look for them now:
they will be discarded automatically at further steps.

The computational complexity of this step can be estimated in the following way.
The number of primes ≤ x is, asymptotically, π(x) = x/ log(x), so their density
around x is 1/ log(x). The first pass takes b2D2/p4c operations for each prime
2 ≤ p ≤ 4

√
2D2 so the overall number of operations can be estimated as

∫ 4√
2D2

2

2D2/x4

log(x)
dx = O(D2)

As for the second pass, primes p ≡ 4u + 3 < 2D2 constitute about a half of all
primes and are evenly distributed among them. Sieving out by a prime p requires
O(2D2/p) + O(2D2/p2) + O(2D2/p3) = O(2D2/p) operations which again boils
down to overall O(D2) steps.

Evidently, the third pass requires the same O(D2) operations and the over-
all computational complexity of this step is O(D2). Notice that it is not so
easy to give a good estimate for the number of class indices πcl(D). Of course
O(D2/ ln(D) ≤ πcl(D) ≤ O(D2) holds, and most probably πcl(D) = O(D2/ ln(D).
(This is presently under study.) Whenever we need this number for estimating com-
putational complexity of the algorithm, we presume πcl(D) = O(D2) to be on the
safe side of things. In our main computation domain D = 103 the number of class
indices πcl(103) = 384145.

3.3.2. Step 2. Finding Decompositions into Sum of Two Squares

In 1908, G. Cornacchia 11 proposed an algorithm for solving the diophantine equa-
tion x2 + dy2 = 4p with p prime, p = 4u + 1. This has been recently generalized to
solving x2 + dy2 = m, m not necessarily prime 10. To find all decompositions of a
number γ4q into two squares we can use a simplified variant of this setting d = 1.
A very efficient implementation of this algorithm can be obtained thanks to the
following result 10:

Let t2 ≡ −1( mod m), 0 < t < (m/2). Set r0 = m and r1 = t and construct the
finite sequence {ri}, ri = qiri+1 + ri + 2, qi = bri/ri+1c, for 0 ≤ i ≤ n− 1, where
r0 > r1 > ... > rn = 1 > rn+1 = 0. If r2

k−1 > m > r2
k then m = r2

k + r2
k+1.

Now it is evident that for each 0 < t < (m/2) such that t2 ≡ −1( mod m) we
obtain one decomposition of m into two squares and the algorithm gives all decom-
positions with x > y. For our use, we also take symmetrical decompositions x < y

and also x = y if m = 2x2. The computational complexity T of the algorithm is,
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basically, the complexity of finding all square roots of −1 modulo m and is loga-
rithmic in m, i.e. T = O(log(m)).

Let Decq be the maximal number of decompositions of γ4q, γ = 1...M(q) into
sum of two squares. We create a three-dimensional array ArD[Gq = 1...Mq), Dq =
1..Decq, 2] and for each Gq store the list of decompositions (mGq,Dq

, nGq,Dq
). We

also create a one-dimensional auxiliary array ArDtoW storing the number of two-
square decompositions for each weight. The number of decompositions of an integer
into sum of two squares can be estimated as O(log(m)) using the classical theorem:

Euler Theorem. Let m be a positive integer, and let

m = 2rps1
1 ...psk

k qt1
1 ...qtl

l

be its factorization into prime numbers, where pi ≡ 1( mod 4) and qi ≡ 3( mod 4).
Then the number of essentially different decompositions of m into sum of 2 squares
is equal to the integral part of δ/2 where

δ = (
k∏

j=1

(si + 1))(
∏ (−1)tj + 1

2
).

Now we see that filling the array ArD can be accomplished in

T = O(log(q) + log(24q) + ... + log(M(q)4q)) (12)

steps.

Using presentation (12, Eq.(4.4.8.1))

n∑

k=1

ln(ak + b) = n ln a + ln Γ(b/a + n + 1)− ln Γ(b/a + 1)

and the well-known

n! ∼ √
πn(

n

e
)n

we obtain T = O(M(q)(log q + log(M(q))) =O(M(q) log q). This is much less than
O(M(q)3) (see the next subsection) and contribution of this step into the overall
computational complexity of the algorithm is negligible.

3.3.3. Step 3. Solving the Sum-of-Weights Equation

Consider now the equation for the weights

γ1 + γ2 = γ3 + γ4 (13)
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with 1 ≤ γi ≤ M(q) (see 10). For convenience we change our notation to γ1L, γ2L

(left) and γ1R, γ2R (right) and introduce weight sum Sγ = γ1∗ + γ2∗. Without loss
of generality we can suppose

γ1L ≤ γ1R ≤ γ2R ≤ γ2L. (14)

Notice that we may not assume strict inequalities because even for γi = γj there
may exist two distinct vectors (mi, ni), (mj , nj) with m2

i + n2
i = m2

j + n2
j = γ4q

either due to the possibility of representing γ4q as sum of two squares in multiple
ways or even for a single two-square representation - to the possibility of taking
different sign combinations (±|m|,±|n|) left and right.

Now we may encounter the following four situations:

(1) γ1L < γ1R < γ2R < γ2L

The general, physically most interesting case. Every solution yields four waves
with pairwise distinct modes.

(2) γ1L = γ1R < γ2R = γ2L

(3) γ1L < γ1R = γ2R < γ2L

(4) γ1L = γ1R = γ2R = γ2L

The ”most degenerate” case.

The search is organized as follows. Each admissible sum of weights Sγ ; 2 ≤
Sγ ≤ M(q) is partitioned into sum of two numbers Sγ = γ1L + γ2L, 1 ≤ γ1L ≤
γ2L ≤ M(q). Then the same number is partitioned into sum of γ1R, γ2R, γ1L ≤
γ1R ≤ γ2R ≤ γ2L. Evidently, if Sγ ≤ M(q) + 1 then the minimal γ1L is 1, otherwise
it is Sγ − Mq) (to provide γ1R ≤ M(q)). The maximal γ1L is always bSγ/2c and
similarly γ1R ≤ bSγ/2c.

The computational complexity of this step can be estimated as T = O(M(q)3)
due to O(M(q)) possibilities for each of three values Sγ , γ1L, γ1R. As M(q) =
b(2D2/q)1/4c, T = O((2D2/q)3/4).

This step contains an evident redundancy. Indeed, the equation 13 need not be
solved independently for each class. Instead, its solutions for all Sγ could be com-
puted in advance and stored in a look-up table. However, this involves significant
computational overhead (e.g. the lookup procedure includes computing the mini-
mal γ1L = max(1, Sγ −M(q)), which must be done for each class) wiping out the
gains of this approach, at least for our basic domain D = 103. Nevertheless, this
approach should be kept in view if need for computations in much larger domains,
say D = 106, arises. On the other hand, the general case is not really so general -
most classes have small multiplicities and then degenerate cases prevail. The overall
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distribution is given below:

Case 1 2 3 4
Classes 24368 57666 13987 63778

3.3.4. Step 4. Discarding ”Lean” Classes

In the main domain D ≤ 103 we encounter 384145 classes. This sounds like a lot -
however, most of these can be processed without computations or with very simple
computations. Notice the simple fact that if a class has multiplicity 1, Sys.(7) takes
the form 




q = m2
1L + n2

1L = m2
2L + n2

2L = m2
1R + n2

1R = m2
2R + n2

2R

m1L + m2L = m1R + m2R

n1L + n2L = n1R + n2R

(15)

and for any nontrivial solution the four vectors (mi, ni) should be pairwise distinct.
In terms of the weight equation of the previous section it means that solutions, if
any, have to belong to the fourth (”most degenerate”) case. It is evident that no
solution of Sys.(15) with pairwise distinct (mi, ni) exist for q having few decompo-
sitions into sum of two squares: one (q = m2 + m2), two (q = m2 + n2 = n2 + m2)
and three (q = m2 + n2 = n2 + m2 = l2 + l2). It can be shown by means of el-
ementary algebra that this also holds for q having four decompositions. It is very
probable that for classes of multiplicity 1 no nontrivial solutions exist, whatever the
number of decompositions into sum of two squares. The question is presently under
study. In the main domain D = 103 we encounter 357183 classes of multiplicity 1
(1-classes). This is about 93% of all classes in the domain. Among them, the number
of decompositions into sum of two squares is distributed as follows:

Dec(q) 0 1 2 3 4 5 6 7 8
Classes 110562 256 138044 163 78886 3 8727 2 16595

Dec(q) 14 16 18 20 24 26 32 9 10 12
Classes 38 1015 84 1 75 1 1 31 269 2429

Table 1. Distribution of decomposition number M(q) for 1-classes q in the main domain

D = 1000

It follows that 327911 1-classes can be discarded without any computations at
all and only 29272 must be checked for probable solutions.

3.3.5. Step 5. Checking Linear Conditions: Symmetries and Signs

Sum-of-weights equation solved and decompositions into sum of two squares found,
we need only check the linear conditions to find all solutions. On the face of it, the
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step is trivial, however some underwater obstacles have to be taken into account.
Having found a four-tuple of vectors (mi, ni) satisfying the first equation of Sys.(7)
with both coordinates non-negative, solutions of the system will be found taking all
combinations of signs satisfying

{
±m1 ±m2 = ±m3 ±m4

±n1 ± n2 = ±n3 ± n4

(16)

Even the straightforward approach does not need more than 28 comparisons, so this
step does not consume very much computing time. However, a few points may not
be overlooked in order to organize correct, exhaustive and efficient search:

• For the system to represent a four-wave interaction, all the four waves must be
pairwise unequal. For the first degenerate case we must provide m1L 6= m1R

and m2R 6= m2R. For the second one - m1R 6= m2R and for total degeneration
- m1L 6= m2L 6= m1R 6= m2R.

• One and the same solution may not occur among the 256 sign combinations
twice. First, this could happen due to some mi or ni being 0 (evidently, the ±
variation should not be done for any 0 coordinate). Next, sign variation could
lead to a transposition of wave vectors. For example, for q = 1 and γ1 +γ2 = 10
we obtain solutions





(0,−9)(0, 49) ⇒ (15, 20)(−15, 20)

and

(0,−9)(0, 49) ⇒ (−15, 20)(15, 20)

which really represent one and the same four-tuple.
• The set of solutions possesses some evident symmetries: if

(m1L, n1L)(m2L,m2L) ⇒ (m1R, n1R)(m2R,m2R) (17)

then, of course,

(−m1L, n1L)(−m2L, n2L) ⇒ (−m1R, n1R)(−m2R, n2R) (18)

(m1L,−n1L)(m2L,−n2L) ⇒ (m1R,−n1R)(m2R,−n2R) (19)

(−m1L,−n1L)(−m2L,−n2L) ⇒ (−m1R,−n1R)(−m2R,−n2R) (20)

Taking into account these points, an effective search is constructed easily.

4. EXAMPLE TWO: OCEANIC PLANETARY WAVES

In this Section we demonstrate the flexibility of our algorithm. Namely, we solve
essentially the same problem - finding all integer solutions in a finite domain −D ≤
m,n ≤ D for three-wave interactions and another wave type - oceanic planetary
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waves. These are oceanic waves existing due to the Earth rotation and described by
barotropic vorticity equation

∂4ψ

∂t
+ β

∂ψ

∂x
+ J(ψ,4ψ) = 0 (21)

with boundary conditions ψ = 0 for x = [0, 1] and y = [0, 1] (β is a constant,
so-called Rossby number.) In this case dispersion relation has the following form 13

ω =
2β√

m2 + n2

and resonance conditions (2) can be re-written as




1√
m2

1+n2
1

+ 1√
m2

2+n2
2

= 1√
m2

3+n2
3

m1 + m2 = m3

(22)

where |mi|, |ni| ≤ D.

4.1. Steps that Stay

• Step 1 - sieving out possible class bases - undergoes minimal changes. Now
c = −2 and each q should be a square-free number and not divisible by any
prime p = 4u + 3. Evidently, for this wave type the set of class indices is a
subset of class indices of the previous section.

• Step 2 - decomposition into two squares - can be preserved one-to-one. Indeed,
there are sophisticated algorithms for representing square-free numbers as sums
of two squares that are slightly more efficient than in the general case (one used
in the previous section) but this step is not the bottleneck of the algorithm.

4.2. Steps to be Modified

• Step 3 - the weight equation is in this case
1
γ1

+
1
γ2

=
1
γ3

(23)

or

γ3 =
γ1γ2

γ1 + γ2
(24)

which has relatively few solutions in integers. Indeed, even for class 1 with
multiplicity 1414 we obtain only 3945 solutions.

Remark. For this example it makes sense to generate and store the set of triads
(γ1, γ2, γ3) which constitute integer solutions of the Eq.(23) for 1 ≤ γi ≤ M(1)
and for each class q just take its subset 1 ≤ γi ≤ M(q).

• Step 4 - discarding ”lean” classes - becomes trivial: no class with multiplicity 1
yields an integer solution of 23. We need only consider 63828 classes (q63828 =
499993, q63829 = 500009) from 243143 in the main domain.
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• Step 5 - checking linear conditions - is also much easier than in the previous
example, i.e. one equation with three variables instead of two equations with
four variables each.

5. DISCUSSION

Our algorithm has been implemented in VBA programming language; computation
time (without disk output of solutions found) on a low-end PC (800 MHz Pentium
III, 512 MB RAM) is about 4.5 minutes for Example 1 and 1.5 minutes for Example
2. Some overall numerical data for both examples is given in the Tables and Figures
below:

Domain ≤ 200 ≤ 400 ≤ 600 ≤ 800 ≤ 1000
Solutions 263648 800435 932475 1127375 1389657

Table 2. Gravitational water waves: Distribution of the number of solutions de-

pending on the chosen main domain D.

It is interesting that though the overall number of solutions grows sublinearly as
we extend the domain, the number of asymmetrical solutions (γ1 6= γ2 6= γ3 6= γ4),
physically most important ones, grows faster than linearly:

Domain ≤ 200 ≤ 400 ≤ 600 ≤ 800 ≤ 1000
Solutions 96 344 744 1328 2088

Table 3. Gravitational water waves: Distribution of the number of the asymmetri-

cal solutions depending on the chosen main domain D.

Notice that considerable part of them (185 of the overall 2088) lie outside of the
D = 950 area, e.g.:

(−150,−25)(990, 945) ⇒ (294, 49)(546, 871)

where q = 37, γ1 = 5, γ2 = 15, γ3 = 7, γ4 = 13,

(128, 256)(990, 180) ⇒ (400, 200)(718, 236)

where q = 20, γ1 = 8, γ2 = 15, γ3 = 10, γ4 = 13,

(−80,−76)(980, 931) ⇒ (180, 171)(720, 684)

where q = 761, γ1 = 2, γ2 = 7, γ3 = 3, γ4 = 6

etc. As a whole, asymmetrical solutions are distributed not uniformly along the
wave spectrum but are rather grouped around some specific wave numbers. For
instance, the first group of asymmetrical solutions (containing 8 solutions) appears
in the domain D = 50, with solution

(−4,−4)(49, 49) ⇒ (9, 9)(36, 36),
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and others, while in the domains D = 60, 70, 80, 90 there are no new asymmetrical
solutions. The next new group (16 solutions) appears in the domain D = 100, and
so on. From the physical point of view, asymmetrical solutions are the most interest-
ing ones because they generate new wave lengths and, therefore, distribute energy
through the scales. As it was pointed out quite recently 14, asymmetrical solutions
play an extremely important role in wave turbulence. Indeed, no profound under-
standing of turbulence can be achieved without studying their properties which is
in our agenda.

Numerical data for the case of planetary waves are given in the Table 4 below:

Domain ≤ 200 ≤ 400 ≤ 600 ≤ 800 ≤ 1000
Solutions 1099 3137 5664 8565 11795

Table 4. Oceanic planetary waves: Distribution of the number of solutions depend-

ing on the chosen main domain D.

This data is presented graphically in figures below. Number of asymmetric so-
lutions for Example 1 (gravitational water waves) and total solutions for Example
2 (oceanic planetary waves) show smooth power growth and probably are asymp-
totically power functions of the domain size D. On the contrary, the total solution
number for Example 1 has an unexpected twist about D = 350 shown in Fig.2, this
phenomenon is presently under study.

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

0 200 400 600 800 1000

Fig. 2. Gravitational water waves: Number of all solutions in partial domains

Notice that the algorithm presented here allows to find all solutions for wave
vectors belonging to the same class. For three-wave interactions of arbitrary wave
types this is always the case. For n-wave interactions with n > 3, however, interact-
ing waves may belong to bn

2 c different classes 15. Consider for example the four-wave
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Fig. 3. Gravitational water waves: Number of asymmetric solutions in partial domains
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Fig. 4. Oceanic planetary waves: Number of all solutions in partial domains

system
{√

k1 +
√

k2 =
√

k3 +
√

k4

~k1 + ~k2 = ~k3 + ~k4

where k1 and k3 belong to one class and k2 and k4 - to another one, i.e. the first
equation breaks up into two independent equations

√
k1 =

√
k3 and

√
k2 =

√
k4. (25)

It is important to realize that construction of classes is not just a mathematical
trick allowing to reduce drastically the computational time but has profound phys-
ical background. One has to remember that wave length λ is inversely proportional
to the length of the wave vector, λ = 2π/k, then it is obvious that asymmetrical
solutions, all belonging to the same class and all having different ki, describe the
waves which transport the energy over the scales of the wave field. On the other
hand, solutions of Eqs.(25) are all symmetrical, they do not generate new wave
lengths and transport the energy not over the scales but over the phases presenting
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circle structures in the spectral space. For computing these symmetric solutions, a
modified form of our generic algorithm can be applied. This will be dealt with in
our next paper.
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