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Abstract

This report deals with possible improvements of the current im-

plementation of the optimization algorithm in the SEE-GRID project.

First the present algorithm is analysed and benchmarked. Then we

initiate both sequential and parallel approaches for accelerating the

computation. The sequential approach is done by the Broyden update

method; the parallel strategies work on the one hand with parallel De-

launay triangulation for interpolating the function to minimize and on

the other hand with decoupling optimization from triangulation. The

interpolation is chosen because the function we have to minimize has

to be evaluated thousands of times which takes more than half of the

computation time.
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1 Introduction

The SEE++ software system helps doctors to evaluate certain diseases con-
cerning eye motility disorders [3]. SEE-GRID is an extension of SEE-KID
using parallelization and Grid capabilities [2]. The main computation in the
SEE-KID/SEE-GRID software system is the optimization of a specific func-
tion, called the Torque function. The minimum of this function represents a
stable eye position which is needed for simulating the Hess-Lancaster test.

This computation lasts a few seconds for calculating one stable eye po-
sition. Every time the user changes some parameters, the software has to
compute a new minimum.

The goal of our work is to find strategies for improving and accelerating
this computation procedure using the capability of parallel systems. First
we look at the existing algorithm and implementation. Then, we discuss
the possibilities for improvements especially for (but not restricted to) par-
allelization. Afterwards, we introduce the Broyden update method (or BFGS
update formula, see [1]) which can be used to accelerate optimization algo-
rithms working with Jacobian or Hessian matrices.

Finally, we concentrate on the Torque function itself by searching for an
appropriate interpolation method. We triangulate the Torque function with
the Delaunay triangulation algorithm ([4]) and then compute every function
value needed for the optimization with a certain interpolation procedure. We
describe three strategies how the triangulation can be done in parallel.

In our further work we will focus on different strategies for parallel in-
terpolation where the optimization algorithm is decoupled from the triangu-
lation. This gives us the capability of two concurrent processes doing their
work nearly independently with very few communication needed.

In Section 2.1 we describe the minimization problem our work is based
on. Then we give a basic overview of optimization techniques in Section
2.2. In Section 2.3, the Levenberg-Marquardt algorithm, which is used for
the minimization in the existing implementation, is specified. Section 2.4
deals with benchmarks of the existing algorithm. Section 2.5 describes our
approaches for accelerating the existing algorithm and searching for possible
parallelization strategies.

The Broyden update is initiated in Section 3.1. A description of our
present prototype implementation is given in section 3.2. The benchmarks
of this current update.

At last we describe possibilities for parallelization in Section 4. We start
with the basic idea (Section 4.1) followed by the description of the Delaunay
triangulation (Section 4.2). Finally, we depict the potential of combining the
triangulation and optimization for the purpose of parallelization with three
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possible strategies: bruteforce, realistic and smart strategy (Section 4.3).

2 Existing Algorithm

At first we describe the problem and the present solution strategy together
with a short overview of nonlinear optimization. Then we give benchmarks
of the existing implementation and discuss feasible improvements.

2.1 Specification of the Problem

The main task of the computation is to minimize the so called Torque func-
tion (LT : R

n → R, n = 6 + 3) which determines the eye position. The
Torque function gets as input a vector of real numbers. These input values

are given as two vectors:
−→
Iv has six elements each describing the innervation

of an eye muscle.
−→
Ep including three elements denotes the eye position based

on rotation vectors. For a detailed specification of the Torque function see
Chapter 4 in [3], where one can find the whole description of the biomechan-
ical modeling. The minimum of the Torque function determines a stable eye
position. This position has to be found in order to e.g. simulate the Hess
Lancaster test which is the basis for the simulation of eye motility disorders.
So we have to solve a nonlinear least-squares minimization (optimization)
problem, i.e. to compute the following formula:

minLT (
−→
Iv ,
−→
Ep)

2.2 Nonlinear Optimization

First we introduce the basics of nonlinear optimization. The general structure
of an optimization algorithm can be seen in Algorithm 2.1. Basically the steps
of the algorithm are performed in a loop. Before each step we have to check
if a certain convergence criterion is fulfilled. In every step a search direction
and a step size is computed. This two values are needed for the iteration rule
which is also applied in every step.

The search direction is the direction in which we go in our function to
find the minimum. The classical method for solving such problems is the
Newton method [1]. Here the iteration is done by

xk+1 = xk −Gk−1

gk

where

gk = ∇f(x) :=

(

∂f

∂x1

(x),
∂f

∂x2

(x), . . . ,
∂f

∂xn

(x)

)T
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Algorithm 2.1: optimization(f, startingvalue)

Input: f : R
n → R, x1

Output: minimum f(xk)

k ← 1
while !(convergence criterion)

do















compute search direction pk ∈ R
n

compute step size αk > 0, with f(xk + αkpk) < fk

xk+1 := xk + αkpk

k ← k + 1
return (minimum)

denotes the gradient of f and

Gk = ∇2f(x) :=

(

∂2f

∂xixj

(x)

)

i,j=1,...,n

denotes the Hessian matrix. The Newton method converges quadratically.
This means that the number of correct decimal places doubles in every it-
eration step. An improvement of the Newton method is the Gauss-Newton
method [1] where the Hessian matrix is approximated by the Jacobian matrix
(here denoted as J). The Jacobian matrix contains only the first derivatives.

Gk = JkT Jk

This approximation is also used in the Levenberg-Marquardt algorithm ex-
plained in the next section. For further information on the Gauss-Newton
method see [1].

2.3 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is used in the SEE-GRID/SEE-KID
software system to minimize the Torque function. The implementation of
the Levenberg-Marquardt algorithm in SEE-GRID is based on a MatLab
implementation of a software system called EyeLab [5]. The MatLab-code
was transcripted into C++ as part of the SEE-KID project.

The algorithm is a combination of the Gauss-Newton and a Trust-Region
method. A Trust-Region is a region around a point with a certain radius
which one has to determine. Here we can compute the search direction with
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a local modelfunction and then determine the global minimum (see [1]). In
the Levenberg-Marquardt algorithm the search direction is computed by

(JkT

Jk + λkI)dk = −JkT

F k

where λk is a scalar for modifying the search direction and dk denotes the
search direction. If λk = 0, the search direction is the same as in the Gauss-
Newton method and if λk →∞, dk is nearly a steepest descent direction.

The Levenberg-Marquardt algorithm is very robust and the convergence
is nearly quadratic like in the Newton method.

2.4 Timing the Existing Implementation

We benchmarked the implementation of the Levenberg-Marquardt algorithm
that is currently used in the SEE-KID/SEE-GRID project. Furthermore, we
have measured the execution times of some interesting computations. The
benchmarks were performed on a PC with 1.4 GHz P4 processor and 512
MB of RAM. The whole minimization process took 6.5 s to 8 s.

In the benchmarks, we have also computed

• the time for the evaluation of the Torque function and

• the number of evaluations of this function.

The average computation time for one evaluation of the Torque function is
0.598 ms. This evaluation has to be done more than 8000 times, so one can
see that this is the main part of computation time.

Finally, we have computed the average computation time of basic ma-
trix and vector operations used in every step of the Levenberg-Marquardt
algorithm. These timings can be seen in the following table.

Operation ms

Matrix multiplication 0.014
Matrix inversion 0.015
Matrix-Vector Multiplication 0.006

2.5 Discussion of Possible Improvements

One approach to speedup the computation of the sequential algorithm would
be some fine grained parallelization of matrix and vector operations. But
due to the very small dimensions of the matrices and vectors, the overhead
for creating concurrent threads or distributing the data is much too high,
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as one can see from the timings in the previous section. Thus we have to
investigate alternative approaches.

For the acceleration of the sequential algorithm, one can try the Broyden
update method (see Section 3.1) where the Jacobian matrix has not to be
fully computed in every step.

Because the evaluations of the Torque function take more than half of
the computation time, we can think of interpolating the Torque function in
a certain way. Here one can look for ways to parallelize this interpolation
(see Section 4.2).
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3 Broyden Update

An approach to accelerate the sequential optimization algorithm without
using the benefits of parallelization is the Broyden update method. Here
we introduce this method and delineate our current work concerning this
sequential improvement.

3.1 Basic Algorithm

One possible approach improving the optimization algorithm is the so called
Broyden update. In the Levenberg-Marquardt optimization algorithm the
Jacobian matrix has to be computed in every step and needs a lot of time.
To remedy this computation we can use the Broyden update. The Broyden
update starts with an initial Jacobian matrix (often the identity matrix is
taken as initial matrix) and updates this matrix a certain number of (usually
three or four) times. After these updates a “restart” has to be performed,
which means that the exact Jacobian has to be computed again and one
optimization step with this matrix has to be done. After that we can update
the just now computed matrix again three or four times.

The basic structure of the Broyden update is

vk = xk+1 + xk

yk = F (xk+1)− F (xk)

uk =
1

vkT

vk
(yk − Jkvk)

Jk+1 = Jk + ukvk

where F (xk) in our case denotes the Torque function evaluated in every step
k in xk and Jk is the Jacobian matrix in the k-th step.

With the Broyden update we have the ability to update the inverse Hes-
sian matrix too using another update formula. In the Levenberg-Marquardt
algorithm the Hessian matrix is computed by using the Jacobian matrix.
One has to both check if these two methods are suitable for our problem and
which one is the better one.

3.2 Prototype Implementation

We have developed a prototype implementation of the basic Broyden update.
In this implementation we use an update counter initially set so zero. If this
counter is zero, the Jacobian matrix is computed exactly. For every number
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greater than zero the update of the Jacobian matrix is performed. The
counter is increased by one at every step and if it reaches a certain number
(the number of updates to be done), it gets zero again. The source code of
this prototype implementation is depicted in Appendix A.

3.3 Benchmarks and Discussion

Our implementation has to be improved because the matrix can be updated
only once now. This is not very effective and makes the new implementation
slower than the existing algorithm, but due to some not detected implementa-
tion problems the reason for this is unclear and needs further investigations.
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4 Parallelization by Delaunay Triangulation

The most promising approach concerning both timing and parallelization is
the Delaunay triangulation. We give a detailed insight into the idea of the
Delaunay triangulation and describe the strategies for parallelization devel-
oped during our work up to now.

4.1 Basic Idea

During the analysis of the existing algorithm it was detected, that the eval-
uations of the Torque function (the function to be minimized) needs more
than half of of the whole computation time. In our optimization algorithm,
we need thousands of evaluations in total. Thus, one idea to improve the effi-
ciency of the algorithm is to reduce this large number of function evaluations
by computing function values of certain points in advance and interpolate
the points in between.

The interpolation we use in our project works by the triangulation of
the function in a special domain. As domain of the triangulation we can
use the whole domain of the Torque function, but this is not very efficient.
Therefore, we have to switch to better strategies, which are discussed later.
When triangulating the function, we get a plane of triangles with our input
points as vertices. Every time a function value is requested, the algorithm
has to interpolate this value from the tree vertex points of the surrounding
triangle which should be faster than the exact computation of the function
value.

To implement this idea, we first have to triangulate the function with
the Delaunay algorithm [4]. The Delaunay algorithm is used to model 3-
dimensional surfaces as sets of triangles. This algorithm takes as input a
set of points we get from evaluating the Torque function. It then computes
the triangulation. Afterwards every function value we have not computed
exactly before, can be interpolated. A triangulation is basically computed by
creating edges between the given points. This builds up a mesh of triangles.
Then we have the following possibilities for parallelization:

• We can compute the function values in parallel. First we have to select a
certain number of (x, y) sample points and determine the corresponding
z value by evaluating the Torque function in this points.

• The triangulation of the set of points can be done in parallel.

• During the optimization we can compute the triangulation of subsets
of the domain of the Torque function in parallel.
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Figure 1: The Torque Function (original - set of points - triangulated)

Figure 1 represents the Torque function for a certain pathology. In this
example we changed some data concerning muscle force and length. The first
graphic shows the original Torque function. In the second one, one can see
a set of points (in this case a homogeneous mesh) created by evaluating the
torque function in all of the points chosen before. The last picture represents
a triangulation of this set of points.

4.2 Delaunay Triangulation

The input of the Delaunay triangulation consists of a set of points P =
{p1, p2, . . . , pn} (later representing the vertices of our triangles). The com-
putation of this set can be done by multiple processes. The output of the
Delaunay algorithm delivers us a triangulation T of the points given before.
The first step doing the Delaunay triangulation is to create a triangle con-
taining all points of the set P .

The next steps are performed in a loop iterating over every point pr of
P . First pr has to be inserted into the triangulation and then a triangle
containing pr has to be found. After that we check if pr lies in a triangle of
the triangulation. If this is the case, the algorithm splits the triangle into
three parts by inserting three new edges from every vertex of the triangle
to pr located in the triangle (see Figure 2). We have to check now if the
circumcircle of the new triangles does not contain any other points of P

(circumcircle condition). In the case of a point lying inside the circumcircle
of a triangle we have to do an “edge flip” (see Figure 4). This is done by

11



Figure 2: Inserting a point located in a triangle

Figure 3: Inserting a point located on an edge of a triangle

deleting the inner edge and inserting a new one to create two triangles again.
Then the circumcircle condition will hold. Next, we have to check if pr lies on
an edge of a triangle. If this check is true we have to split the two triangles
having this edge in common into four (see Figure 3). After inserting the new
edges to split the triangles we have to validate the circumcircle condition and
do edge flipping as described before.

As the last step in the algorithm the initial triangle has to be removed
and the finished triangulation T can be returned. The pseudo-code of the
algorithm is depicted as Algorithm 4.1.

This algorithm can be done in parallel by multiple processes or on the
Grid. Every process gets a subset of P and does a Delaunay triangulation.
Problems can occur on the borders of each subset because the processors
do not know their neighbors’ border values. So one has to look for a smart
overlapping strategy.

Figure 4: Edge flip
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Algorithm 4.1: Delaunay(P )

Input: Set of points P

Output: Triangulation T

generate a triangle surrounding the whole set P

generate a random permutation of P

for r ← 1 to n

do















































































insert pr into the triangulation
find a triangle in the triangulation containing pr

if pr lies in a triangle of the triangulation

then















split the triangle into thee triangles by creating
edges from pr to every vertex

check edges if the circumcircle condition holds
otherwise do an edge flip

else if (pr lies on an edge of a triangle)

then















split the two triangles
which have that edge in common into four

check edges if the circumcircle condition holds
otherwise do an edge flip

remove the initial triangle from the triangulation
return (T)
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4.3 Combining Triangulation and Optimization

The triangulation is needed for the function evaluations in the optimization
algorithm. By considering triangulation not in isolation but in combina-
tion with optimization, the efficiency may be improved and the potential for
parallelization may be increased.

4.4 A Brute Force Strategy

The first and easiest way to do the triangulation is a brute force strategy (see
Algorithm 4.2). If we have enough computing power like in a Grid system
we can triangulate the function over the whole function domain in a very
short period of time (see Figure 5). The brute force method does not need
any information from the optimization algorithm like the search direction.

We have to pay attention to borders between the processes. When com-
bining the triangulations computed in parallel, one has to check the circum-
circle condition for the border points. If this condition does not hold, edge
flipping has to be performed.

The problem with such an implementation is that the bigger part of
the computed values and triangulation is not needed in the optimization
algorithm. So this strategy is very inefficient. Nevertheless this algorithm is
used as subalgorithm in later algorithms for smaller subsets.

4.5 A Realistic Strategy

The next strategy is more realistic because it restricts the computed trian-
gulations to certain areas of interest (see Algorithm 4.3, Figure 6). In the
beginning, we compute the triangulation of a subdomain around the starting
value. If this is done we can start the optimization. Every time evaluating
the Torque function we have to check if the requested point is in our subdo-
main. If this is the case, we return the interpolated value, otherwise we have
to choose a new sub domain and compute the new triangulation. Each can
compute the triangulation in parallel in the corresponding subdomain.

The problem with this solution is that for each new subdomain the opti-
mization algorithm hast to wait for the Delaunay triangulation until it can
continue. One idea to improve the solution is to decouple the triangulation
from the optimization algorithm and let it work with the new domain, while
the optimization algorithm still operates in the old domain. This leads us to
the last — the smart strategy.
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Figure 5: The Brute Force Strategy

Algorithm 4.2: ParallelDelaunay(P )

Input: Set of points P

Output: Triangulation T

divide P into disjoint subsets P1, P2, . . . , Pn

such that P1 ∪ P2 ∪ · · · ∪ Pn = P

for each Pi

do in parallel
{

Delaunay(Pi)
combine the T1, T2, . . . , Tn to the triangulation T of P

return (T)
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Figure 6: The realistic Strategy

Algorithm 4.3: Realistic(P , startingvalue)

Input: Set of points P , starting value
Output: Minimum of the Torque function

i← 0
determine an initial subdomain Pi around the starting value
ParallelDelaunay(Pi)
while minimum not found

do







































while optimization does not leave subdomain

do







Levenberg-Marquardt optimization step
if minimum is found

then
{

break

determine a new subdomain Pi

ParallelDelaunay(Pi)
i← i + 1

return (minimum)
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Figure 7: The Smart Strategy

4.6 A Smart Strategy

This strategy (see Algorithm 4.4, Figure 7) combines optimization and trian-
gulation best, because both can work nearly independent. For this purpose
we need some information about the search directions. Out of this informa-
tion we try to get the position of the new subdomain. This cannot be done
exactly but we predict the new position by extending one of the last search
directions in the last subdomain and compute the new triangulation at a
certain position adjoined to the old sub domain.

An implementation of this algorithm needs two threads: one for the op-
timization algorithm and one for the Delaunay triangulation. There has to
be some communication between the threads for providing the search di-
rections to the Delaunay thread. The Delaunay computation itself can be
done on a Grid system. So the computation time can be minimized and the
optimization does not have to wait for the new triangulation.
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Algorithm 4.4: Smart(P , startingvalue)

Input: Set of points P , starting value
Output: Minimum of the Torque function

i← 0
determine an initial subdomain Pi around the starting value
ParallelDelaunay(Pi)
compute Optimization and Triangulation in parallel

Optimization































while minimum not found

do























Levenberg-Marquardt optimization step
if minimum is found

then
{

break

Send current position of optimization and
search direction to Triangulation

Triangulation







































Receive current position of optimization and
search direction from Optimization
if position is near the border

then















determine a new subdomain Pi

(predict with search direction)
ParallelDelaunay(Pi)
i← i + 1

return (minimum)
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5 Conclusions and Outlook

In our present work we analysed the current implementation of SEE-GRID
and did theoretical investigations on improving this implementation. First
we searched for possible acceleration techniques for the sequential algorithm.
Afterwards, we developed strategies using parallelization. The fine grained
approach had to be canceled because of the small dimensions of the matrices
and vectors. The most promising future directions are:

• Broyden update

• Prototype implementation of the parallel triangulation

We have to check our current implementation of the Broyden method to
get usable results performing the update more than one time and moreover
obtain better timings from our implementation.

Concerning the triangulation we have to implement the three strategies
top-down, because we need the parallel Delaunay algorithm both in the re-
alistic and the smart strategy. Furthermore, the determination of the sub-
domains in the realistic strategy is needed also in the smart strategy.
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A Source Code

This code snippet shows the Broyden update procedure. In the for-loop the
Torque function is evaluated. The computation of the updated matrix is
done as described in Section 3.1.
...

pk=OLDJ. i ()∗(−1)∗FOLD;
XOUT=XOUT+pk ;

//compute f k+1
for ( int gcnt = 0 ; gcnt < nvars ; gcnt++) {

x = XOUT;
f = MatrixToColumnVector ( funcObj−>Evaluate (x ) ) ;
i f ( funcObj−>Evaluat ionError ( ) ){

return Matrix ( 0 , 0 ) ;
}

}
//Broyden
yk = f − FOLD;
sk = XOUT − OLDX;
wk = OLDJ ∗ sk ;
vk = sk . t ( ) ∗ sk ;
uk = (1 / vk . element ( 0 , 0 ) ) ∗ ( yk−wk ) ;

// update matrix
GRAD = OLDJ + (uk ∗ sk . t ( ) ) ;
OLDJ = GRAD;

FOLD << f ;
OLDX << XOUT;

}
// update counter
broydenc++;
i f ( broydenc==1){

broydenc=0;
}

...
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