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Traditionally resonant interactions among short waves, with large real wave-
numbers, were described statistically and only a small domain in spectral
space with integer wave-numbers, discrete resonances, had to be studied sep-
arately in resonators. Numerical simulations of the last few years showed
unambiguously the existence of some discrete effects in the short-waves part
of the wave spectrum. Newly presented model of laminated turbulence ex-
plains theoretically appearance of these effects thus putting a novel problem
- construction of fast algorithms for computation of solutions of resonance
conditions with integer wave-numbers of order 103 and more. Example of
such an algorithm for 4-waves interactions of gravity waves is given. Its
generalization on the different types of waves is briefly discussed.

PACS numbers: 47.10.-g, 47.27.De, 47.27.T, 02.60.Pn

1. INTRODUCTION

Classical theory of wave turbulence was developed for description of sta-
tistic properties of weakly nonlinear waves in infinite domains. Importance
of resonant interactions among these waves was first pointed out in 1961 by
O.Phillips1 and this led to construction2 of the first kinetic equation. Later
on it was established by many researchers that effects of finite length are not
described by the classical theory and kinetic equations, and 20 years later,
in 1981, O.Phillips wrote that ”new physics, new mathematics and new
intuition is required”3 in order to understand energetic behavior of these
systems. Discrete effects appear when waves ”notice” boundary conditions,
i.e. wave lengths are comparable to the sizes of interaction domain, and
therefore wave numbers are integers. First theoretical result on the behavior
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of discrete waves systems was published in 1990 in4 where main distinction
between continuous and discrete wave systems was established: stochastic
interactions between all waves (infinite domain) versus interactions within
small independent groups of waves and existence of non-interacting waves
(finite domain). Theory of discrete wave systems was then presented in5

thus giving a rise to the following qualitative picture of wave turbulence:
short waves are described by power energy spectra and kinetic equations,
long waves are described by Clipping method and dynamic equations. Nu-
merous papers of last few years showed that this qualitative picture has
to be modified because some discrete effects (frozen turbulence, mesoscopic
turbulence, etc.) are also observable7 in the short-waves’ part of the wave
spectra. Discovery of intermittent patterns in that part of wave spectra
which is supposed to be described by a kinetic equation only, gave us the
reason to revisit the very foundations of wave turbulence theory. It turned
out that its basic theoretical ground - KAM theorem - is proven not for all
short waves, a countable number of short waves with rationally connected
frequencies is excluded from consideration leaving some ”gaps” in the wave
spectrum. These gaps correspond to the waves whose ratio of frequencies
is algebraic number of degree ≤ 2, for instance, a rational number which
is usually understood as necessity for the corresponding dispersion function
to be a rational function. A model of laminated turbulence was recently
presented9 which consists of two layers, discrete one (in the whole range of
wave numbers) and continuous one (in the short-waves’ part of the wave
spectrum). The main fact allowing to construct this model is following: fre-
quencies of discrete resonantly interacting waves are rationally connected
though the dispersion function itself can be highly irrational. Thus,
the model of laminated wave turbulence ”fills” the gaps left by KAM theory
and explains, in particular, coexistence of power energy spectra and coherent
structures in the short-waves’ part of wave spectrum.

Model of laminated turbulence brings our attention to a completely
novel question: how to compute discrete resonances in some large computa-
tion domain? Indeed, say for 4-waves interactions of 2-dimensional gravity
waves, the resonance conditions can be regarded in the form

√
k1 +

√
k2 =

√
k3 +

√
k4, ~k1 + ~k2 = ~k3 + ~k4,

where ~ki = (mi, ni), ∀i = 1, 2, 3, 4 and ki = |~ki| =
√

m2
i + n2

i . It means that
in a finite but big enough domain of wave numbers, say |m|, |n| ≤ 1000, direct
approach leads to necessity to perform computations with integers of order
106. These computations in a substantially smaller domain |m|, |n| ≤ 128
took 3 days10 with Pentium-4.
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The main goal of this paper is to show that constructions of independent
classes of resonantly interacting waves6 can be re-formulated as a pure math-
ematical procedure which allows to reduce drastically computation time for
this sort of equations. Gravity waves are taken as our main example. Some
necessary results on discrete resonances of gravity waves are given in6 but
formulations there are too formal and partly inaccurate. We reformulate all
necessary results on construction of classes for these waves in Sec.2 and give
some illustrative examples. In Sec.3 we describe the computation algorithm
and some preliminary results of numerical simulation. Brief discussion is
given in Sec.4.

2. CONSTRUCTION of CLASSES

In this section we regard 4-waves resonances of 2-dimensional gravity
waves in the form √

k1 +
√

k2 =
√

k3 +
√

k4 (1)
~k1 + ~k2 = ~k3 + ~k4. (2)

To construct independent classes of resonantly interacting we need following
definition.

Definition

Let ~k = (m,n) be a vector with integer coordinates, m,n ∈ Z. Represent
the square root of the norm |~k| as

(m2 + n2)1/4 = γq1/4, γ, q ∈ N
and q does not contain fourth degrees:

q = pα1
1 · · · pαs

s , αi ∈ {1, 2, 3},

with all different prime pi. Number q is called index of a vector ~k = (m,n)
and number γ is called its weight. Class Clq of index q is set of all vectors
with this index.

For instance, vectors (1, 3) and (12, 4) belong to the same class Cl10 of
index 10, with weights γ = 1 and γ = 2 correspondingly, while vector (2, 1)
lies in Cl5 of index 5, with weight γ = 1.

Lemma

Let vectors ~k1,~k2,~k3,~k4 construct a solution of (1), then only two cases
are possible:
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Case 1: all vectors belong to the same class,
Case 2: all vectors belong to two different classes Clq1 , Clq2 in such a

way that there exist q1, q2 :

~k1,~k3 ∈ Clq1 and ~k2,~k4 ∈ Clq2

or
~k1,~k4 ∈ Clq1 and ~k2,~k3 ∈ Clq2 .

In the Case 2 all solutions are symmetric, i.e. vectors belonging to each class
must have the same norm. All asymmetric solutions, if any, are described
by the Case 1.

The statement of Lemma follows immediately from elementary proper-
ties of integers and we are not going to the detailed proof here. General
idea of the proof is very simple indeed: two different irrational numbers can
not satisfy any equation with rational coefficients. For instance, equation
a
√

3 + b
√

5 = c has no solutions for arbitrary rational a, b, c. It means that
irrationalities corresponding to classes indices in (1) have to be rid off in
order to construct its integer solutions. In general, one to four different ir-
rationalities can appear in (1), simple consideration show that all cases but
two described below give no integer solutions.

In the Case 1, all four irrationalities are equal and can be canceled, so
that (1) is reduced to

γ1q
1/4 + γ2q

1/4 = γ3q
1/4 + γ4q

1/4 ⇒ γ1 + γ2 = γ3 + γ4.

Let us regard as example a couple of asymmetric solutions given in8 :

(−4, 0), (49, 0), (9, 0), (36, 0) and (−20, 15), (−20,−15), (−49, 0), (9, 0).

An easy check shows that all 8 vectors belong to the same class Cl1 of index
1, with weights γ1 = 2, γ2 = 7, γ3 = 3, γ4 = 6 and γ1 = 5, γ2 = 5, γ3 =
7, γ4 = 3 correspondingly, so that condition γ1+γ2 = γ3+γ4 is full-filled in
both cases. It is important to understand that 4 vectors constructing some
asymmetric solution must belong to the same class but not necessarily to
Cl1 as in the solutions above. In the next section some asymmetric solutions
are presented which lie in other classes.

In the Case 2, the irrationalities with corresponding coefficients in front
of them must be pair-wise equal to be canceled, for instance

γ1q
1/4
1 + γ2q

1/4
2 = γ3q

1/4
1 + γ4q

1/4
2 ⇒ γ1 = γ3 and γ2 = γ4.
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Notice that Lemma gives only necessary condition of the existence of
a solution. This means that to find a solution we have first to construct
classes, then find solutions within the corresponding classes and check linear
conditions afterwards. Obviously, (1),(2) have infinitely many solutions - for
instance, quartets

~k1 = (a, b), ~k2 = (c, d), ~k3 = (a, b), ~k4 = (c, d) (3)

and

~k1 = (a, b), ~k2 = (c, a− b + c), ~k3 = (b, a), ~k4 = (a− b + c, c) (4)

with arbitrary integers a, b, c, d give its solution, as well as any proportional
quartets corresponding to multiplication of all wave-numbers on the same
integer. Less trivial example of ”tridents”

~k1 = (a, 0), ~k2 = (−b, 0), ~k3 = (c, d), ~k4 = (c,−d) (5)

possess two-parametric series of solutions8 :

a = (s2 + t2 + st)2, b = (s2 + t2 − st)2, c = 2st(s2 + t2), d = s4 − t4 (6)

with arbitrary integer s, t. This series gives solutions of both (1),(2) though
perhaps not all of them. Parametrization (6) is constructed in such a
way that norms of all four vectors are full squares, i.e. again vectors
~k1, ~k2, ~k3, ~k4 belong to the same class Cl1 of index 1, with weights

γ1 = s2 + t2 + st, γ2 = s2 + t2 − st, γ3 = γ4 = s2 + t2,

providing γ1 + γ2 = γ3 + γ4 for any parameters s, t.

There is no known way to construct general solution of (1),(2) and
even a construction of some particular solutions’ series demands a lot of
skillful work and a bit of luck. On the other hand, this hard work is mostly
not well-paid because coming back to physical problem setting, we usually
need all solutions in some spectral domain, not only those which could be
nicely parameterized. In the next section we use Lemma to construct fast
computer algorithm for finding solutions of (1),(2) which is a challenging
numerical problem.

3. SCHEME of NUMERICAL ALGORITHM

As it was shown in previous section, equations (1),(2) have infinitely
many solutions. But not all of them are interesting from physical point of
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view. We follow11 in classification (written out up to the cyclic change of in-
dices) of all possible solutions according to their role in energy transfer : (I)
trivial resonances ~k1 = ~k3, ~k2 = ~k4 which do not redistribute the energy, an
example is given by (3); (II) symmetrical resonances |~k1| = |~k3|, |~k2| = |~k4|
which do not generate new wavelengths and therefore do not transfer the
energy through the scales, an example is given by (4); (III) asymmetrical
resonances playing major role in energy transfer, an example is given by
(5). In this paper we are primary interested in asymmetric solutions which
means in terms of Lemma that all vectors belong to the same class (Case
1). Not going into all programming details we present here just underlying
main ideas of our algorithm and first results of computer simulations.

Step 1. Create first auxiliary array of primes Ap in the given spectral
domain p ≤ D using Eratosthenes’ Sieve procedure which eliminates com-
posite numbers from the list of natural numbers and can be briefly described
as follows:

• Create an array Ad containing all integers 1, ..., d, write number ”1”
into array Ap, mark ”1” in the array Ad as used element;

• Introduce cycle variable i = 1, ...,
√

d;

• Find first number in Ad which is greater than 1 and is not marked yet
as a composite, denote it as r and mark all numbers 2r, 3r, 4r, ... as
composite (at the first step r = 2, at the second r = 3 and so on);

• write number r into array of primes Ap;

• put i = r and repeat the procedure.

Step 2. Create second auxiliary array Aq of possible indexes constructed
of the primes obtained at the Step 1. Indexes are computed directly by
formula

q = pα1
1 · · · pαs

s , αi ∈ {1, 2, 3},
in the domain q ≤ 21/4

√
d < 1.19

√
d. Say, for d = 1000, it is enough to

compute for q ≤ 37.

Step 3. Find all integer solutions of the linear equation

γ1 + γ2 = γ3 + γ4

in the domain γi ≤ 21/4
√

d, ∀i = 1, ..4.
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Remark. Further it will be necessary to check when expressions under
the radicals γ4q can be represented as a sum of two squares. Here one has
to make use of the well-known Euler theorem: representation of a positive
number as a sum of two squares which is possible iff each of its prime factors
of the form 4t + 3 occurs as an even power. For instance, pair γ = 3, q = 1
has 3 in even degree, expression under the integral is 34 · 1 = 81, represen-
tation as a sum of two squares exists and number 81 = 92 + 02 should be
written into the array Aγ,q. On the other hand, for pair γ = 2, q = 3, the
expression under the radical has factor 3 in the odd power, i.e. number 48
can not be represented as a sum of two squares and it is not an element of
the array Aγ,q. Notice that all prime factors of γ have even powers which
means that only prime factors of q has to be investigated. Consequently, an
arbitrary presentation of q as a sum of two squares, multiplied by γ4, gives
corresponding presentation of the expression under the radical.

Step 5. Check Euler theorem for all elements of Aq and construct ar-
ray Ãq with ”allowed” elements only; find all presentations as a sum of
two squares for each ”allowed” element. Obviously, one number can be
decomposed into sum of two squares in more then one way, for instance
1105 = 42 + 332 = 92 + 322 = 122 + 312 = 232 + 242.

Remark. Due to Lemma, the search of 2-square-representations for
the numbers ≤ 2d2 is reduced to the numbers < 1.19

√
d. In particular, for

d = 1000 we have to compute these presentations for the numbers in the
domain ≤ 37 which can be done by direct enumeration. The number S of
different 2-square-presentations of an integer is proportional to the difference
between its prime factors of the form 4t + 1 and 4t + 3 (Lagrange theorem).

Step 6. For each q ∈ Ãq and each its possible 2-square-presentation, q =
m̃2

j + ñ2
j , j = 1, 2, ..., S, compute all under-integral-expressions γ4

i (m̃2
j + ñ2

j )
and check linear conditions on mj , nj :

m1 + m2 = m3 + m4,

n1 + n2 = n3 + n4,

with m1 = γ2
1m̃j , n1 = γ2

1 ñj , m2 = γ2
2m̃j , n2 = γ2

2 ñj , m3 = γ2
3m̃j , n3 =

γ2
3 ñj , m4 = γ2

4m̃j , n4 = γ2
4 ñj .

Summarizing, Lemma allows to reduce domain of integers under consid-
eration from 2d2 to 21/4

√
d while classical procedure (Eratosthenes’ Sieve)

and some known number-theoretical results (Euler and Lagrange theorems)
allow to further reduce the computation time which is about 4 min. at
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Pentium-4 for spectral domain mi, ni ≤ 1000. In this domain we have found
five asymmetric solutions which are not tridents:

~k1 = (495, 90), ~k2 = (64, 128), ~k3 = (359, 118), ~k4 = (200, 100),

~k1 = (675, 225), ~k2 = (64, 192), ~k3 = (479, 237), ~k4 = (260, 180),

~k1 = (810, 45), ~k2 = (128, 192), ~k3 = (598, 117), ~k4 = (340, 120),

~k1 = (855, 360), ~k2 = (64, 256), ~k3 = (599, 356), ~k4 = (320, 260),

~k1 = (990, 180), ~k2 = (128, 256), ~k3 = (718, 236), ~k4 = (400, 200).

These solutions belong to classes Cl5, Cl10, Cl13, Cl17, Cl20 correspond-
ingly, with weights γ1 = 15, γ2 = 8, γ3 = 13, γ4 = 10 for all solutions.

4. Brief discussion

We described here first version of our algorithm in order to show how
to use Lemma for reducing drastically computation time. At present, this
algorithm is written only for positive integer wave numbers mi, ni ∈ N.
Using some simple symmetrical considerations, one can adapt it for the case
of arbitrary mi, ni ∈ Z. Another simple modification can be made in order
to find solutions for the case

√
k1 =

√
k2 +

√
k3 +

√
k4, ~k1 = ~k2 + ~k3 + ~k4

or for the case of 5-wave interactions and more (of course, Lemma should be
re-formulated).

Moreover, basing on this algorithm, one can develop generic algorithm
for fast computation of discrete resonances among different types of waves
with dispersion function ω being an arbitrary polynomial function of the
norm of wave vector, ω = ω(k). Different dispersion functions in case of two
dimensional waves will have different formula for index (Step 2 of present
algorithm); in case of three dimensional waves, i.e. k = |~k| = √

m2 + n2 + l2,
Lagrange and Euler theorems should be replaced by some known number-
theoretical results on the decomposition of an integer into the sum of three
squares. All other algorithmic steps will be the same as above. Development
of such a generic algorithm for a big class of dispersion functions is our cur-
rent object of interest.
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