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Abstract. We propose an algorithm for constraint solving over hedges
and contexts built over individual, sequence, function, and context vari-
ables and flexible arity symbols, where the admissible bindings of se-
quence variables and context variables can be constrained to languages
represented by regular hedge or regular context expressions. We identify
sufficient syntactic restrictions that enable to solve such constraints by
matching techniques, and describe a solving algorithm that is sound and
complete.

1 Introduction

This paper extends our previous work on regular constraint solving [21] by iden-
tifying a class of more general regular constraints. The constraints discussed in
this paper consist of two parts: (1) the equational part, which is a finite multiset
of equations between hedges, and (2) the membership part, which is a finite
multiset of constraints for context variables and sequence variables that may be
occur in the hedges of the equational part. Membership constraints constrain
sequence variables with regular hedge expressions, and context variables with
regular context expressions (that are a special kind of regular tree expressions).

Compared to [21], there are several novelties in the current work. First, we
allow regular operators to occur in the arguments of regular expressions, whereas
in our previous work they were allowed to appear on the top level only. This
extension brings complete power of regular hedge and context expressions. For
instance, now we can consider regular expressions like f(x∗|(a,b∗))|g(x)∗, where
“,”, “|”, and “∗” are regular hedge operators for concatenation, choice, and
repetition, respectively.
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Second, the equational parts of the constraints now are unification problems
instead of matching ones. However, unification with sequence, and especially
with context variables is a quite hard problem: They may have infinite minimal
complete set of unifiers, and decidability of context unification is still an open
problem. (For more details, see, e.g., [3, 15, 18–20] on sequence unification and
[10, 22, 23, 32, 33, 36] on context unification.) Therefore, we consider only well-
moded problems, for which unification can be replaced by iterated matching.
Such replacement techniques have been studied by number of authors in different
contexts; see, e.g., [12, 25, 2, 1, 35]. Having well-moded unification instead of pure
matching looks quite an obvious extension, but it has deeper consequences. For
instance, it allows us to consider membership constraints that constrain the same
variable with different regular expressions (intersection of regular languages):
Such constraints can be reduced to well-moded problems where each variable is
constrained only once.

Third, contexts can be applied to hedges (instead of to single terms only). It
means that in the context the hole can be replaced with a sequence of terms.

All these extensions increase the expressive power, and allow us to consider
regular hedge and context constraints in the same framework. We call the class
of constraints described so far regular well-moded constraints, or Rwmc in short.

One should note that we use the term “regular expression” in a somewhat
more liberal way than the standard definition of regular tree expressions [11]
and regular hedge expressions [4], because in our regular expressions variables
may occur. The constraint solving algorithm described in this paper finds sub-
stitutions for those variables as well.

Another remark should be made about regular context expressions: They in
some sense combine features of regular hedge and tree expressions. Languages
generated by regular context expressions are sets of contexts, that are hedges
with exactly one hole.

Solving an Rwmc means to find a substitution that solves the equations and
satisfies the membership constraints: The instance of each constrained variable
should belong to the language generated by the instance of the regular expression
that constrains the variable. We propose a rule-based algorithm that provides a
sound, terminating, and complete solving method for Rwmc’s. The flexibility and
expressiveness of the approach suggest a broad range of possible applications. We
briefly discuss some of them, related to constraints, programming, and querying.

The paper is organized as follows: Sect. 2 defines the terminology. Sect. 3
introduces regular context sequence constraints. Sect. 4 introduces the solving
algorithm. Sect. 5 discusses related work and concludes the paper. To make
paper self-contained, we put proofs in the appendix.

2 Preliminaries

We consider an alphabet consisting of the following mutually disjoint sets of in-
dividual variables VInd, sequence variables VSeq, function variables VFun, context
variables VCon, and function symbols F . The sets VInd, VSeq, VFun, and VCon



are countable. All the symbols in F except a distinguished constant ◦ (called
a hole) have flexible arity. We will use x, y, z for individual variables, x, y, z for
sequence variables, F, G,H for function variables, C, D, E for context variables,
and a, b, c, f, g, h for function symbols.

Terms and hedges are constructed using the following grammar where t
stands for terms, he stands for hedge elements, and t̃ stands for hedges:

t ::= x | ◦ | f(t̃) | F (t̃) he ::= x | t | C(t̃) t̃ ::= he1, . . . , hen

where n ≥ 0 is the length of the hedge. For readability, sometimes we use paren-
theses around hedges, like (x, x, C()). We will write a for the term a() where
a ∈ F . Terms are denoted with s, t, r. Hedges are denoted with s̃, t̃, r̃. A context
is a hedge with a single occurrence of the hole constant ◦. A context C may be
applied to a hedge t̃, written C[t̃], and the result is the hedge consisting of C
with the occurrence of ◦ replaced by the hedge t̃. We use C and D for contexts.

A substitution is a mapping from individual variables to hole-free terms,
from sequence variables to hole-free hedges, from function variables to function
variables and symbols, and from context variables to contexts, such that all
but finitely many individual, sequence, and function variables are mapped to
themselves, and all but finitely many context variables are mapped to themselves
applied to the hole. For example, the mapping {x 7→ f(a, y), x 7→ (), y 7→
(a,C(f(b)), x), F 7→ g, C 7→ g(◦)} is a substitution. We will use σ, ϑ, ϕ, and ε for
substitutions, where ε denotes the empty substitution.

For a substitution σ, the domain is the set of variables dom(σ) = {v ∈
VInd ∪ VSeq ∪ VFun | vσ 6= v} ∪ {C ∈ VCon | Cσ 6= C(◦)}. Substitutions are
extended to terms and hedges:

xσ = σ(x).
◦σ = ◦.

f(t̃)σ = f(t̃σ).

F (t̃)σ = σ(F )(t̃σ).

xσ = σ(x).
()σ = ().

C(t̃)σ = σ(C)[t̃σ].
(he1, . . . , hen)σ = (he1σ, . . . , henσ).

For example, the instance of the hedge (f(C(a, x, b), x), F (y), x) under the sub-
stitution σ = {x 7→ f(a, y), x 7→ (), y 7→ (a,C(f(b)), x), F 7→ g, C 7→ ◦} is the
hedge (f(a, b, f(a, y)), g(a,C(f(b)), x)).

A substitution σ is more general than ϑ on a set of variables V, denoted
σ ≤·V ϑ, if there exists a ϕ such that vσϕ = vϑ for all v ∈ V.

A hedge equation is a pair of hedges 〈s̃, t̃〉, written s̃ ≈ t̃. Substitutions are
extended to equations in the usual way. The fact that the equation s̃ ≈ t̃ has
to be solved is written as s̃ ≈? t̃. An equational constraint is a finite multiset of
hedge equations. A substitution σ is called a solution of an equational constraint
{s̃1 ≈? t̃1, . . . , s̃n ≈? t̃n} iff {s̃1σ = t̃1σ, . . . , s̃nσ = t̃nσ}.

The set of variables of a syntactic object O is denoted by vars(O). An equa-
tional constraint is well-moded if it can be ordered as {s1 ≈? t1, . . . , sn ≈? tn}
where t1 is ground and vars(tj) ⊆

⋃j−1
i=1 vars(si) for 1 < j ≤ n.



3 Regular Constraints

We introduce regular expressions for hole-free hedges and contexts. We write ()
for the empty hedge regular expression, “,” for hedge concatenation, “.” for
context concatenation, “|” for hedge choice, “+” for context choice, “∗” for hedge
repetition, and “?” for context repetition. A regular expression Re is a common
name for a regular hedge expression (for hole-free hedges) Rh and a regular context
expression Rc. They are defined by the following grammars: (The metavariable
h ranges over function symbols and function and context variables.)

Re ::= Rh | Rc
Rh ::= x | x | h(Rh) | () | Rh,Rh | Rh|Rh | Rh∗ | Rc(Rh).
Rc ::= ◦ | Rh,Rc | Rc,Rh | h(Rc) | Rc.Rc | Rc+Rc | Rc?.

Example 1. C(F (f(x)∗,g(◦).h(◦)))+f((g(x),x)∗,g(◦))? is a regular context ex-
pression and (C(F (f(x)∗,g(◦).h(◦)))+f((g(x),x)∗,g(◦))?) (f(x,a∗)) is a regu-
lar hedge expression.

Now we extend substitutions to regular expressions. For a regular expression
Re and a substitution σ, the regular expression Reσ is obtained from Re by
performing the following two steps:

1. Let σr be the mapping {v 7→ r(σ(v)) | v ∈ dom(σ)} where r(σ(v)) is defined
as follows:
– r(t) = t if t ∈ VInd ∪ VFun ∪ VSeq ∪ VCon ∪ F ∪ {◦},
– r((he1, . . . , hen)) = (r(he1), . . . ,r(hen)),
– r(h(t̃)) = r(h)(r(t̃))

where h ∈ F ∪ VFun ∪ VCon and , is considered to be right-associative.
2. Replace each subexpression Rc(Re′), where Rc contains no other regular op-

erator except possibly “,”, with the regular expression obtained by plug-
ging Re′ into the hole of Rc. Also, replace each subexpression of the form
(),Rh and Rh,() with Rh. Repeat the step 2 until it is no longer applicable.

Example 2. Let Re = f(C(a∗,g(D(x,◦))))? and σ = {x 7→ (), C 7→ F (x, ◦), D 7→
G(a, b, c, ◦)}. Then Reσ = f(F (x,a∗,g(G(a,b,c,◦))))?.

The regular language [[Rh]] generated by a regular hedge expression Rh is a set of
hole-free hedges defined as follows:

[[v]] = {v}, where v ∈ VInd ∪ VSeq.

[[h(Rh)]] = {h(s̃) | s̃ ∈ [[Rh]]}.
[[()]] = {()}.

[[Rh1,Rh2]] = {(s̃1, s̃2) | s̃1 ∈ [[Rh1]], s̃2 ∈ [[Rh2]]}.
[[Rh1|Rh2]] = [[Rh1]] ∪ [[Rh2]].

[[Rh∗]] =
⋃

n≥0

[[Rh]]n.

[[Rc(Rh)]] = {C[s̃] | C ∈ [[Rc]], s̃ ∈ [[Rh]]}.



Here [[Rh]]0 = {()} and [[Rh]]n+1 = {(s̃1, s̃2) | s̃1 ∈ [[Rh]], s̃2 ∈ [[Rh]]n} for n ≥ 0.
The regular language [[Rc]] generated by a regular context expression Rc is a

set of contexts defined as follows:

[[◦]] = {◦}.
[[Rh,Rc]] = {(s̃, C) | s̃ ∈ [[Rh]], C ∈ [[Rc]]}.
[[Rc,Rh]] = {(C, s̃) | C ∈ [[Rc]], s̃ ∈ [[Rh]]}.
[[h(Rc)]] = {h(C) | C ∈ [[Rc]]}.

[[Rc1.Rc2]] = {C1[C2] | C1 ∈ [[Rc1]], C2 ∈ [[Rc2]]}.
[[Rc1+Rc2]] = [[Rc1]] ∪ [[Rc2]].

[[Rc?]] =
⋃

n≥0

[[Rc]]n,

where [[Rc]]0 = {◦} and [[Rc]]n+1 = {C1[C2] | C1 ∈ [[Rc]], C2 ∈ [[Rc]]n} for n ≥ 0.

Example 3. Let Rc be f(C(◦),x∗,b)?. Then

[[Rc]] = {◦, f(C(◦), b), f(C(◦), x, b), . . . , f(C(◦), x, . . . , x, b), . . . ,

f(C(f(C(◦), b)), b), f(C(f(C(◦), b)), x, b), . . .}.

Variables behave like function symbols when languages are generated from reg-
ular expressions.

Example 4. The expressions f(◦)?(a) and f(a)∗ generate different languages:
[[f(◦)?(a)]] = {a, f(a), f(f(a)), . . .} while [[f(a)∗]] = {(), f(a), (f(a), f(a)), . . .}.
Membership atoms are atoms of the form (s̃ in Rh, f) or (Cv in Rc, f), where s̃
is a hedge, Cv is either a context or a context variable, and f is a flag. Flag is
either 0, 1, or trivial(t̃), where trivial satisfies the equalities:

– trivial(◦) = trivial(()) = 1.
– trivial(t̃) = 0 if the hedge t̃ contains at least one symbol from the set
VInd ∪ VFun ∪ F \ {◦}.

Hence, if trivial(t̃) = 0 then no instance of t̃ can be ◦ or (). Membership
constraints are finite multisets of membership atoms. A membership constraint
is well-moded if it can be ordered as {(v1 in Re1, f1), . . . , (vn in Ren, fn)} where
v’s are sequence or context variables (called constrained variables) such that
vi /∈ vars(Rej) for 1 ≤ i ≤ j ≤ n and vi /∈ vars(fk) for 1 ≤ k ≤ i ≤ n.

A regular well-moded constraint (Rwmc in short) is a finite multiset of equa-
tions and membership atoms of the form

{s̃1 ≈? t̃1, . . . , s̃n ≈? t̃n, (v1 in Re1, f1) . . . , (vm in Rem, fm)},

where s̃’s and t̃’s are hole-free hedges, {s̃1 ≈? t̃1, . . . , s̃n ≈? t̃n} is a well-
moded equational constraint, {(v1 in Re1, f1) . . . , (vm in Rem, fm)} is a well-
moded membership constraint, and for each (v in Re, f), if v does not occur in



s’s then f = 0.3 We use Γ and ∆ to denote Rwmc constraints. A substitution σ
is called a solution for such a constraint if

s̃1σ = t̃1σ, . . . , s̃nσ = t̃nσ, v1σ ∈ [[Re1σ]]f1σ, . . . , vmσ ∈ [[Remσ]]fmσ,

f1σ ∈ {0, 1}, . . . , fmσ ∈ {0, 1},

where [[Rh]]1 = [[Rh]] \ {()}, [[Rh]]0 = [[Rh]], [[Rc]]1 = [[Rc]] \ {◦}, and [[Rc]]0 = [[Rc]].
We denote the solution set of Γ with sol(Γ ) and say that Γ is satisfiable if
sol(Γ ) 6= ∅.

We say that a variable is equational in an Rwmc constraint Γ if it occurs in
the equational part of Γ . We denote the set of equational variables of Γ with
eqv(Γ ). In the rest of the paper we will use the symbol ¿ for ≈? to underline
that matching techniques will be applied to solve equations.

4 Constraint Solving

We start with Rwmc solving where all constrained variables are distinct. Later
we will lift this restriction.

The inference system consists of five groups of rules presented below. Rules
operate on systems. A system is either the symbol ⊥ (failure) or a pair Γ ;σ. To
save space, we will not spell explicitly rules that transform systems into ⊥ (so
called failure rules). The reader can assume that the systems that do not satisfy
the conditions of the transformation rules below are transformed into ⊥.

The first group of rules does not affect membership constraints. It is denoted
by REq and consists of the following 7 rules:

T: Trivial

{() ¿ ()} ∪ Γ ; σ =⇒ Γ ; σ.

IVE: Individual Variable Elimination

{(x, s̃) ¿ (t, t̃)} ∪ Γ ; σ =⇒ {s̃ ¿ t̃} ∪ Γϑ; σϑ, where ϑ = {x 7→ t}.

FVE: Function Variable Elimination

{(F (s̃1), s̃2) ¿ (f(t̃1), t̃2)} ∪ Γ ; σ =⇒ {s̃1ϑ ¿ t̃1, s̃2ϑ ¿ t̃2} ∪ Γϑ; σϑ,

where ϑ = {F 7→ f}.

Dec: Decomposition

{(f(s̃1), s̃2) ¿ (f(t̃1), t̃2)} ∪ Γ ; σ =⇒ {s̃1 ¿ t̃1, s̃2 ¿ t̃2} ∪ Γ ; σ.

SVE: Sequence Variable Elimination

{(x, s̃) ¿ (t̃1, t̃2)} ∪ Γ ; σ =⇒ {s̃ϑ ¿ t̃2} ∪ Γϑ; σϑ

where x is not constrained in Γ and ϑ = {x 7→ t̃1}.
3 The last condition is imposed to guarantee that every Rwmc that consists of only

membership constraints where each variable is constrained once, is solvable.



F: Flattening

{(C(s̃1), s̃2) ¿ (t̃1, t̃2, t̃3, t̃4)} ∪ Γ ; σ =⇒ {s̃1ϑ ¿ t̃2, s̃2ϑ ¿ t̃4} ∪ Γϑ; σϑ,

where C is not constrained in Γ and ϑ = {C 7→ (t̃1, ◦, t̃3)}.

D: Deepening

{(C(s̃1), s̃2) ¿ (t̃1, f(r̃), t̃2, t̃3)} ∪ Γ ; σ =⇒ {D(s̃1ϑ) ¿ r̃, s̃2ϑ ¿ t̃3} ∪ Γϑ; σϑ,

where C is not constrained in Γ , ϑ = {C 7→ (t̃1, f(D(◦)), t̃2)} and D is fresh.

Note that SVE covers also the case when x is replaced by the empty hedge ().
For instance, applying SVE on {(x, a) ¿ a}; ε can give {a ¿ a}; {x 7→ ()}. The
rules SVE, F, and D are nondeterministic rules.

The second group, the RHg, consists of 10 rules that transform equations
coupled with constraints for regular hedge expressions, where the first term of
the left hand side of the selected equation is a sequence variable constrained by
a membership constraint.

IVHg: Individual Variable as Regular Hedge Expression

{(x, s̃) ¿ t̃, (x in x, f)} ∪ Γ ; σ =⇒ {(x, s̃ϑ) ¿ t̃} ∪ Γϑ; σϑ

where ϑ = {x 7→ x}.

SVHg: Sequence Variable as Regular Hedge Expression

{(x, s̃) ¿ t̃, (x in y, f1)} ∪ Γ ; σ =⇒ {(y, z, s̃ϑ) ¿ t̃, (z in (), f2)} ∪ Γϑ; σϑ

where ϑ = {x 7→ y}, z is fresh, f2 = 0 if f1 = 0 and f2 = trivial(y) if f1 = 1.

EHHg: Empty Hedge as a Regular Hedge Expression

{(x, s̃) ¿ t̃, (x in (), 0)} ∪ Γ ; σ =⇒ {s̃ϑ ¿ t̃} ∪ Γϑ; σϑ,

where ϑ = {x 7→ ()}.

FHg: Function Symbol or Variable in a Regular Hedge Expression

{(x, s̃) ¿ t̃, (x in g(Rh), f)} ∪ Γ ; σ =⇒ {(g(y), s̃ϑ) ¿ t̃, (y in Rh, 0)} ∪ Γϑ; σϑ,

where g ∈ VFun ∪ F , ϑ = {x 7→ g(y)}, y is fresh.

CVHg: Context Variable in a Regular Hedge Expression

{(x, s̃) ¿ t̃, (x in C(Rh), f1)} ∪ Γ ; σ =⇒ {(C(y), s̃ϑ) ¿ t̃, (y in Rh, f2)} ∪ Γϑ; σϑ,

where ϑ = {x 7→ C(y)}, y is fresh, f2 = 0 if f1 = 0 and f2 = trivial(C(◦)) if f1 = 1.

ChHg: Choice as a Regular Hedge Expression

{(x, s̃) ¿ t̃, (x in Rh1|Rh2, f)} ∪ Γ ; σ =⇒ {(x, s̃) ¿ t̃, (x in Rhi, f)} ∪ Γ ; σ

for i = 1, 2.

CHg: Concatenation as a Regular Hedge Expression

{(x, s̃) ¿ t̃, (x in (Rh1,Rh2), f1)} ∪ Γ ; σ
=⇒ {(y1, y2, s̃ϑ) ¿ t̃, (y1 in Rh1, 0), (y2 in Rh2, f2)} ∪ Γϑ; σϑ,

where y1 and y2 are fresh variables, ϑ = {x 7→ (y1, y2)}, f2 = 0 if f1 = 0 and
f2 = trivial(y1) if f1 = 1.



RHg1: Repetition as a Regular Hedge Expression 1

{(x, s̃) ¿ t̃, (x in Rh∗, 0)} ∪ Γ ; σ =⇒ {s̃ϑ ¿ t̃} ∪ Γϑ; σϑ,

where ϑ = {x 7→ ()}.

RHg2: Repetition as a Regular Hedge Expression 2

{(x, s̃) ¿ t̃, (x in Rh∗, f)} ∪ Γ ; σ
=⇒ {(y, z, s̃ϑ) ¿ t̃, (y in Rh, 1), (z in Rh∗, 0)} ∪ Γϑ; σϑ,

where y and z are fresh variables and ϑ = {x 7→ (y, z)}.

AHg: Application in a Regular Hedge Expression

{(x, s̃) ¿ t̃, (x in Rc(Rh), f)} ∪ Γ ; σ
=⇒ {(x, s̃) ¿ t̃, (x in C(Rh), f), (C in Rc, 0)} ∪ Γ ; σ,

where C is a fresh variable.

The third group of rules operates on equations and constraints on regular context
expressions. This group is denoted by RCtx. The context variable of the left
hand side of the selected equation in the rules in RCtx is constrained by a single
membership constraint. We have the following 9 rules in RCtx:

HCtx: Hole as a Regular Context Expression

{(C(s̃1), s̃2) ¿ t̃, (C in ◦, 0)} ∪ Γ ; σ =⇒ {(s̃1, s̃2)ϑ ¿ t̃} ∪ Γϑ; σϑ,

where ϑ = {C 7→ ◦}.

HCCtx: Hedge-Context Concatenation as a Regular Context Expression

{(C(s̃1), s̃2) ¿ (t̃1, t̃2), (C in Rh,Rc, f1)} ∪ Γ ; σ
=⇒ {x ¿ t̃1, (x in Rh, 0), (D(s̃1ϑ), s̃2ϑ) ¿ t̃2, (D in Rc, f2)} ∪ Γϑ; σϑ,

where x and D are fresh variables, ϑ = {C 7→ (x, D(◦))}, f2 = 0 if f1 = 0 and
f2 = trivial(x) if f1 = 1.

CHCtx: Context-Hedge Concatenation as a Regular Context Expression

{(C(s̃1), s̃2) ¿ (t̃1, t̃2), (C in Rc,Rh, f1)} ∪ Γ ; σ
=⇒ {D(s̃1ϑ) ¿ t̃1, (D in Rc, 0), (x, s̃2) ¿ t̃2, (x in Rh, f2)} ∪ Γϑ; σϑ,

where x and D are fresh variables, ϑ = {C 7→ (D(◦), x)}, f2 = 0 if f1 = 0 and
f2 = trivial(D(◦)) if f1 = 1.

FCtx: Function Symbol or Variable in a Regular Context Expression

{(C(s̃1), s̃2) ¿ t̃, (C in h(Rc), f)} ∪ Γ ; σ
=⇒ {(h(D(s̃1ϑ)), s̃ϑ) ¿ t̃, (D in Rc, 0)} ∪ Γϑ; σϑ,

where h ∈ VFun ∪ F , D is fresh, ϑ = {C 7→ h(D(◦))}, and C is not constrained in Γ .

CVCtx: Context Variable in a Regular Context Expression

{(C(s̃1), s̃2) ¿ t̃, (C in D(Rc), f1)} ∪ Γ ; σ
=⇒ {(D(E(s̃1ϑ)), s̃2ϑ) ¿ t̃, (E in Rc, f2)} ∪ Γϑ; σϑ,

where E is fresh, ϑ = {C 7→ D(E(◦))}, f2 = 0 if f1 = 0 and f2 = trivial(D(◦)) if
f1 = 1.



ChCtx: Choice as a Regular Context Expression

{(C(s̃1), s̃2) ¿ t̃, (C in Rc1+Rc2, f)} ∪ Γ ; σ
=⇒ {(C(s̃1), s̃2) ¿ t̃, (C in Rci, f)} ∪ Γ ; σ for i = 1, 2.

CCtx: Concatenation as a Regular Context Expression

{(C(s̃1), s̃2) ¿ t̃, (C in Rc1.Rc2, f1)} ∪ Γ ; σ
=⇒ {(D(E(s̃1ϑ)), s̃2ϑ) ¿ t̃, (D in Rc1, 0), (E in Rc2, f2)} ∪ Γϑ; σϑ,

where D and E are fresh variables, ϑ = {C 7→ D(E(◦))}, and f2 = 0 if f1 = 0 and
f2 = trivial(D(◦)) if f1 = 1.

RCtx1: Repetition as a Regular Context Expression 1

{(C(s̃1), s̃2) ¿ t, (C in Rc?, 0)} ∪ Γ ; σ =⇒ {(s̃1, s̃2)ϑ ¿ t} ∪ Γϑ; σϑ,

where ϑ = {C 7→ ◦}.

RCtx2: Repetition as a Regular Context Expression 2

{(C(s̃1), s̃2) ¿ t̃, (C in Rc?, f)} ∪ Γ ; σ
=⇒ {(D(E(s̃1ϑ), s̃2ϑ) ¿ t, (D in Rc, 1), (E in Rc?, 0)} ∪ Γϑ; σϑ,

where D and E are fresh variables, and ϑ = {C 7→ D(E(◦))}.

The fifth group, RSat, consists of the single rule:

MC: Membership Constraints

Γ ; σ =⇒ ∅; σ, if Γ consists only of regular constraints.

We denote by R the set REq ∪RHg ∪RCtx ∪RSat.
The following lemma is straightforward to verify by just inspecting the rules:

Lemma 1. Every rule in R preserves well-modedness.

We call the substitutions computed at transformation steps (the ϑ’s in the rules
in R) the local substitutions. We may write Γ1; σ1 =⇒R,ϑ Γ2; σ2 to indicate that
the system Γ1; σ1 was transformed into Γ2;σ2 by applying the rule R ∈ R with
the local substitution ϑ. A derivation is a sequence Γ1; σ1 =⇒R1,ϑ1 Γ2; σ2 =⇒R2,ϑ2

· · · of system transformations. Some of the subscripts will be omitted if they are
not relevant. We will use the abbreviation Γ1;σ1 =⇒+

ϑ Γn; σn for the derivation
Γ1; σ1 =⇒ϑ1 Γ2; σ2 =⇒ϑ2 · · · =⇒ϑn−1 Γn;σn, where ϑ = ϑ1 · · ·ϑn−1.

Definition 1. A constraint solving algorithm C is any program that takes a
system Γ ; ∅ as input, where Γ is an Rwmc, and uses the rules in R to generate
a complete tree of derivations in the following way:

1. The root of the tree is labeled with Γ ; ∅.
2. Each branch of the tree is a derivation. The nodes in the tree are systems.
3. Each rule selects an equation with the ground right hand side.4

4. If several rules, or different instances of the same rule are applicable to a
node, they are applied concurrently.

4 Well-modedness guarantees that such an equation exists and that, in fact, the algo-
rithm can use only matching.



The leaves of a tree are labeled either with systems of the form ∅; σ or with ⊥.
The branches that end with ∅; σ are successful branches, and those that end
with ⊥ are failed branches. A substitution σ is called an answer of Γ computed
by C, or just a computed answer of Γ if ∅; σ is the leaf of a successful branch
of the solving tree for Γ . We denote by compansC(Γ ) the set of answers of Γ
computed by C. Mostly we will be interested in the set compansC(Γ )|vars(Γ ): the
restriction of compansC(Γ ) to vars(Γ ).

Flags prevent looping in the cases when regular expressions accept the empty
sequence or the hole under star. (In principle, one could avoid using flags by
rewriting such problematic regular expressions, but it would cause exponential
blowup of the regular expression size. See [14] for more discussion.)

Example 5. Consider a derivation of {x ¿ (b, a), (x in (a∗|b∗)∗, 0)} (selected
equations and membership pairs are framed):

{ x ¿ (b, a) , (x in (a∗|b∗)∗, 0) }; ∅
=⇒ { (y, z) ¿ (b, a) , (y in a∗|b∗, 1) , (z in (a∗|b∗)∗, 0)}; {x 7→ (y, z)}
=⇒ { (y, z) ¿ (b, a) , (y in a∗, 1) , (z in (a∗|b∗)∗, 0)}; {x 7→ (y, z)}.

If we did not have flags, in particular, the flag in (y in a∗, 1) set to 1, at this step
we could replace y with (), obtain the initial problem and, hence, a loop. But
the flag prevents this, and the derivation continues with the RHg2 rule:

=⇒ { (u, v, z) ¿ (b, a) , (u in a, 1) , (v in a∗, 0), (z in (a∗|b∗)∗, 0)};
{x 7→ (u, v, z), y 7→ (u, v)}

=⇒ { (a, v, z) ¿ (b, a) , (v in a∗, 0), (z in (a∗|b∗)∗, 0)};
{x 7→ (a, v, z), y 7→ (a, v), u 7→ a}

=⇒ { a ¿ b , (v, z) ¿ a, (v in a∗, 0), (z in (a∗|b∗)∗, 0)};
{x 7→ (a, v, z), y 7→ (a, v), u 7→ a}

=⇒ ⊥.

The main theorem states that C is a sound, terminating, and complete solving
method for Rwmc constraints:

Theorem 1 (Main Theorem). Let Γ be a Rwmc. Then

– For each σ ∈ compansC(Γ ) there exists ϑ ∈ sol(Γ ) such that σ ≤· ϑ.
– C terminates on Γ .
– For each ϑ ∈ sol(Γ ) there exists σ ∈ compansC(Γ ) such that σ|eqv(Γ ) =

ϑ|eqv(Γ ) and σ ≤·vars(Γ ) ϑ.

Proof. See the appendix. ut



Now we lift the restriction that required all constrained variables in Rwmc’s to
be distinct. However, in order to avoid context and sequence unification we have
to require that the variables constrained by more than one regular expression are
equational. Such constraints can be reduced to Rwmc’s by exhaustive application
of the following two rules:

IHg: Intersection of Regular Hedge Expressions

{(x, s̃) ¿ t̃, (x in Rh1, f1) (x in Rh2, f2)} ∪ Γ ; σ
=⇒ {(x, s̃) ¿ t̃, (x in Rh1, f1), y ¿ x, (y in Rh2, f2)} ∪ Γ ; σ,

where y is a fresh variable.

ICtx: Intersection of Regular Context Expressions

{(C(s̃1), s̃2) ¿ t̃, (C in Rc1, f1), (C in Rc2, f2)} ∪ Γ ; σ
=⇒ {(C(s̃1), s̃2) ¿ t̃, (C in Rc1, f1), D(a) ¿ C(a), (D in Rc2, f2)} ∪ Γ ; σ,

where D is a fresh variable and a is a fresh constant.

It is easy to observe that these rules are sound and terminating.

5 Related Work and Concluding Remarks

The approach is flexible and expressive: It allows to traverse the data, represented
as a hedge, in horizontal and in vertical directions (using four different kinds
of variables). Variables can be constrained by regular expressions. The same
variable can be constrained in several ways. Regular expressions may themselves
contain variables and the algorithm computes their instantiations as well. Well-
modedness allows to use iterated matching instead of full-scale unification.

Our work is related to various formalisms used in constraint solving, pro-
gramming, and querying. Here we just mention some, most close ones.

Context matching [34] is a particular instance of Rwmc where only context
and individual variables are allowed, no regular expressions are considered, and
each equation to be solved is a matching equation.

Context sequence matching [21] can be obtained by the following restrictions:
Regular expressions can have regular operators (except hedge concatenation) in
the top level only; contexts should be a single expression (not a hedge); con-
texts may apply to terms, not to hedges; all the equations should be matching
equations; each sequence and context variable can be constrained by maximum
one membership constraint; all constrained variables should be equational; no
constrained variable can occur in regular expressions.

Example 6. Let Γ = {C(b) ¿ f(a, a, f(a, f(b))), (C in f(a∗, ◦)?, 0)} be a Rwmc
constraint. The algorithm C solves it with {C 7→ f(a, a, f(a, f(◦)))}. This con-
straint can not be expressed in the syntax of [21]. An attempt of writing Γ
in the form ∆ = {C(b) ¿ f(a, a, f(a, f(b))), (C in f(x, ◦)?, 0), (x in a∗, 0)}
does not give an equivalent transformation: ∆ is not solvable, because x will get
instantiated with (a, a) and will not match a.



We can directly model the pattern matching mechanism of the programming
language of Mathematica [37]. For this we do not even need context variables.
The pattern constructs like RepeatedNull, Repeated, Alternatives, Optional,
Except have straightforward counterparts in our regular expressions. The “short-
est first match” semantics of Mathematica for sequence variables [6] can be
captured by first trying those rules from R that assign () to sequence variables,
and stopping the algorithm C when the first matcher is computed.

A rule-based system ρLog [26] implements matching with individual, func-
tion, sequence, and context variables subsumed by Rwmc. Various special ver-
sions of Rwmc solving found their way into the mathematical software system
Theorema [7].

Comon [10] restricts equational and membership constraints in a different
way than we do: He requires any occurrence of the same context variable to
be always applied to the same term (that gives a decidable fragment), while
we require well-modedness. Otherwise, his sort expressions correspond to our
regular hedges without variables and the star operator. Context expressions cor-
respond to regular contexts expressions without sequence and function variables.
Sequence and function variables do not occur in the equations either.

We can encode one-step rewrite constraints [8] s1 → t1 by l1 → ri, . . . , sn →
tn by ln → rn (that says that the term si can be rewritten to a term ti by the
rule li → ri in one step) as {C1(l1) ¿ s1, t1 ¿ C1(r1), . . . , Cn(ln) ¿ sn, tn ¿
Cn(rn)} provided that vars(ri) ⊆ vars(li) for each i, variables in rules and terms
are disjoint, s1 is ground and vars(si) ⊆

⋃i−1
j=1 vars(tj). These conditions make

sure that the obtained constraint is well-moded. Niehren et al [30] generalize
one-step rewriting constraints by specifying the position where the term is to
be rewritten and impose the ordering constraints on positions. Under the well-
modedness restrictions we can express not only this generalization but any other
that specify positions in terms of regular contexts, and also one-step rewrite
constraints for rewrite systems that contain not only individual but also sequence
and context variables. It implies that well-moded one-step rewrite constraints
with such extended rewrite rules are decidable. Moreover, again under well-
modedness restrictions equality up-to constraints [28] (that subsume one-step
rewrite constraints) can be expressed.

Regular expression pattern matching [17] is used for tree manipulation, pri-
marily for Xml, in a statically typed setting. Regular expression patterns basi-
cally correspond to our regular hedge expressions without individual variables
and contexts. The effect of regular context expressions is achieved by recursion
on pattern names (under certain restrictions that guarantee that the language
remains regular). Regular expression patterns are restricted to be linear. We do
not have such a restriction.

Niehren et al [29] use tree automata for multi-slot information extraction
from semistructured data. The automata are restricted to be unambiguous that
limits n-ary queries to finite unions of Cartesian closed queries (Cartesian prod-
ucts of monadic queries), but this restricted case is processed efficiently. For
monadic queries an efficient and expressive information extraction approach,



monadic Datalog, was proposed by Gottlob and Koch [16]. Rwmc constraint
solving is closely related with some other solving methods proposed for query-
ing and transforming semistructured data (Xml, in particular), like simulation
unification [5] of XCerpt, path expression matching of XPath [9], matching of
incomplete regular expressions [31], just to name a few.

We can also extend the framework to work on multitrees [24] that are un-
ranked unordered trees. The property of being unordered can be expressed by
the equality f(x, x, y, y, z) = f(x, y, y, x, z) and the corresponding rule can be
directly incorporated into the inference system of our algorithm. In this way we,
in fact, get a mixture of constraints over ordered and unordered unranked trees.
However, a naive straightforward way of adding a rule for unordered terms would
be very inefficient since it would consider all possible permutations of the argu-
ments. There are known techniques for efficient commutative and associative-
commutative matching (see, e.g. [13]) that can be adapted for this case.

We can use well-moded membership constraints to express regular hedge
grammars [27], without multiple recursion.

An experimental Prolog implementation of our algorithm is available at:
http://www.risc.uni-linz.ac.at/people/tkutsia/software.html.
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A Proofs

A.1 Soundness of C

Lemma 2. If Γ1;σ1 =⇒ϑ Γ2;σ2 in R\RSat and σ ∈ sol(Γ2) then ϑσ ∈ sol(Γ1).

Proof. We prove the lemma for SVHg and CVCtx rules. For the other rules it is
either similar or trivial.

SVHg: We have

Γ1 = {(x, s̃) ¿ t̃, (x in y, f1)} ∪∆,

ϑ = {x 7→ y},
Γ1ϑ = {(y, s̃ϑ) ¿ t̃, (y in y, f1)} ∪∆ϑ,

Γ2 = {(y, z, s̃ϑ) ¿ t̃, (z in (), f2)} ∪∆ϑ.

Let σ be a solution of Γ2. Then zσ = () and (y, z, s̃ϑ)σ = (y, s̃ϑ)σ, which implies
that σ is a solution of Γ1ϑ and σϑ is a solution of Γ1.

CVCtx: We have

Γ1 = {(C(s̃1), s̃2) ¿ t̃, (C in D(Rc), f1)} ∪∆,

ϑ = {C 7→ D(E(◦))},
Γ1ϑ = {(D(E(s̃1ϑ)), s̃2ϑ) ¿ t̃, (D(E(◦)) in D(Rcϑ), f1)} ∪∆ϑ,

Γ2 = {(D(E(s̃1ϑ)), s̃2ϑ) ¿ t̃, (E in Rcϑ, f2)} ∪∆ϑ, .

Let σ be a solution of Γ2. Then Eσ ∈ [[Rcϑσ]]f2σ. If f1 = 0, then f2σ = 0,
D(E(◦))σ ∈ [[D(Rcϑ)σ]], and, hence, σ is a solution of Γ1ϑ. If f1 = 1, then either
Dσ 6= ◦ and f2σ = 0, or Dσ = ◦ and f2σ = 1. In both cases D(E(◦))σ 6= ◦
and, therefore, D(E(◦)σ ∈ [[D(Rcϑ)σ]]1. Hence, also in this case σ is a solution
of Γ1ϑ. In implies that ϑσ is a solution of Γ1. ut
Corollary 1. If Γ1; σ1 =⇒+

ϑ Γ2;σ2 in R \ RSat and σ ∈ sol(Γ2), then ϑσ ∈
sol(Γ1).

Theorem 2 (Soundness of C). Let Γ be a Rwmc and σ ∈ compansC(Γ ).
Then there exists ϑ ∈ sol(Γ ) such that σ ≤· ϑ.



Proof. Let Γ ; ∅ =⇒+
σ ∅;σ be the derivation that computes σ. First assume that

RSat is not used in this derivation. Since ε ∈ sol(∅), by Corollary 1 we get
that σε = σ ∈ sol(Γ ). If RSat is used, the derivation has a form Γ ; ∅ =⇒+

σ

∆;σ =⇒MC,ε ∅; σ. By Corollary 1, if ϕ ∈ sol(∆) then σϕ ∈ sol(Γ ). It remains
to show that such a ϕ exists. Since ∆ is well-moded and constrains variables
maximum once, there exists (v in Re, 0) ∈ ∆ such that Re does not contain any
constrained variables. Since [[Re]] is nonempty, take arbitrary e ∈ [[Re]] and define
ϕ1 = {v 7→ e}. The constraint (∆ \ {v in Re, 0})ϕ1 has all the properties of ∆,
therefore we can proceed in the similar way. This process ends after n steps,
where n is the number of elements in ∆, and ϕ1 · · ·ϕn ∈ sol(∆). ut

A.2 Termination of C

Proving termination requires a complexity measure for Rwmc constraints. First
we need to introduce some auxiliary notions.

The size of a hedge t̃, denoted tsize(t̃), is defined as the number of symbols
in t̃ if t̃ is ground, and ∞ if t̃ contains variables. tsize(()) = 0. It is assumed
that ∞ > n for any nonnegative integer n.

The size of a regular expression Re, denoted rsize(Re), is the number of
symbols in Re.

Let v ∈ VSeq∪VCon and (v in Re, f) ∈ Γ for an Rwmc constraint Γ . We asso-
ciate to v its regular measure with respect to Γ , which is denoted by rm(v, Γ ) and
is defined as a multiset of pairs: rm(v, Γ ) = {rsize(Re)} .∪

.⋃
u∈vars(Re) rm(u, Γ ),

where the operation
.∪ denotes multiset union. Since Γ is well-moded, rm is

well-defined.
A position is a sequence of positive integers. For a hedge s̃ and a position p,

symb(s̃, p) denotes the symbol of s̃ at position p:

– symb(s̃, ()) = s̃ if s̃ ∈ VInd ∪ VSeq ∪ {◦}.
– symb(h(t̃), ()) = h where h ∈ F ∪ VFun ∪ VCon.
– symb(h(t̃), (i, i1, . . . , in)) = symb(t̃, (i, i1, . . . , in)) where h ∈ F ∪VFun∪VCon.
– symb((t1, . . . , tm), (i, i1, . . . , in)) = symb(ti, (i1, . . . , in)), where 1 ≤ i ≤ m.

In all other cases symb(s̃, p) is undefined. Positions are ordered with the ordering
Â that is the lexicographic extension of the standard ordering > on positive
integers. Moreover, we assume to have a constant ∞ such that ∞ Â p for any
position p.

Let s̃ be a hedge and Γ be an Rwmc constraint. We say that a position p
in s̃ is a trivial position with respect to Γ if symb(s̃, p) = v ∈ VSeq ∪ VCon and
(v in Re, 0) ∈ Γ . Otherwise the position is a nontrivial position. The Â-minimal
nontrivial position in s̃ with respect to Γ , if exists, is denoted by minÂ(s̃, Γ ).
Otherwise minÂ(s̃, Γ ) = ∞.

The constrained variable prefix of a hedge s̃ with respect to a Rwmc con-
straint Γ , denoted cvp(s̃, Γ ), is the multiset union of all rm(v, Γ )’s such that v
is a constrained variable occurring in a position p with minÂ(s̃, Γ ) º p.5

5 In fact, in this definition we need only the membership part of Γ .



Example 7. Let the membership part of Γ be

{(x in (), 0), (C in (f(y|x, ◦ |f(◦))?, b), 0), (y in (c,d)∗, 1), (z in a∗, 0)}.

1. Let s̃ be (x, C(f(x), y), z). Then minÂ(s̃, Γ ) = (2, 1) and

cvp(s̃, Γ ) = rm(x, Γ )
.∪ rm(C, Γ ) = {0} .∪ {12, 4, 0} = {0, 0, 4, 12}.

2. Let s̃ be (x, C(x, y), z). Then minÂ(s̃, Γ ) = (2, 2) and

cvp(s̃, Γ ) = rm(x, Γ )
.∪ rm(C, Γ )

.∪ rm(x, Γ )
.∪ rm(y, Γ ) = {0, 12, 4, 0, 0, 4}.

To each Rwmc constraint Γ we associate a complexity measure, cm(Γ ), as a
tuple 〈n1, n2, n3, n4〉, where n1 and n4 are nonnegative integers, n2 is a multiset
of positive integers and ∞, and n3 is a multiset of nonnegative integers:

n1 = the number of distinct unconstrained variables in Γ .

n2 =
.⋃

s̃¿t̃∈Γ

{tsize(t̃)}.

n3 =
.⋃

s̃¿t̃∈Γ

cvp(s̃, Γ ).

n4 = the number of symbols in Γ .

For ⊥ we define cm(⊥) = 〈0, ∅〉. The ordering > compares measures lexicograph-
ically. Obviously, > is well-founded.

Theorem 3 (Termination of C). C terminates on any input either with ⊥ or
with a system ∅; σ.

Proof. Termination of C follows from the fact that every rule R in R strictly
decreases the complexity measure: If Γ1; σ1 =⇒ Γ2;σ2 then cm(Γ1) > cm(Γ2),
and cm(Γ ) > cm(⊥) for any Γ . Table A.2 shows which rule in R decreases which
component of the regular complexity measure.

Furthermore, any Rwmc constraint must fit into one of the cases mentioned
on the left hand sides of the rules in R, so that a rule can always be applied
to a system with non-empty constraint. (Recall that we implicitly assume the
presence of failure rules that have not been given here to save space.) Therefore,
a system to which no rule applies is either ⊥ or has a form ∅; σ. ut

Rule n1 n2 n3

T, Dec, D = >
IVE, FVE, SVE, F >

Rule n1 n2 n3 n4

RHg, RCtx = = >
MC = = = >

Table 1. Rules in R on the regular complexity measure. The equality sign = means
the component remains unchanged, > means it strictly decreases.



A.3 Completeness of C

The following lemma immediately follows from the construction of C:

Lemma 3. Let Γ be a Rwmc problem. Then vσ is ground for every v ∈ eqv(Γ )
and σ ∈ compansC(Γ ).

Theorem 4 (Completeness of C). Let Γ be a Rwmc, ϑ ∈ sol(Γ ), Q =
eqv(Γ ), and V = vars(Γ ). Then there exists σ ∈ compansC(Γ ) such that σ|Q =
ϑ|Q and σ ≤·V ϑ.

Proof. We use well-founded induction on complexity measures. Assume that for
any Rwmc Γ ′ if cm(Γ ) > cm(Γ ′) then for any ϑ′ ∈ sol(Γ ′) there exists a
derivation Γ ′; ∅ =⇒+ ∅; σ such that σ|Q′ = ϑ′|Q′ and σ ≤·V ′ ϑ′, where Q′ =
eqv(Γ ′) and V ′ = vars(Γ ′). We show how to build the desired derivation from
Γ ; ∅ for ϑ ∈ sol(Γ ).

We assume that Γ contains equations, otherwise the theorem is trivial. We
pick an arbitrary equation s̃ ¿ t̃ from Γ such that t̃ is ground, and represent
Γ as {s̃ ¿ t̃} ∪ ∆. If s̃ = t̃ the theorem is straightforward. Assume s̃ 6= t̃. We
consider below only nontrivial cases.

Let s̃ be (C(s̃1), s̃2) such that C is not constrained. Obviously, Cϑ must be
a ground context, say C. Then we transform Γ ; ∅ with Γ ; ∅ =⇒R Γ1; σ1, where
Γ1, σ1, and R are defined as follows: If C = (t̃1, ◦, t̃3) and t̃ = (t̃1, t̃2, t̃3, t̃4)
then σ1 = {C 7→ (t̃1, ◦, t̃3)}, Γ1 = {s̃1σ1 ¿ t̃2, s̃2σ1 ¿ t̃4} ∪ ∆σ1, and R = F.
If C 6= (t̃1, ◦, t̃3) then C should be (t̃1, f(D), t̃2), where D is a context and
t̃ = (t̃1, f(r̃), t̃2, t̃3). Then σ1 = {C 7→ (t̃1, f(D(◦)), t̃2)}, Γ1 = {D(s̃1)σ1 ¿
r̃, s̃2σ1 ¿ t̃} ∪ ∆σ1, and R = D. In either case cm(Γ ) > cm(Γ1), there
exists ϕ such that σ1ϕ = ϑ, and ϕ ∈ sol(Γ1). By the induction hypothesis
there exists a derivation Γ1; ∅ =⇒+ ∅;ψ with ψ|Q1 = ϕ|Q1 and ψ ≤·V1 ϕ where
Q1 = eqv(Γ1) and V1 = vars(Γ1). Moreover, we have (Q1 ∪ {C}) \ {D} = Q,
(V1 ∪ {C}) \ {D} = V, and (σ1ψ)|Q = (σ1ϕ)|Q = ϑ|Q and (σ1ψ) ≤·V (σ1ϕ) =
ϑ|V . Hence, we obtain the desired derivation Γ ; ∅ =⇒R Γ1;σ1 =⇒+ ∅; σ1ψ.

Now assume s̃ is f(C(s̃1), s̃2) with C constrained with exactly one member-
ship constraint C in Rc. Let ∆0 be ∆ \ {C in Rc, f}. Obviously, Cϑ must be a
ground context, say C. Depending on the form of Rc we have different cases.
Here we consider only the case Rc = Rc?

1:
We transform Γ ; ∅ with Γ ; ∅ =⇒R Γ1; σ1, where Γ1, σ1, and R are defined

as follows: If C = ◦ then σ1 = {C 7→ ◦}, Γ1 = {f(s̃1, s̃2)σ1 ¿ t} ∪ ∆0σ1,
and R = RCtx1. In this case f = 0. If C 6= ◦ then σ1 = {C 7→ D(E(◦))},
Γ1 = {(C(s̃1σ1), s̃2σ1) ¿ t, (D in Rc1, 1), (E in Rc?

1, 0)}∪∆0σ1, and R = RCtx2.
In either case cm(Γ ) > cm(Γ1) and there exists ϕ such that σ1ϕ = ϑ and ϕ is a
solution of Γ1. By the induction hypothesis there exists a derivation Γ1; ∅ =⇒+

∅;ψ with ψ|Q1 = ϕ|Q1 and ψ ≤·V1 ϕ where Q1 = eqv(Γ1) and V1 = vars(Γ1).
Moreover, we have (Q1 ∪ {C}) \ {D, E} = Q, (V1 ∪ {C}) \ {D, E} = V, and
(σ1ψ)|Q = (σ1ϕ)|Q = ϑ|Q and σ1ψ ≤·V1 σ1ϕ = ϑ|V . Hence, we obtain the
derivation Γ ; ∅ =⇒R Γ1;σ1 =⇒+ ∅; σ1ψ with the desired properties.



Finally, assume s̃ is (C(s̃1), s̃2) with C constrained with the membership
constraints (C in Rc1, f l1) and (C in Rc2, f2). Let ∆0 be ∆ \ {(C in Rc1, f1),
(C in Rc2, f2)}. We have Cϑ = C for some ground C. We transform Γ ; ∅ with
the step Γ ; ∅ =⇒ICtx Γ1; ∅ where Γ1 = {(C(s̃1), s̃2) ¿ t̃, (C in Rc1, f1), D(a) ¿
C(a), (D in Rc2, f2)} ∪ ∆0. Since ϑ ∈ sol(Γ ), the substitution ϑσ1 ∈ sol(Γ1),
where σ1 = {D 7→ C}. We assume without loss of generality that D does not
occur in ϑ. By the induction hypothesis, there exists a derivation Γ1; ε =⇒+ ∅;ψ
with ψ|Q1 = ϑσ1|Q1 and ψ ≤·V1 ϑσ1 where Q1 = eqv(Γ1) and V1 = vars(Γ1).
Since Q ⊂ Q1 and D does not occur in ϑ, we have ψ|Q = ϑσ1|Q = ϑ|Q. As
for the case with restriction to V , since D ∈ eqv(Γ1), by Lemma 3, Dψ|V1

is ground. Then the only possibility is Dψ|V1 = C, because Dϑσ1|V1 = C.
Moreover, D does not occur in the range of ψ|V . Hence, for all v ∈ dom(ψ|V ) we
have vψ|V = vψ|V1 . Similarly, since D does not occur in ϑ, for all v ∈ dom(ϑσ1|V )
we have vϑσ1|V = vϑσ1|V1 . It implies that ψ|V ≤· ϑσ1|V . But since ϑσ1|V = ϑ|V
we finally get ψ ≤·V ϑ. ut


