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Abstract

A survey of symbolic methods for factoring linear differential operators is given. Starting from basic
notions – ring of operators, differential Galois theory – methods for finding rational and exponential
solutions that can provide first order right-hand factors are considered. Subsequently several known
algorithms for factorization are presented. These include Singer’s eigenring factorization algorithm,
factorization via Newton polygons, van Hoeij’s methods for local factorization, and an adapted version
of Padé approximation.

In addition a procedure based on pure algebraic methods for factoring second order linear partial
differential operators is developed. Splitting an operator of this kind reduces to solving a system of
linear algebraic equations. Those solutions which satisfy a certain differential condition, immediately
produce linear factors of the operator. The method applies also to operators of third order, thereby
resulting in a more complicated system of equations. In contrast to the second order case, differential
equations must also be solved, which, in particular cases, are simplified with the aid of characteristic
sets.

Finally, complete decomposition into linear factors of ordinary differential operators of arbitrary
order is discussed. A splitting formula is developed, provided that a linear basis of solutions is available.
This theoretical representation is valuable in understanding the nature of the classical Beke algorithm
and its variants like the algorithm LODEF by Schwarz and the Beke-Bronstein algorithm.



Zusammenfassung

Es wird ein Überblick über symbolische Methoden zur Faktorisierung linearer Differentialoperatoren
gegeben. Beginnend mit grundlegenden Begriffen wie Operatorring oder differentielle Galoistheorie,
diskutiert der Autor Methoden zum Auffinden rationaler wie auch exponentieller Lösungen, mit deren
Hilfe rechte Faktoren von Operatoren gefunden werden können. Im Folgenden werden verschiedene
Faktorisierungsalgorithmen vorgestellt, darunter Singers Eigenring-Faktorisierungsalgorithmus, Fak-
torisierung mit Hilfe von Newton Polygonen, van Hoeijs Methode zur lokale Faktorisierung und eine
adaptierte Version der Padé Approximation.

Darüberhinaus entwickelt der Autor eine rein algebraische Methode zur Faktorisierung von linearen
partiellen Differentialoperatoren. Das Zerlegen so eines Operators reduziert sich auf das Auffinden
der Lösungen eines linearen algebraischen Gleichungssystems. Diejenigen Lösungen dieses Systems,
welche eine bestimmte differentielle Bedingung erfüllen, erzeugen direkt lineare Faktoren des Opera-
tors. Dieselbe Methode ist auch auf Operatoren dritter Ordnung anwendbar, wobei ein komplexeres
Gleichungssystem auftritt. Im Gegensatz zum Fall 2. Ordnung müssen hier auch Differentialgleichungen
gelöst werden, welche sich manchmal mit Hilfe charakteristischer Mengen vereinfachen lassen.

Zuletzt wird die vollständige Zerlegung gewöhnlicher Differentialoperatoren von beliebiger Ord-
nung in lineare Faktoren behandelt. Unter Zugrundelegung einer linearen Basis des Lösungsraums
wird eine Zerlegungsformel entwickelt. Diese theoretische Darstellung erweist sich als hilfreich zum
Verständnis des klassischen Beke-Algorithmus und seiner Varianten - wie Beke-Bronstein-Algorithmus
oder Schwarz’ LODEF-Algorithmus.
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1. INTRODUCTION

1.1 Historical Motivation

Let (k, δ) be a differential field of characteristic 0 with algebraically closed field of constants C. We
will write y(n) instead of δn(y) and y′, y′′, . . . for δ(y), δ2(y), . . .. Let D = k[∂] be the ring of linear
differential operators over k, that is, the non-commutative polynomial ring in the variable ∂, where

∂a = a∂ + a′ for all a ∈ k.

Any linear differential operator L ∈ k[∂] of the form

L = ∂n + an−1∂
n−1 + · · · + a1∂ + a0∂

0

defines an order n linear homogeneous scalar differential equation L(y) = 0 by

y(n) + an−1y
n−1 + · · · + a1y

′ + a0y = 0.

Factorizing a linear differential operator L into a product L = QR, simplifies the computation of
solutions as a solution of R(y) = 0 is a solution of L(y) = 0 as well. Moreover, we can find linearly
independent solutions. As an example consider the following linear ordinary differential operator:

∂2 + (x− 1)∂ − x

whose factorization is
(∂ + x)(∂ − 1).

Its scalar equation can be written as

y′′ + (x− 1)y′ − xy =

(
d

dx
+ x

)
(y′ − y) = 0

which has linearly independent solutions

y1 = ex and y2 = ex

∫
e−

x2

2 −xdx.

In particular, an operator L is said to be reducible if there exists operators L1 and L2 of lower
order such that L = L2L1, in this case we say that L1 is a right factor and L2 is a left factor of L. If
an operator is not reducible then it is called irreducible.

From Landau [1902], we know that any two decomposition of an operator L into irreducible com-
ponents have the same number of factors and their orders are the same up to permutations. As an
example consider the derivative δ = d/dx in the field k then the following linear differential operator

∂2 = ∂∂ =

(
∂ +

1

x− c

)(
∂ − 1

x− c

)
,

with c ∈ C has essentially two different factorizations.

Even when the intention of the this part of the thesis is to study the existent algorithms for factoring
linear ordinary differential operators, in section 2.3 we will discuss rational and exponential solutions
of linear ordinary homogeneous differential equations. However, we would like to mention that there
are several algorithms for solving linear differential equation in particular we give a short survey about
them:
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1. Rational solutions:

Rational solutions are elements of k. To decompose the operators of this class, Liouville [1833a,b]
already gave an algorithm, but only when k is a rational function field over the constants. More
general versions have been presented by Singer [1991] and Bronstein [1992a]. To solve scalar
equations, there are implementations by Abramov and Bronstein in Maple and in the Bernina

package. To solve matrix equations, there is an implementation by M. Barkatou in the Isolde

package. Both cases are restricted to the field Q(x) of rational functions in x with coefficients in
the algebraic closure of Q.

2. Algebraic solutions:

Algebraic solutions are solutions lying in an algebraic extension of k; i.e., they satisfy an irre-
ducible polynomial over k. An example for this class is 3

√
1 −√

x.

Many renowned mathematicians like Pépin [1881], Fuchs [1875, 1878], Klein and Jordan [1878]
were searching for an algorithm for algebraic solutions. Today there exists an algorithm by Singer
[1979] with some improvements in Singer and Ulmer [1993], but it is far from being satisfactory
because it is very expensive; in this case one needs to substitute a minimal polynomial decom-
posed into invariants in the differential equation. Another method from Fakler [1997] combines
Liouvillian solutions with the algebraic case of Risch’s algorithm (see Bronstein [1997]), it has
not been implemented.

3. Liouvillian solutions:

Liouvillian solutions are solutions generated by repeatedly adjoining algebraic numbers, integrals
or exponentials of integrals. An example of such a generation is

x
√

x−−→
√
x

e
R

−→ exp

[∫ √
x

]
.

In Singer [1981] it was shown that given a homogeneous linear differential equation L(y) = 0
with coefficients in F , a finite algebraic extension of Q(x), one can find in a finite number of
steps, a basis for the vector space of Liouvillian solutions of L(y) = 0.

For order two equations the method is given by Kovacic [1986], with small improvements by Weil
[1994]. For order three, the methods are given by Singer and Ulmer [1993].

Although the problem of finding all the Liouvillian solutions of a homogeneous linear differential
equation is decidable in theory for any order Singer [1991], the published decision procedure is
not consider a practical algorithm and has not been implemented.

4. Exponential solutions:

An exponential solution of the equation L(y) = 0 is a solution whose logarithmic derivative y′

y
lies in k.

Exponential functions form the most important subclass of Liouvillian functions. Procedures
providing algorithms that produce exponential solutions lie at the basis of all known algorithms
for finding Liouvillian solutions. Fortunately, there are algorithms for exponential solutions. The
very first one is from Beke [1894]. For the formal case, van Hoeij [1997a] has implemented classical
methods. Factorization over Q(z) is based on the formal case.

Dividing functions into one of these classes is not always unique; e.g., for the function y =
√
x,

it is possible to attach it either to the algebraic functions or to the exponential, since y′

y = 1
2x ,

and 1
2x ∈ k. Furthermore, it can be hard to decide for a given function whether it is Liouvillian

and how one could find the simplest construction. A combination of the above methods is used
in the implementation by van Hoeij in the Maple computer algebra system.

For factorization of linear differential operators which constitutes the main subject of this thesis,
we have the following known methods:
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1. Beke’s method: In 1894 Beke gave a method for factorization of linear differential operators in
the ring Q(x)[∂]. Previous implementations for factorization in k(x)[∂] are based on his method.
For example, the factorizer in the Kovacic algorithm (Kovacic [1986]) is based on Beke’s method.
To find a factor via Beke’s method one must first compute another operator (the second exterior

power) and then compute a first order right-hand factor. Construct an auxiliary operator L̃ whose
associated Riccati equations have among their solutions all possible coefficients bi of factors

M = ∂m + bm−1∂
m−1 + · · · + b1∂ + b0∂

0

of L. From L̃ one can bound the degrees of the numerators and denominators of these coefficients.

An implementation of Beke’s method has been accomplished by Bronstein [1992b] in the Ax-

iom system. Schwarz [1989] has implemented the full algorithm for equations of small order in
Scratchpad II. Simplifications of the the Beke algorithm as well as a detailed complexity anal-
ysis can be found in Grigoriev [1990a]. There is an algorithm for determining the reducibility
of a differential system in Grigoriev [1990b]. A method to enumerate all factors of a differential
operator is given in Tsarev [1996].

2. The eigenring method: The eigenring of a differential equation L(y) = 0 is the finite dimensional
C-algebra of all the endomorphisms of the equation, where C is the subfield of constants of k.
This eigenring is the set of all rational solutions of other differential equations associated to L.
If this eigenring is not too trivial, then some factorizations of L can be deduced from it. The
method was introduced by Singer [1996] and has been improved by van Hoeij [1997b].

3. Van Hoiej’s methods for factoring differential operators are not based on Beke’s algorithm. He
uses algorithms to find local factorizations (i.e., factors with coefficients in k(x)) and applies an
adapted version of Padé approximation to produce a global factorization.

In order to do this, one should make a good choice of a singular point of the operator L and
a formal local right-hand factor of degree 1 at this point. After a translation of the variable
(x 7→ x + p or x 7→ x−1) and a shift ∂ 7→ ∂ + e with e ∈ k(x), the operator L has a right-hand

factor of the form ∂− y′

y with an explicit y ∈ k[[x]]. Now one tries to find out whether y′

y belongs

to k(x). Equivalently, one tries to find a linear relation between y and y′ over k[x]. This is carried
out by a Padé approximation. The method extends to finding right-hand factors of higher degree
and yields in that case a generalization of the Padé approximation.

This local-to-global approach has been implemented in Maple V.5 computer algebra system.

4. Full factorizations: The structure of all possible factorizations of an ordinary differential operator
is known due to a fundamental theorem of Loewy [1906]: An ordinary operator has unique
factorization into completely reducible factors, i.e., in operators that have enough right factors.
Recent work of Tsarev [1996] combined the local formal factorization of the previous case with
the classical work of Beke [1894].

In general, the main disadvantage of all factorization algorithms is their tremendous complexity,
especially if the order if the given operator is higher than two.

Much less is known about factorization of linear partial differential operators. In the 19th century, a
vast interest in finding solutions of non-linear partial differential equations resulted in the development
of the methods of Lagrange, Monge, Boole, and Ampere. In particular, Darboux [1870] generalized
the method of Monge (known as the method of intermediate integrals) to obtain the most powerful
method in those days for explicitly integrating partial differential equations.

In Anderson and Kamran [1997], Juras [1995], and Zhiber, Sokolov, and Startsev [1995], the Dar-
boux method was put in a more precise and efficient (although not completely algorithmic) form. For
the case of a single second order non-linear partial differential equation of the form

uxy = f(x, y, u, ux, uy) (1.1.1)
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the idea was to linearize it. Using the substitution

u(x, y) → u(x, y) + ǫv(x, y)

and canceling the terms proportional to ǫn, n > 1, we obtain the linear partial differential equation

vxy = Avx +Bvy + Cv (1.1.2)

with coefficients A,B, and C depending on x, y, u, ux, uy. Studying equations of type (1.1.2), Laplace
invented a method for their transformation that is sometimes called the Laplace cascade method. First,
the corresponding linear partial differential operator satisfies the condition

L = ∂x∂y −A∂x −B∂y − C =

(∂x −B)(∂y −D) +H = (∂y −A)(∂x −B) +K,
(1.1.3)

where
H = ∂xA−AB − C and K = ∂yB −AB − C

are the Laplace invariants of Equation (1.1.2). Therefore, if either H = 0 or K = 0, the second order
linear partial differential operator L is factorable, and the solutions of Equation (1.1.2) can be found
through quadratures. If both H and K vanish, L is a left least common multiple of the two first order
linear partial differential operators. If both H and K are nonzero, the two Laplace transformations
L→ L1 and L→ L−1 can be applied using the substitutions

v1 = (∂y −A)v, v−1 = (∂y −B)v. (1.1.4)

These (invertible) transformations result in two new second order linear partial differential operators
L1 and L−1 of the same form as (1.1.2) with different coefficients if and only if H 6= 0 and K 6= 0. In
the general case, we obtain the two infinite sequences

L→ L1 → L2 → · · ·

L→ L−1 → L−2 → · · ·
If one of these sequences is finite (i.e., the corresponding Laplace invariant vanishes at some step,

and the Laplace transformation cannot be applied further), then the final linear partial differential
operator Li is trivially factorable.

We can consider initial Equation (1.1.1) and calculate all Laplace invariants and Laplace trans-
formations (which means that we express all the mixed derivatives of u in terms of x, y, u, and the
non-mixed derivatives ux...x and uy,...,y).

Theorem 1. A second order scalar hyperbolic partial differential equation of the form (1.1.1) is Dar-
boux integrable if and only if both its Laplace sequences are finite.

In Juras [1995] and Anderson and Kamran [1997], this method was also generalized to the case of
a general second order non-linear hyperbolic partial differential equation

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0.

The original “Darboux method” (as Darboux stated in Darboux [1870]) is extendable in principle
to equations of all orders in an arbitrary number of variables, even to systems of equations; however, in
Darboux [1870] and subsequent papers by Goursat, Gau, Gosse, Vessiot, et al., the detailed calculations
were performed only for a single second order equation with one dependent and two independent
variables.

On the other hand, Blumberg [1912] and Miller [1932] have discussed the necessity of a suitable
generalization of the concept of completely reducible operators to partial operators, and they have
illustrated this problem with few typical examples. In particular, in Blumberg [1912] is given an
example of a third-order operator which has two different factorizations into completely reducible
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factors. With this it is shown that the result of Loewy about the uniqueness of the factorization into
completely reducible factors, is not true for partial differential operators.

Nowadays, due to the growing interest in Computer Algebra and the use of the Computer Algebra
Systems, one tendency is treat factoring as finding superideals of a left ideal in the ring of linear
partial differential operators rather than factoring a single linear differential partial operator, as done
by Tsarev [2000] and Li, Schwarz, and Tsarev [2003]. In Tsarev [2000] a concept of factorization is
developed which makes some characteristic factors to be uniquely defined similar to the case of ordinary
operators. In Li et al. [2003] the factorization of systems of linear partial differential operators with a
finite-dimensional (over the subring of constants) space of solution is studied, then the linear differential
subvarieties are viewed as the factors of the input systems.

Another tendency is to try to imitate the procedures and use the techniques for factoring poly-
nomials, as done by Grigoriev and Schwarz [2004] with their algorithm “Hensel Decent” for factoring
lineal partial differential operators of arbitrary order. They have named it in that way because it is
close in nature to the well-known Hensel lifting.

Grigoriev and Schwarz consider the homogeneous part of a differential operator, they define the
symbol of an operator as the homogeneous polynomial with the same coefficients as the homogeneous
part and the same powers as the corresponding derivatives. They define an operator to be separable
if its symbol is separable, i.e., if all the roots of the symbol are distinct in an algebraically closed field
extension of the field of coefficients. If the operator is separable then to find its possible factorizations
reduces to polynomial factorization in the field of coefficients, rational operations in that field and
taking derivatives.

We present a naive approach for factoring second order linear differential operators into linear
factors in the ring k(x, y)[∂x, ∂y], the ring of linear partial differential operators in the indeterminates
∂x, ∂y, with coefficients in the field of rational functions over the field k of characteristic zero, i.e., an
operator of the form

L := ∂2
x + E∂x∂y +D∂2

y + C∂x +B∂y +A

with coefficients A,B,C,D,E ∈ k(x, y).

In the very general case we do not need to solve any differential equation, we only need to find a
square root and solving a system of linear equations plus a test equation (a first order linear partial
differential equation), if we are lucky and there exists the square root, the system has a unique solution
and afterwards if the test equation is satisfied, we can get a factorization in linear factors.

Our result improves the theorem 3.1 (Miller [1932]) of Grigoriev and Schwarz [2004], because we
do not only propose a possible right factor of a partial differential operator of second order, but rather
we find the factorization at once when it exists, with this we avoid the division in each particular case;
moreover, we do not make case distinction.

1.2 Outline of the Thesis

The thesis is organized in the following way:

• Chapter 2 is the motivation for the study of the symbolic treatment for the factorization of
linear differential operators. In Section 2.1 we present the basic definitions related with linear
differential operators. In Section 2.2 we introduce the main contribution of the thesis, a naive
approach for factoring second order linear partial differential operators in the ring k(x, y)[∂x, ∂y],
the algorithm gl1 derived from it and one example of the procedure.

In Section 2.3 we extend the procedure to linear partial differential operators of third order. We
propose answers for the two possible factorizations, reducing the problem to solving a system
of algebraic and differential equations, which can be triangularized by characteristic sets. In
Section 2.4 we give an outline of the recent algorithm called “Hensel Decent” due to Grigoriev
and Schwarz [2004].
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• In Chapter 3 we start the study of the factorization algorithms for linear ordinary differential
operators. Section 3.1 contains the basic facts about Galois theory of linear differential equations,
starting with differential field extensions and a factorization formula in the settings of the ring
of linear differential operators, provided available a fundamental set of solutions.

Section 3.2 deals with the generalization of the Frobenius method for solving second order ordi-
nary differential equations, using the natural embedding k(x) →֒ k((x)), partial fraction decom-
position and indicial equations.

Section 3.3 is devoted to finding exponential solutions of linear homogeneous differential equations
in a particular case, i.e to finding rational solutions of the Riccati equation associated to the given
linear equation with rational function coefficients and solutions of the same kind. We study the
RiccatiRational algorithm due to Schwarz [1994], which searches for bounds on the coefficients
of a possible solution and reduces to solving a linear system. If this system is feasible we obtain
a rational solution of the associated Riccati equation and at once a right-hand factor of the
operator corresponding to the original equation.

In Section 3.4, the core of the thesis, we study Beke’s algorithms for finding right-hand factors of
linear differential operators. The main idea of Beke’s algorithm is to decide in finitely many steps
if a differential operator is reducible or not, and - in the first case - to construct a non-trivial
right-hand factor. For this one must first compute another operator, the second exterior power.
The main obstacle for using this approach is its tremendous complexity.

In Section 3.5 we present the algorithm LODEF of Schwarz [1989], which is implemented in
Scratchpat II. In LODEF, which is the first algorithm that appeared after Beke’s algorithm,
Schwarz modifies Beke’s algorithm making it recursively reducing the order of possible right
factors. He estimates degree bounds for the coefficients of right factors and computes the size of
rational solutions of certain differential equations. Later Schwarz developed the RiccatiRational
algorithm thereby specifying the last step of the Beke algorithm.

In Section 3.6 we introduce the efficient algorithm due to Bronstein [1994], for computing the
associated equations appearing in Beke’s method.

• Chapter 4 gives an outline of more advanced methods beyond Beke’s approach. Section 4.1 deals
with Singer’s eigenring factorization algorithm, an adaptation of the Berlekamp algorithm to the
ring of operators. Section 4.2 is devoted to a geometric factorization method using a generalization
of Newton polygons. Section 4.3 contains van Hoeij’s techniques for local factorization in k((x))[∂]
(i.e., the ring of linear differential operators with coefficients in the field of formal Laurent series in
the indeterminate x over k) using new notions of Newton polynomials and coprime factorization.

Finally, in Section 4.4, we present van Hoeij’s method for local factorization over k(x) using a
generalization of Padé approximation.
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FACTORIZATION OF LINEAR PARTIAL DIFFERENTIAL

OPERATORS



2. FACTORIZATION OF LINEAR PARTIAL DIFFERENTIAL OPERATORS

In this chapter we motivate the study of symbolic factorization of linear differential operators. We give
a naive approach for factoring second order linear differential operators from k(x, y)[∂x, ∂y] into linear
factors. Inspired by the fact that the Laplacian is reducible in C,

∇2 = ∂xx + ∂yy = (∂x − ∂yi)(∂x + ∂yi).

we propose an answer in the way of a undetermined coefficients procedure. The problem of factorization
reduces to finding a square root and solving a system of linear equations plus a test equation (a first
order linear partial differential equation). If the square root exists, the linear system has a unique
solution. If in addition the test equation is satisfied, we otain a factorization into linear factors.

In this approach we only need to:

• compute a square root;

• solve a system of two linear equations in two unknowns; and

• evaluate the linear system’s solution in a linear partial differential equation.

Our approach provides an algorithmic solution to the problem of factoring second order linear
partial differential operators. It is based on naive algebraic methods, and it is general in the sense that
it produces the same known results for second order linear ordinary differential operators. In contrast
to the ordinary case, for the partial case we need not consider any Riccati equation.

Comparing our approach with other known ones, we have found that we not only propose a possible
right factor but rather we find the factorization when it exists, without appealing to the necessity to
define new structures or to extend the original domain in which we are working.

We have tried to generalize our approach for higher order operators, however we have found that
the situation is rather different. In order to get a possible factorization in a product of lower order
operators one needs to solve a system of algebraic and differential equations. But the main difficulty is
in fact that the number of algebraic equations is always less than the number of differential equations.
In some cases we can plug in the solutions of an overdeterminated algebraic system into the differential
equations, however we still have to solve some differential equations.

The chapter is organized in the following way:

• In Section 2.1 we present the basic definitions and the necessary algebraic machinery.

• Section 2.2 presents our approach, which is our main result, a theorem that establishes the bases
for factoring second order linear partial differential operators in k(x, y)[∂x, ∂y].

• In Section 2.3 we extend our approach to the case of third order linear differential operators.

• In Section 2.4 we present the recent algorithm “Hensel Decent” for factoring lineal partial dif-
ferential operators, which reduces to polynomial factorization (over k), rational operations in k
and taking derivatives.
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2.1 Definitions

In this section we present the algebraic machinery in which the factorization algorithms of linear dif-
ferential operators can be presented and proved to be correct. The main idea is to define the notion of
derivation in a pure algebraic setting (i.e., without using the notions of “function”, “limit”, and “tan-
gent line” from analysis). This way, we can later translate a factorization problem of linear differential
operators to a factorization problem of polynomials in some algebraic structure, which can be done
using algebraic algorithms.

Let R be a commutative ring (resp. field). A derivation on R is a map δ : R → R such that

δ(a+ b) = δ(a) + δ(b), and δ(ab) = δ(a)b+ aδ(b).

for all a, b ∈ R. The pair (R, δ) is called a differential ring (resp. field). The set

Constδ(R) = {c ∈ R such that δ(c) = 0}

is called the subring (resp. subfield) of constants of R w.r.t. δ.

A subset S ⊆ R is called a differential subring (resp. subfield) of R if S is a subring (resp.
subfield) of R and δ(S) ⊆ S.

The following are examples of differential rings:

• Any ring R with trivial derivation, i.e., δ = 0, is a differential ring.

• The ring of real C∞-functions on an open subset U ⊆ R with ordinary derivation d
dx .

• The ring of real C∞-functions on an open subset U ⊆ Rn with partial derivation ∂
∂xi

( 1 ≤ i ≤ n).

• the ring of analytic functions on an open set of C with complex differentiation.

For a commutative ring R we also have

• The polynomial ring R[t] with formal derivation d
dt .

• R[t1, . . . , tn] with formal partial derivation ∂
∂ti

.

The following are examples of differential fields. Let C denote a field.

• C(z), with derivation f 7→ f ′ = df
dz .

• The field of formal Laurent series C((z)), with derivation f 7→ f ′ = df
dz .

• The field of convergent Laurent series C({z}), with derivation f 7→ f ′ = df
dz .

• The field of all meromorphic functions on any open connected subset of the extended complex
plane C ∪ {∞}, with derivation f 7→ f ′ = df

dz .

• C (z, ez), with derivation f 7→ f ′ = df
dz .

Let R be a differential ring with derivation a 7→ a′. The ring of differential polynomials in
y1, . . . , yn over R, denoted by

R{{y1, . . . , yn}},
is defined in the following way. For each i = 1, . . . , n let

y
(j)
i , j ∈ N
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be an infinite set of distinct indeterminates. For convenience we will write yi for y
(0)
i , y′i for y

(1)
i and

y′′i for y
(2)
i . We define

R{{y1, . . . , yn}},
to be the polynomial ring

R[y1, y
′
1, y

′′
1 , . . . , y2, y

′
2, y

′′
2 , . . . , yn, y

′
n, y

′′
n, . . .].

We extend the derivation of R to a derivation on

R{{y1, . . . , yn}},

by setting
(
y
(j)
i

)′
= y

(j+1)
i .

A ∆-ring is a commutative ring R with identity 1R equipped with a set of derivations

∆ = {δ1, . . . , δr},

such that
δiδj = δjδi, for all i, j = 1, . . . , r.

A ∆-field k is a field that is a ∆-ring. If R is a ∆-ring, the set

{c ∈ R | δi(c) = 0 for all i = 1, . . . , r}

is called the constants of R. This can be seen to be a ring and, if R is a field, then this set will be a
field as well.

The following are examples of ∆-fields.

• Let C be a field and t1, . . . , tr indeterminates. The field C(t1, . . . , tr) with derivations δi, i =
1, . . . , r defined by

δi(c) = 0, for all c ∈ C and

δi(tj) =





1 if i = j

0 if i 6= j

is a ∆-field.

• The field of fractions C((t1, . . . , tr)) of the ring of formal power series in r variables is a ∆-field
with the derivations defined above.

• For C = C, the complex numbers, the field of fractions

C({t1, . . . , tr})

of the ring of convergent power series in r variables with ∆ defined as above is again a ∆-field.

Let R and S be ∆-rings, and let φ : R → S be a ring homomorphism. If φ commutes with each
δ ∈ ∆, then φ is called a differential homomorphism (or ∆-homomorphism).

Let k be a ∆-field with derivations ∆ = {∂1, . . . , ∂r}. The ring of linear partial differential
operators k[∂1, . . . , ∂r] with coefficients in k is the non-commutative polynomial ring in the variables
∂i, where the ∂i satisfy

∂ia = a∂i + ∂i(a) for all a ∈ k.

where ∂i(a) ∈ k is the derivative of a with respect to ∂i.

The following are examples of rings of differential operators.
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• Let (k, ′ ) be a differential field such that its subfield of constants C is different from k and has
characteristic 0. When r = 1 we obtain the skew ring (i.e., non-commutative ring) D := k[∂],
called the ring of linear ordinary differential operators with coefficients in k, which consists
of all expressions

L := an∂
n + · · · + a1∂ + a0

with n ∈ Z, n ≥ 0, and ai ∈ k for i = 0, . . . , n.

The degree of L above, denoted by deg L, is m if am 6= 0 and ai = 0 if i > m. In the case L = 0
we define the degree to be ∞. The addition in D is obvious and the multiplication is completely
determined by the prescribed rule:

∂a = a∂ + a′.

Since there exists an element a ∈ k with a′ 6= 0, the ring D is not commutative. A differential
operator

L = an∂
n + · · · + a1∂ + a0

acts on k with the interpretation
∂(y) := y′.

Thus the equation L(y) = 0 has the same meaning as the scalar differential equation

any
(n) + · · · + a1y

′ + a0y = 0.

In connection with this one sometimes uses the expression “order of L” and writes ord(L), instead
of the degree of L.

• Let k be a field. The ring k(x, y)[∂x, ∂y] of linear differential operators in the variables ∂x, ∂y with
coefficients in k(x, y), the field of the rational functions in the indeterminates x, y over k.

2.2 Naive Approach

Let k be an algebraically closed field of characteristic zero. k(x, y)[∂x, ∂y], the ring of linear differential
operators in the variables ∂x, ∂y.

Theorem 2. Let
L2 := ∂2

x + E∂x∂y +D∂2
y + C∂x +B∂y +A. (2.2.1)

be the second order linear partial differential operator with coefficients in k(x, y). The operator L2 splits
into linear factors

[∂x + β∂y + α] [∂x + ψ∂y + ω] (2.2.2)

if and only if

β =
E

2
−

√
E2 − 4D

2
, ψ =

E

2
+

√
E2 − 4D

2
,

and the following system is solvable





α+ ω = C

∂x(ψ) + β∂y(ψ) + βω + αψ = B

∂x(ω) + β∂y(ω) + αω = A.

. (2.2.3)
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Proof. Suppose that there exist α, β, ψ, ω ∈ k(x, y) such that

L2 = [∂x + β∂y + α] [∂x + ψ∂y + ω] .

Now, developing the right hand side

∂2
x + (β + ψ)∂x∂y + βψ∂2

y + (α+ ω)∂x+

[∂x(ψ) + β∂y(ψ) + βω + αψ] ∂y+

∂x(ω) + β∂y(ω) + αω

Comparing the second and third coefficients with original operator we get

β + ψ = E and βψ = D.

Hence,
β2 − Eβ +D = 0

Therefore,

β =
E

2
−

√
E2 − 4D

2
, ψ =

E

2
+

√
E2 − 4D

2
,

Comparing the rest of the coefficients with the original operator we obtain the following system of
equations 




α+ ω = C

∂x(ψ) + β∂y(ψ) + βω + αψ = B

∂x(ω) + β∂y(ω) + αω = A

.

If we can solve this system of the first two equations for α and ω (system (2.2.3)), then we can
have a factorization of the operator (2.2.1) in the form (2.2.2), otherwise the original operator has not
this kind of factorization in k(x, y).

Now from the previous theorem we can extract a procedure that we called Pseudo-algorithm gl1.

Algorithm gl1

Input: A second order linear partial differential operator

L2 := ∂2
x +E∂x∂y +D∂2

y + C∂x +B∂y +A (2.2.4)

with A,B,C,D,E ∈ k(x, y).

Output: A factorization of the form:
[
∂x +

(
E

2
− Z

)
∂y + α

] [
∂x +

(
E

2
+ Z

)
∂y + ω

]
. (2.2.5)

1. Compute

Z =

√
E2 − 4D

2
. (2.2.6)

2. If
√
E2 − 4D does not exist in k(x, y) go to step 10.

3. Solve the system 



α+ ω = C

∂x

(
E

2
+ Z

)
+

(
E

2
− Z

)
∂y

(
E

2
+ Z

)
+

(
E

2
− Z

)
ω +

(
E

2
+ Z

)
α = B

(2.2.7)

where α and ω are the unknowns.
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4. If System (2.2.7) is not solvable go to step 10.

5. If System (2.2.7) has unique solution, then test the solution in the equation:

∂x(ω) +

(
E

2
− Z

)
∂y(ω) + αω = A. (2.2.8)

6. If Equation (2.2.8) is not satisfied go to step 10.

7. Substitute E,Z, α and ω in Expression (2.2.5).

8. Return Expression (2.2.5) and go to step 11.

9. If System (2.2.7) has infinitely many solutions then return “There is no decision”, and go to step
11.

10. Return “The operator (2.2.4) has not non-trivial factorization of the form (2.2.5) in k(x, y)[∂x, ∂y]”.

11. End.

Remark 2.2.1. Note that if we are lucky we can compute the step 1 in k(x, y), however we can always
compute the step 3 in k, and the step 5 is completely finite because in k(x, y) we can decide the equality.
If System (2.2.7) has infinitely many solutions then we can not decide if there exists a factorization
of the form (2.2.5), because in that case we should solve the differential equation (2.2.8). By the proof
of Theorem (2) the algorithm is correct, and for the structure of itself it is completely clear that the
algorithm terminates.

Now we will show how the theorem (2) works in the application of algorithm gl1 to the next example
taken from Grigoriev and Schwarz [2004].

Example 1. Let L ∈ C(x, y)[∂x, ∂y] be

∂2
x +

1

x
(x2y2 + x− y)∂x∂y +

y

x
(x2y − 1)∂2

y − x(y − 1)∂x+

1

x2
(x4y2 + x3y + x2y2 − x2y − x+ y)∂y − x2y − x− y

where

E =
1

x
(x2y2 + x− y), D =

y

x
(x2y − 1), C = −x(y − 1),

B =
1

x2
(x4y2 + x3y + x2y2 − x2y − x+ y), and A = −x2y − x− y.

By Equation (2.2.6) we have

Z =
1

2x
(x2y2 − x− y).

By Equation (2.2.5) we are searching for a factorization of the form

(∂x + ∂y + α)
[
∂x +

(
xy2 − y

x

)
∂y + ω

]
.

By System (2.2.7) we get





α+ ω = −x(y − 1)

y2 +
y

x2
+ 2xy − 1

x
+ ω + xy2α− y

x
α =

1

x2
(x4y2 + x3y + x2y2

−x2y − x+ y)

⇒
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



α+ ω = x− xy

ω + xy2α− y

x
α = x2y2 − xy − y

.

The solution of this system is:
α = x and ω = −xy.

Now, testing this solution in Equation (2.2.8) we obtain in fact that

∂x(ω) +

(
E

2
− Z

)
∂y(ω) + αω = −y − x− x2y.

Therefore, the factorization of L in C(x, y)[∂x, ∂y] is:

(∂x + ∂y + x) ·
[
∂x +

(
xy2 − y

x

)
· ∂y − xy

]
.

Remark 2.2.2. As we have seen above, the last procedure provides a computational algebraic approach
to the problem of fatorization of linear partial differential operators. But despite of it with the same
ideas we can not factorize second order ordinary homogeneous operators in the same way, because if
we consider a second order ordinary operator

Lo = ∂2 + C∂ +A

and we want a factorization of the form

(∂ + α)(∂ + ω)

applying the same procedure we get the system




α+ ω = C

∂(ω) + αω = A
. (2.2.9)

If we substitute ω from the first equation of this system into the second one we obtain the following
Riccati equation

α′ + α2 − Cα− C ′ +A = 0.

Althout with this approach we cannot solve Riccati equations we obtain the same reduction procedure
from second order differential equation to a Riccati equation, in Chapter 2 we dedicate an entire section
to the computational algebraic methods for solving certain particular Riccati equations, namely Section
3.3.

2.3 Extension of the Order: Case Third Order

In this section we generalize our approach to operators of higher order, in particular to third order linear
differential operators, and we will see that the problem of factoring higher order operators reduces to
solveing a system of algebraic and differential equations.

As the ring of linear partial differential operators is not commutative, for third order operators we
have two possible factorizations in a product of lower order operators, as we will see in the following
theorem that we present without proof.

Finally, we would like to mention that if we act recursively applying the algorithm gl1, then we
can find a factorization of a third order operator into linear factors, if it exists.
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Theorem 3. Let
L3 := ∂3

x + J∂2
x∂y +H∂x∂

2
y +G∂3

y + F∂2
x+

E∂x∂y +D∂2
y + C∂x +B∂y +A

(2.3.10)

be a linear differential operator of third order with coefficients in k(x, y).

1. The operator L3 can be factorized in the following way

(
∂2

x + ǫ∂x∂y + δ∂2
y + γ∂x + β∂y + α

)
(∂x + ψ∂y + ω) (2.3.11)

where α, β, γ, δ, ǫ, ψ and ω are undetermined variables in C(x, y), if and only if the following
system is solvable





ψ + ǫ = J

ǫψ + δ = H

δψ = G

ω + γ = F

2∂x(ψ) + ǫ∂y(ψ) + ǫω + γψ + β = E

ǫ∂x(ψ) + 2δ∂y(ψ) + δω + δ + βψ = D

2∂x(ω) + ǫ∂y(ω) + γω + α = C

∂xx(ψ) + ǫ∂xy(ψ) + δ∂yy(ψ) + γ∂x(ψ)+

ǫ∂x(ω) + β∂y(ψ) + 2δ∂y(ω) + βω + αψ = B

∂xx(ω) + ǫ∂xy(ω) + γ∂x(ω) + β∂y(ω) + αω = A

. (2.3.12)

2. The operator L3 can be factorized of the following way

(∂x + β∂y + α)
(
∂2

x + σ∂x∂y + τ∂2
y + φ∂x + ψ∂y + ω

)
(2.3.13)

where α, β, σ, τ, φ, ψ and ω are indeterminates variable en k(x, y), if and only if the following
system is solvable 




σ + β = J

τ + βσ = H

βτ = G

φ+ α = F

∂x(σ) + ψ + β∂y(σ) + βφ+ ασ = E

∂x(τ) + β∂y(τ) + βψ + ατ = D

∂x(φ) + ω + β∂y(φ) + αφ = C

∂x(ψ) + β∂y(ψ) + βω + αψ = B

∂x(ω) + β∂y(ω) + αω = A

. (2.3.14)
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Remark 2.3.1. In this case, due to the derivation rules of the definition ring of operators, it is much
more difficult to obtain a closed form of the possible factorization, moreover if one wants to extract a
term from the left. However, in this case we could propose a factorization of the form:

[∂2
x + (J +H)∂x∂y +G∂2

y + F∂y + (E +D)∂y + α](∂x + ∂y + ω).

It is clear that this is a particular factorization, however it gave us the idea that it could be also
possible to factor in the same way as the second order case.

Example 2. Blumberg [1912]

Let
∂3

x + x∂2
x∂y + 2∂2

x + 2(x+ 1)∂x∂y + (x+ 2)∂y

be the third order operator with

J = x, H = 0, G = 0, F = 2, E = 2(x+ 1), D = 0,

C = 1, B = x+ 2, and A = 0.

By Equation (2.3.11) we are searching a factorization of the form
(
∂2

x + ǫ∂x∂y + δ∂2
y + γ∂x + β∂y + α

)
(∂x + ψ∂y + ω) .

By System (2.3.12) we have




ψ + ǫ = x

ǫψ + δ = 0

δψ = 0

γ + ω = 2

2∂x(ψ) + ǫ∂y(ψ) + ǫω + γψ + β = 2(x+ 1)

ǫ∂x(ψ) + 2δ∂y(ψ) + δω + δ + βψ = 0

2∂x(ω) + ǫ∂y(ω) + γω + α = 1

∂xx(ψ) + ǫ∂xy(ψ) + δ∂yy(ψ) + γ∂x(ψ)+

ǫ∂x(ω) + β∂y(ψ) + 2δ∂y(ω) + βω + αψ = x+ 2

∂xx(ω) + ǫ∂xy(ω) + γ∂x(ω) + β∂y(ω) + αω = 0

.

By the fourth the equation, if ψ = 0 then




ǫ = x

δ = 0

γ + ω = 2

ǫω + β = 2(x+ 1)

2∂x(ω) + ǫ∂y(ω) + γω + α = 1

ǫ∂x(ω) + 2δ∂y(ω) + βω = x+ 2

∂xx(ω) + ǫ∂xy(ω) + γ∂x(ω) + β∂y(ω) + αω = 0

⇒
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



γ = 2 − ω

xω + β = 2(x+ 1)

2∂x(ω) + x∂y(ω) + γω + α = 1

x∂x(ω) + βω = x+ 2

∂xx(ω) + x∂xy(ω) + γ∂x(ω) + β∂y(ω) + αω = 0

⇒





γ = 2 − ω

xω + β = 2(x+ 1)

2∂x(ω) + x∂y(ω) + 2ω − ω2 + α = 1

x∂x(ω) + βω = x+ 2

∂xx(ω) + x∂xy(ω) + (2 − ω)∂x(ω) + β∂y(ω) + αω = 0

which has solution
ω = 1 ⇒ γ = 1, β = x+ 2 and α = 0.

Where, [
∂2

x + x∂x∂y + ∂x + (x+ 2)∂y

]
(∂x + 1).

Now, working in a recursive way, let us consider the left factor

∂xx + x∂xy + ∂x + (x+ 2)∂y

with
Ē = x, D̄ = 0, C̄ = 1, B̄ = x+ 2, and Ā = 0.

By Equation (2.2.6) we have

Z̄ =
x

2
.

By Expression (2.2.5) we are searching, for this second order operator, a factorization of the form

(∂x + ᾱ) [∂x + x∂y + ω̄] .

By System (2.2.7) we obtain 



ᾱ+ ω̄ = 1

1 + xᾱ = x+ 2

which has solution:

ᾱ = 1 +
1

x
and ω̄ = − 1

x
.

Substituting the solution in Equation (2.2.8) we get

∂x(ω̄) +

(
Ē

2
− Z̄

)
∂y(ω̄) + ᾱω̄ 6= 0.

Hence, the solution of the system (2.2.7) does not satisfy Equation (2.2.8). By Theorem (2), the
left factor does not have factorization in linear factors in C(x, y)[∂x, ∂y]. Therefore,

∂3
x + x∂2

x∂y + 2∂2
x + 2(x+ 1)∂x∂y + (x+ 2)∂y =

[
∂2

x + x∂x∂y + ∂x + (x+ 2)∂y

]
(∂x + 1).
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Example 3. Let us consider again the third order operator of Example (2)

∂3
x + x∂2

x∂y + 2∂2
x + 2(x+ 1)∂x∂y + (x+ 2)∂y

we know that
J = x, H = 0, G = 0, F = 2, E = 2(x+ 1), D = 0,

C = 1, B = x+ 2, and A = 0.

By Equation (2.3.13) we are searching first for a factorization of the form

(∂x + β∂y + α)
(
∂2

x + σ∂x∂y + τ∂2
y + φ∂x + ψ∂y + ω

)
.

By System (2.3.14) we get




σ + β = x

τ + βσ = 0

βτ = 0

φ+ α = 2

∂x(σ) + ψ + β∂y(σ) + βφ+ ασ = 2(x+ 1)

∂x(τ) + β∂y(τ) + βψ + ατ = 0

∂x(φ) + ω + β∂y(φ) + αφ = 1

∂x(ψ) + β∂y(ψ) + βω + αψ = x+ 2

∂x(ω) + β∂y(ω) + αω = 0

.

By the fourth equation, if β = 0 then




σ = x

τ = 0

φ+ α = 2

∂x(σ) + ψ + ασ = 2(x+ 1)

∂x(φ) + ω + αφ = 1

∂x(ψ) + αψ = x+ 2

∂x(ω) + αω = 0

.

Where, 



φ+ α = 2

1 + ψ + xα = 2(x+ 1)

∂x(φ) + ω + αφ = 1

∂x(ψ) + αψ = x+ 2

∂x(ω) + αω = 0

which has solution
α = 1 ⇒ φ = 1, ψ = x+ 1 and ω = 0.
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Hence, we can factor the operator in the form

∂3
x + x∂2

x∂y + 2∂2
x + 2(x+ 1)∂x∂y + (x+ 2)∂y =

(∂x + 1)
[
∂2

x + x∂x∂y + ∂x + (x+ 1)∂y

]
.

Now, working in a recursive way, let us consider the right factor

∂2
x + x∂x∂y + ∂x + (x+ 1)∂y

with
Ē = x, D̄ = 0, C̄ = 1, B̄ = x+ 1, and Ā = 0.

By Equation (2.2.6) we have

Z̄ =
x

2
.

By Expression (2.2.5) we are searching, for the second order operator, a factorization of the form

(∂x + ᾱ) [∂x + x∂y + ω̄] .

By System (2.2.7) obtain 



ᾱ+ ω̄ = 1

1 + xᾱ = x+ 1

which has solution:
ᾱ = 1 and ω̄ = 0.

Substituting the solution in the Equation (2.2.8) we get in fact that

∂x(ω̄) +

(
Ē

2
− Z̄

)
∂y(ω̄) + ᾱω̄ = 0.

Therefore, the factorization of the right factor in linear factors in
C(x, y)[∂x, ∂y] is:

∂2
x + x∂x∂y + ∂x + (x+ 1)∂y = (∂x + 1)(∂x + x∂y).

In conclusion, the factorization of the original operator in linear factors in C(x, y)[∂x, ∂y] is:

∂3
x + x∂2

x∂y + 2∂2
x + 2(x+ 1)∂x∂y + (x+ 2)∂y = (∂x + 1)(∂x + 1)(∂x + x∂y).

2.4 The Hensel Descent Algorithm

In this section the recent algorithm due to Grigoriev and Schwarz [2004] is discussed. It is named
Hensel descent because it is close in nature to the well-known Hensel lifting used widely in polynomial
factorization. The main difference is that in case of differential operators one has to compute the
coefficients starting with the highest derivatives going to the lowest because in the product of operators
the coefficients of higher derivatives in the factors contribute to the coefficients of lower derivatives in
the product.

Grigoriev and Schwarz define the symbol of an operator as the homogeneous polynomial with
the same coefficients as the homogeneous part and the same powers than the corresponding derivatives.
They call an operator separable if its symbol is separable, i.e., if all its roots in a splitting field are
distinct.

If an operator is separable then to finding a factorization reduces to polynomial factorization in the
field of coefficients.

Let k be a ∆-field and let D = k[∂1, . . . , ∂m] be the non-commutative polynomial ring of linear
(partial) differential operators in the variables ∂i with coefficients in k.
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For a derivative
∂J = ∂j1

1 . . . ∂j1
r

denote its order
ord(∂J ) = |J | = j1 + · · · + jm.

For a linear partial differential operator L ∈ D denote

L =
∑

|J|=r

aJ∂
J +

∑

|J|<r

bJ∂
J

of the order ord(L) = r.

Let us consider the polynomial ring k[Z1, . . . , Zm] in the algebraic indeterminates Zk. The symbol
of L, denoted by s(L) is homogeneous polynomial defined by

s(L) =
∑

|J|=r

ajZ
J ∈ k[Z1, . . . , Zm].

For example, if L2 ∈ Q(x, y)[∂x, ∂y] given by

L2 =
2y

x2
∂2

x + 2(x+ 1)∂x∂y + (x+ 2)∂2
y + 2∂x − 2y

x
∂y +

y2

x2
(1 − x4y2),

then s(L2) ∈ Q(x, y)[Z1, Z2], is the polynomial

s(L2) =
2y

x2
Z2

1 + 2(x+ 1)Z1Z2 + (x+ 2)Z2
2 .

The operator L is called separable if s(L) is separable.

The Hensel Descent Algorithm

Input: A separable operator L ∈ D of order r given by

L =
∑

|J|=r

aJ∂
J +

∑

|J|<r

bJ∂
J .

Then,
s(L) = gh

where
g =

∑

J

gJZ
J , h =

∑

J

hJZ
J ∈ F [Z1, . . . , Zm]

are homogeneous polynomials of degrees

deg(g) = k, deg(g) = k, with k + l = r.

Output: A factorization in the form:

L =



∑

J

gJ∂
J +

∑

0≤j≤k−1

Gj





∑

J

hJ∂
J +

∑

0≤j≤l−1

Hj


 (2.4.15)

where
Gj =

∑

|J|=j

gJ,j∂
J , and Hj =

∑

|J|=j

hJ,j∂
J

contain only the derivatives or the order j.

Denote the corresponding homogeneous polynomials of degrees j by

gj =
∑

|J|=j

gJ,jZ
J , and hj =

∑

|J|=j

hJ,jZ
J .

Proceed recursively decreasing the order in the following way:



2. Factorization of Linear Partial Differential Operators 22

• Suppose that Gj1 , Hj2 are already constructed with

j1 ≥ max{t− l + 1, 0}, and j2 ≥ max{t− k + 1, 0}

for certain 0 ≤ t ≤ r − 1 (at the first step of the recursion set t = r − 1).

• Compare the coefficients of the derivatives of order t in both sides of (2.4.15).

• Rewrite the the right-hand side in terms of the corresponding homogeneous polynomials of degree
t and obtain

ght−k + hgt−l + p

(provided that t ≥ k, t ≥ l) where the coefficients of the homogeneous polynomial p are al-
ready known being the rational expressions of the derivatives of the coefficients of the already
constructed Gj1 , Hj2 .

Since t − k < l, due to the separability of L the polynomials g, h are relatively prime, we can
conclude that there exists at most one pair of polynomials gt−l, ht−k which yields a known
polynomial

q = ght−k + hgt−l.

• Look for gt−l, ht−k by means solving a linear algebraic system in the coefficients of gt−l, ht−k.

• If the system is unfeasible then halt and say that the polynomial factorization s(L) = gh does
not lead to a factorization of L.

• Otherwise, output gt−l, ht−k and continue the recursion.

In the case when t < k (or t < l, respectively) the polynomial ht−k is absent (or gt−l is absent,
respectively).

• In the case when both t < k, t < l verify whether the coefficients at the derivatives of order t in
both sides of (2.4.15) coincide. And again halt if this fails.



Part II

FACTORIZATION OF LINEAR ORDINARY DIFFERENTIAL

OPERATORS



3. THE BEKE ALGORITHM

In 1894 Beke gave a method for factoring linear differential operators in the ring Q(x)[∂], and after
almost one hundred years it has been improved and extended to the ring k(x)[∂] where k is an arbitrary
differential field of characteristic 0. It has also been implemented in Computer Algebra Systems by
Schwarz [1989], Schwarz [1994], Bronstein [1994], Bronstein and Petkovšek [1996].

Schwarz analyses the costs of factoring linear homogeneous differential equations with rational
coefficients and he describes the algorithm of Beke in a different way by recursively reducing the order
of possible right factors. Moreover, he estimates bounds for the degree of their coefficients and he
computes the size of rational solutions of certain differential equations. Finally, he describes how the
algorithm LODEF is implemented in the computer algebra system Scratchpat II.

The first section of this chapter is devoted to some basic preliminaries about differential Galois
theory of linear homogeneous differential equations. Subsequently, Sections 3.2 and 3.3 are developed
to study the methods for finding rational and exponential solutions of linear homogeneous differential
equations. In section 3.4 we will present the Beke’s algorithm. In section 3.5 and 3.6 we present some
variants of the Beke’s algorithm, namely the Schwarz’s LODEF algorithm and the Beke-Bronstein
algorithm, respectively.

3.1 Preliminaries

In ordinary Galois theory of algebraic equations, questions about solvability of equations are translated
into questions about fields and finite groups. For differential equations, the proper setting is differential
fields and algebraic groups.

The goal of Differential Galois Theory is a Fundamental Theorem which sets up a bijective cor-
respondence between the intermediate differential subfields of an extension of differential fields and
certain subgroups of the group of differential automorphisms of the field extension (the differential
Galois group).

Let (k, δ) be a differential field. We also write y(n) instead of δn(y) and y′, y′′, . . . for δ(y), δ2(y), . . ..
The field of constants

Constδ(k) = {c ∈ k | c′ = 0}
is denoted by C. A differential field extension of (k, δ) is a differential field (K,∆) such that K is
a field extension of k and ∆ is an extension of the derivation of k to the derivation on K. An order n
linear scalar differential equation over k is an equation of the form

y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = b (3.1.1)

where ai, b ∈ k. The equation is called homogeneous if b = 0, and inhomogeneous otherwise. A
solution of (3.1.1) in a differential extension K ⊇ k is an element f ∈ K such that

f (n) + an−1f
(n−1) + · · · + a1f

′ + a0f = b.

A differential field extension (K,∆) of (k, δ) is called a Liouvillian extension if there is a tower
of fields

k = K0 ⊂ K1 ⊂ · · · ⊂ Km = K

where Ki+1 is a simple field extension Ki(ηi) of Ki, such that one of the following holds:
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• ηi is algebraic over Ki, or

• η′i ∈ Ki (extension by an integral), or

• η′i/ηi ∈ Ki (extension by the exponential of an integral).

A solution of L(y) = 0 which is contained in

• k, the coefficient field, will be called a rational solution,

• an algebraic extension of k will be called an algebraic solution,

• a Liouvillian extension of k will be called a Liouvillian solution.

A solution z of L(y) = 0 is called exponential if z′/z is in the coefficient field k.

Let A ∈ kn×n be an n×n matrix with entries in the field k. A linear system is a vector equation
of the form

y′ = Ay. (3.1.2)

A solution of (3.1.2) in a differential extension K ⊇ k is an element v ∈ Kn such that v′ = Av.

The solution set of a linear system (3.1.2) in a given extension K ⊇ k is a vector space over C.
The same is true for homogeneous linear scalar equations. Practically, both concepts describe the same
situation.

The companion matrix of a homogeneous scalar linear differential equation

L(y) = y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0

is the matrix

AL =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . an−1



.

In the following lemma we will see the relation between scalar equations and linear systems.

Lemma 1. Let j : k −→ kn be the map

f 7→ ( f, f ′, f (2), . . . , f (n−1) )T .

For any scalar equation L(y) = 0, the map j induces a C-linear isomorphism

{ f ∈ k |L(f) = 0 } ∼= { v ∈ kn | v′ = ALv }.

Proof. Let us write L in the form

L = y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y

If L(f) = 0 then
j(f)′ = AL · j(f).

Conversely, if v′ = ALv then

v2 = v′1, v3 = v
(2)
1 , . . . , vn = v

(n−1)
1 and v′n = −a0v1 − a1v2 − · · · − an−1vn,

whence L(v1) = 0 and j(v1) = v.
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Therefore, any homogeneous linear differential equation can be considered as a linear system. The
following lemma describes the relation between linear dependency over the ground field k and its
subfield of constants C.

Lemma 2. Let A ∈ kn×n and consider solutions v1, v2, . . . , vr ∈ kn of the system y′ = Ay. If
{v1, . . . , vr} is linearly dependent over k then also over C.

Proof. By induction over r. For r = 1 the statement is true, so let r > 1 and assume that v1, . . . , vr

are linearly dependent over k. Then

r∑

i=1

λivi = 0, λi ∈ k, not all λi = 0.

If a proper subset of {v1, . . . , vr} is linearly dependent over k then by induction hypothesis it is
linearly dependent over C. So assume that all proper subsets are linearly independent. This implies
that

λi 6= 0, for all i = 1, . . . , r,

and so

v1 =

r∑

i=2

− λi

λ1
vi.

Writing αi = − λi

λ1
we get

0 = v′1 −Av1 =

r∑

i=2

(α′
ivi + αiv

′
i) −Av1 =

r∑

i=2

α′
ivi +A

r∑

i=2

αivi −Av1 =

r∑

i=2

α′
ivi

and thus α′
2 = · · · = α′

r = 0, which means that α2, . . . , αr ∈ Ck. Therefore,

v1 − α2v2 − · · · − αrvr = 0

shows that v1, . . . , vr are linearly dependent over Ck.

Corollary 4. A ∈ kn×n, K ⊇ k with const(K) = C. Then

dimC{x ∈ Kn |x′ = Ax } ≤ n.

Consider a matrix A ∈ kn×n, and assume for a moment, that the system y′ = Ay admits n C-
linearly independent solutions v1, . . . , vn ∈ kn. Then the matrix F = (v1, . . . , vn) is non-singular and
F ′ = AF .

Let K ⊇ k be a differential extension with Const(K) = C, A ∈ kn×n. A matrix F ∈ GLn(K) is
called a fundamental matrix of the system y′ = Ay if F ′ = AF .

The Wronskian matrix of y1, . . . , yn ∈ k is the n× n matrix:

W (y1, . . . , yn) =




y1 y2 . . . yn

y′1 y′2 . . . y′n
...

...
...

...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n


 .

The Wronskian, w(y1, . . . , yn) of y1, . . . , yn is det (W (y1, . . . , yn)).
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Theorem 5. Let k be a differential field with field of constants C. Then n elements of k are linearly
dependent over C if and only if their Wronskian vanishes.

Proof. Suppose y1, . . . , yn are linearly dependent over C, then there exist ci ∈ C for i = 1, . . . , n not all
zero such that

c1y1 + . . .+ cnyn = 0.

On differentiating this equation n−1 times we get the n linear homogeneous equations for c1, . . . , cn:

c1y
′
1 + . . .+ cny

′
n = 0

...

c1y
(n−1)
1 + . . .+ cny

(n−1)
n = 0.

There are thus n equations to determine the constants c1, . . . , cn. Since the ci are not all 0, the
determinant must vanish.

Conversely, suppose that the Wronskian of y1, . . . , yn vanishes. By induction we can construct a
monic scalar differential equation L(y) = 0 of order n over k such that

L(yi) = 0 for i = 1, . . . , n.

For n = 1, put

L1(y) = y′ − y′1
y1
y,

where the term
y′1
y1

is interpreted as 0 if y1 = 0. Suppose, by induction hypothesis, that Lm(y) for

m ≥ 1, has been constructed such that

Lm(yi) = 0 for i = 1, . . . ,m.

Define now

Lm+1(y) = Lm(y)′ − Lm(ym+1)
′

Lm(ym+1)
Lm(y)

where the term
Lm(ym+1)

′

Lm(ym+1)
is interpreted as 0 if Lm(ym+1) = 0. Whence,

Lm+1(yi) = 0 for i = 1, . . . ,m+ 1.

Then L = Ln has the required property. The columns of the Wronskian matrix are solutions of the
associated companion matrix differential equation y′ = ALy. By Lemma (2), y1, . . . , yn are linearly
dependent over C.

A set of n solutions {y1, . . . , yn} of an order n equation L(y) = 0, linearly independent over the
constants C, is a fundamental set or fundamental system 1 of solutions of L(y) = 0.

Let k ⊂ K1 and k ⊂ K2 be extensions of differential fields. A field isomorphism σ : K1 → K2 is a
differential k-isomorphism if

(σ(a))′ = σ(a′), for all a ∈ K1 and

σ(a) = a for all a ∈ k.

The differential Galois group of a differential extension K of k, denoted by G(K/k), is the set
of all k-automorphisms of K.

A differential extension field K of k is called a Picard-Vessiot extension of k for the equation
L(y) = 0 if:

1 The term fundamental system is due to Fuchs, J. für Math. 66 (1866), p. 126 [Ges. Math. Werke 1, p.165]
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1. K is generates over k as a differential field by a fundamental set of solutions {y1, . . . , yn} of
L(y) = 0, i.e., K = k < y1, . . . , yn >;

2. K has the same field of constants as k, i.e., const(K) = C.

In other words, a Picard-Vessiot extension fieldK is the smallest differential field extension of k such
that the equation has solution space dimension n over C. The Picard-Vessiot extension is the equivalent
of the splitting field for an algebraic equation. If C is is algebraically closed and of characteristic 0,
then there is always a Picard-Vessiot extension, unique up to differential isomorphisms. See Kaplansky
[1957], p. 21 or Kolchin [1948], p. 412.

Proposition 1. Let k be a differential field of characteristic 0 with algebraically closed subfield of
constants C. Let L(y) = 0 be a linear differential equation over k. Then,

1. there exists a Picard-Vessiot extension for the equation,

2. any two Picard-Vessiot extensions for the equation are isomorphic.

Let k be a differential field of characteristic 0 with algebraically closed subfield of constants C.
Let L(y) = 0 be a linear differential equation over k. Let K be the Picard-Vessiot extension of k for
L(x) = 0, and write

V (L) = {f ∈ K |L(f) = 0}
for the space of solutions. V (L) is generated as C-vector space by n C-linearly independent solutions
y1, . . . , yn. The Galois group of L(y) = 0, denoted by Gal(K/k), is the differential Galois group
G(K/k) of the Picard-Vessiot extension K . A computational representation of Gal(K/k) is obtained
as follows:

Assume that f ∈ V (L), then for any automorphism σ ∈ Gal(K/k) we have

L (σ(f)) = σ (L(f)) = 0.

In other words, each automorphism moves a solution of L(y) = 0 to another solution. Consequently,
σ(f) is a linear C-combination of the yi’s. This yields a matrix representation of Gal(K/k).

Thus Gal(K/k) acts faithfully on the vector space V (L), and so Gal(K/k) can be viewed as
a subgroup of GL(V (L)); more precisely, it is a linear algebraic group over C. There is a Galois
correspondence between algebraic subgroups of G and differential subfields of K. The fixed field of
Gal(K/k) under this correspondence is k.

A linear differential equation L(y) = 0 defined over k is said to be solvable in terms of linear
differential equations of lower order if the associated Picard-Vessiot extension K of k lies in a
tower of fields

k = k0 ⊂ k1 ⊂ · · · ⊂ kn,

where ki = ki−1(ti), and ti is algebraic over ki−1, or ti satisfies a linear differential equation of lower
order defined over ki−1, for each i.

It has been shown in Singer [1989] that L(y) = 0 is solvable in terms of Liouvillian solutions (i.e., its
Picard-Vessiot extension lies in a Liouvillian extension of k) if and only if its Galois group Gal(K/k)
contains a solvable (in the algebraic sense) subgroup of finite index. However, finding Liouvillian
solutions is still hard and one attempt is to find these solutions by effectively searching over a bounded
space (see Singer [1981]).
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Notation 1. For an order n monic scalar linear homogeneous differential equation

L(y) = y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0

it is convenient to write

L(y) =
w(y, y1, . . . , yn)

w(y1, . . . , yn)
= 0

where w = w(y1, . . . , yn) = wn is the Wronskian of y1, . . . , yn, and wn−r is obtained from w by replacing

y
(n−r)
1 by y

(n)
1 , y

(n−r)
2 by y

(n)
2 and so on (these determinants were called afterwards the generalized

Wronskians). Then

an−r = −wn−r

w
(3.1.3)

This means that the logarithmic derivative of each non-zero ai can be expressed as a quotient of
two w. In particular,

an−1 = −w
′

w
, or w′ + an−1w = 0 (3.1.4)

which is known as Liouville’s relation.

Example 4. Let L3(y) = 0 be the third order monic scalar linear differential equation given by

L3(y) = y(3) + a2y
(2) + a1y

′ + a0y = 0

with a0, a1, a2 ∈ k. Let {y1, y2, y3} be a fundamental set of solutions of L3(y) = 0. Then,

w(y, y1, y2, y3) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y y1 y2 y3

y′ y′1 y′2 y′3

y(2) y
(2)
1 y

(2)
2 y

(2)
3

y(3) y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

−

∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣
y(3) +

∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣
y(2) −

∣∣∣∣∣∣∣

y1 y2 y3
y
(2)
1 y

(2)
2 y

(2)
3

y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣∣
y′

+

∣∣∣∣∣∣∣

y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣∣
y,

where

w = w(y1, y2, y3) = −

∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣
= w3

w2 =

∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣
= w′, w1 =

∣∣∣∣∣∣∣

y1 y2 y3
y
(3)
1 y

(3)
2 y

(3)
3

y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣∣
, and

w0 =

∣∣∣∣∣∣∣

y
(3)
1 y

(3)
2 y

(3)
3

y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣∣
.

In other words,

L3(y) = 0 ⇒ w(y, y1, y2, y3)

w(y1, y2, y3)
= 0 ⇒
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y(3) −

∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣
∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣

y(2) −

∣∣∣∣∣∣∣

y1 y2 y3
y
(3)
1 y

(3)
2 y

(3)
3

y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣∣
∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣

y′ −

∣∣∣∣∣∣∣

y
(3)
1 y

(3)
2 y

(3)
3

y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣∣
∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣

y = 0.

Therefore,

a2 = −

∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣
∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣

=
w′

w
, a1 = −

∣∣∣∣∣∣∣

y1 y2 y3
y
(3)
1 y

(3)
2 y

(3)
3

y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣∣
∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣

=
w1

w
, and

a0 = −

∣∣∣∣∣∣∣

y
(3)
1 y

(3)
2 y

(3)
3

y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣∣
∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣

=
w0

w

which correspond to Equation (3.1.3).

Let (k, ′ ) be a differential field such that its subfield of constants C is different from k and has
characteristic 0, and let us consider the non-commutative ring D := k[∂] of linear differential operators
with coefficients in k. Let L ∈ D be an operator given by

L = ∂n + an−1∂
n−1 + · · · + a1∂ + a0∂

0.

Let us consider the scalar equation L(y) = 0, i.e.,

y(n) + an−1y
n−1 + · · · + a1y

′ + a0y = 0.

If y ∈ k is a solution of the equation L(y) = 0 such that y′ = u ∈ k then we will write, as a formal
notation

y =

∫
u.

Now the homogeneous differential equation L(y) = 0 with fundamental solutions y1, . . . , yn is
obtained by eliminating the n arbitrary constants ci from the n+ 1 equations

y = c1y1 + · · · + cnyn

y′ = c1y
′
1 + · · · + cny

′
n

...

y(n) = c1y
(n)
1 + · · · + cny

(n)
n

and is therefore
w = w(y, y1, . . . , yn) = 0,

where w is the Wronskian of y, y1, . . . , yn. In its development, the coefficients of y(n) will be the
w(y, y1, . . . , yn) which is not zero since y1, . . . , yn form a fundamental set.

An operator L is said to be reducible if there exists operators L1 and L2 of lower order such that
L = L2L1, in this case we say that L1 is a right factor and L2 is a left factor of L. If an operator is
not reducible then it is called irreducible.
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Remark 3.1.1. If we interpret this definition in terms of the scalar equation we can say, in the old
fashion way, that:

“A linear homogeneous differential equation is called irreducible when it is has no common solu-
tions with any other linear homogeneous differential equation of inferior order with the same kind of
coefficients.”

The next theorem describes a full factorization of L in terms of a fundamental system.

Theorem 6. Let
L = ∂n + an−1∂

n−1 + · · · + a1∂ + a0∂
0

be a linear differential operator of order n with coefficients in k. Let

{y1, y2, . . . , yn}

be a fundamental set of solutions for the scalar equation L(y) = 0, and define

ω0 = 1 and

ωr := w(y1, y2, . . . , yr) for r = 1, 2, . . . , n.

Then

L(y) = (−1)n ωn

ωn−1


 ω2

n−1

ωnωn−2
· · ·
(

ω2
2

ω3ω1

(
ω2

1

ω2ω0

(
y

ω1

)′)′)′

· · ·




′

and
L = (−1)nLnLn−1 . . . L2L1

where

Li = ∂ − αi and αi =

(
ωi

ωi−1

)′

(
ωi

ωi−1

) for all i = 1, . . . , n.

Proof. Let us define
∆0 = y and ∆r = w(y, y1, . . . , yr), for r = 1, . . . , n.

Using the formula
∆rωr−1 = ∆r−1ω

′
r − ∆′

r−1ωr

which is proved by partially expanding the determinants, we get

L(y) =
∆n

ωn
=
ωn∆nωn−1

ωn−1ω2
n

= − ωn

ωn−1

(
∆n−1

ωn

)′
.

Suppose, by induction hypothesis, that

L(y) = (−1)n−1 ωn

ωn−1

(
ω2

n−1

ωnωn−2
· · ·
(

ω2
2

ω3ω1

(
∆1

ω2

)′)′

· · ·
)′

then

L(y) = (−1)n−1 ωn

ωn−1

(
ω2

n−1

ωnωn−2
· · ·
(

ω2
2

ω3ω1

(
ω2

1∆1ω0

ω2ω0ω2
1

)′)′

· · ·
)′

=

(−1)n−1 ωn

ωn−1

(
ω2

n−1

ωnωn−2
· · ·
(

ω2
2

ω3ω1

(
ω2

1(∆0ω
′
1 − ∆′

0ω1)

ω2ω0ω2
1

)′)′

· · ·
)′

=

(−1)n−1 ωn

ωn−1

(
ω2

n−1

ωnωn−2
· · ·
(

ω2
2

ω3ω1

(
− ω2

1

ω2ω0

(
∆′

0ω1 − ∆0ω
′
1

ω2
1

))′)′

· · ·
)′

=
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(−1)n ωn

ωn−1


 ω2

n−1

ωnωn−2
· · ·
(

ω2
2

ω3ω1

(
ω2

1

ω2ω0

(
∆0

ω1

)′)′)′

· · ·




′

.

Therefore,

L(y) = (−1)n ωn

ωn−1


 ω2

n−1

ωnωn−2
· · ·
(

ω2
2

ω3ω1

(
ω2

1

ω2ω0

(
y

ω1

)′)′)′

· · ·




′

and using the fact that ω0 = 1 by definition, we obtain

L(y) = (−1)n ωn

ωn−1


ωn−1

ωn

ωn−1

ωn−2
· · ·
(
ω2

ω3

ω2

ω1

(
ω1

ω2
ω1

(
y

ω1

)′)′)′

· · ·




′

.

Now, let us define

αi =

(
ωi

ωi−1

)′

(
ωi

ωi−1

) for all i = 1, . . . , n;

in particular α1 = ω′
1/ω1. By the formula

a
(z
a

)′
= z′ − a′

a
z for all a, z ∈ k,

we have

ω1

(
y

ω1

)′
= y′ − ω′

1

ω1
y = y′ − α1y = (∂ − α1) (y)

and taking z1 = y′ − α1y we get

ω2

ω1

(
ω1

ω2
z1

)′
=
ω2

ω1

(
z1
ω2

ω1

)′

= z′1 −

(
ω2

ω1

)′

(
ω2

ω1

) z1 = z′1 − α2z1 = (∂ − α2)(z1) =

(∂ − α2)(y
′ − α1y) = (∂ − α2)(∂ − α1)(y).

Suppose, by induction hypothesis, that

ωn−1

ωn−2


ωn−2

ωn−1

ωn−2

ωn−3
· · ·
(
ω2

ω3

ω2

ω1

(
ω1

ω2
ω1

(
y

ω1

)′)′)′

· · ·




′

=

(∂ − αn−1) . . . (∂ − α2)(∂ − α1)(y)

and put
zn−1 = (∂ − αn−1) . . . (∂ − α2)(∂ − α1)(y)

then

L(y) = (−1)n ωn

ωn−1

(
ωn−1

ωn
zn−1

)′
= (−1)n ωn

ωn−1

(
zn−1

ωn

ωn−1

)′

=

(−1)n


z′n−1 −

(
ωn

ωn−1

)′

(
ωn

ωn−1

) zn−1


 = (−1)n(z′n−1 − αnzn−1) =

(−1)n(∂ − αn)(zn−1) = (−1)n(∂ − αn)(∂ − αn−1) . . . (∂ − α2)(∂ − α1)(y).

Therefore,
L = (−1)n(∂ − αn)(∂ − αn−1) · · · (∂ − α3)(∂ − α2)(∂ − α1).
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Remark 3.1.2. Note that the order of the factors (∂ − αi) must in general be preserved, for it is not
true for any two suffixes i and j

(∂ − αi)(∂ − αj) = (∂ − αj)(∂ − αi).

In other words, the factors of the differential operator are in general not permutable (Landau [1902]).

3.2 Rational Solutions of Linear Differential Equations

In this section we present a method for finding rational solutions of linear differential equations with
coefficients in k(x) in case char(k) = 0 and ordinary derivative d/dx. This method generalizes the well
known Frobenius method for solving second-order ordinary differential equations relative to a singular
point, like e.g. the Euler equation, the hypergeometric equation or equations of Fuchsian type. See for
instance Ince [1964]), Cohen, Cuypers, and Sterk [1999] (for equations of third order) and van der Put
and Singer [2003]. It will appear again later in connection with finding exponential solutions of linear
differential equations. Although the coefficients of the linear differential equations that we consider
here are in k(x), we will work in the field k((x)) of formal Laurent series. In the sequel we denote the
algebraic closure of an arbitrary field K by K.

Let k be a field of characteristic 0 and k[[x]] the ring of formal power series. A typical element of
k[[x]] is

∞∑

i=0

aix
i, where ai ∈ k.

The quotient field of k[[x]], denoted by k((x)), is the field of formal Laurent series. k((x)) is contained
in the algebraically closed field of formal Puiseux series

⋃

n∈N

k((x1/n)),

A typical non-zero element a ∈ k((x)) can be written as

a = xm
∑

j≥0

ajx
j where a0 6= 0 and m ∈ Z.

The order ord(a) of a is the exponent m of the first non-vanishing term of a. By definition ord(0) =
∞. In Chapter 4 we present more details on Puiseux series.

We consider k(x) and k((x)) as differential fields equipped with derivation ∂ = d/dx.

Let L ∈ k(x)[∂] be the operator

L = ∂n + an−1∂
n−1 + · · · + a1∂ + a0∂

0.

We write the coefficients of L as partial fractions

ai =

di∑

j=0

pi,jx
j +

s∑

σ=1

−1∑

j=dσ
i

qσ
i,j(x− xσ)j +

t∑

τ=1

eτ
i∑

j=1

Bτ
i,j(x)

Aτ (x)j
, for all i.

An element a ∈ k((x)) is said to have a pole of order n at x = x0, if in the Laurent series, am = 0
for m < −n and an 6= 0, i.e.,

a =
∑

i≥n

ai(x− x0)
i.

a is said to have a pole of order n at ∞, if the Laurent series of a ∈ k((x−1)) at 0 has only
finitely many negative degree terms, starting with −n.
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Proposition 2. A solution f of the equation

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = 0

can only have a pole at α if at least one of the ai has a pole at α. Also, ∞ is a possible pole of f .
Hence the location of the possible poles of f is known.

Proof. Suppose that f has a pole at 0 of order s. Then the expansion of f at 0 is

xs + ls+1x
s+1 + · · · with s < 0.

If ai(0) 6= 0 for all i, then the lowest power of x in the equation

y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0

is s − n and it would appear in only one member, namely the first one y(n) and as a consequence it
must have 0 as a coefficient, i.e.,

s(s− 1)(s− 2) . . . (s− n+ 1) = 0.

Then, s = 0, s = 1, ... , s = n− 1. In any case, s ≥ 0 which is a contradiction.

If it exists, a rational solution of the scalar equation L(y) = 0 has the form

f =
M∑

j=0

pjx
j +

s∑

σ=1

−1∑

j=Mσ

qσ
j (x− xσ)j +

t∑

τ=1

Nτ∑

j=1

Bτ
j (x)

Aτ (x)j
+

N∑

i=1

γi

x− ci
.

Let p ∈ k((x)) be given by

p = xm
∑

i≥0

pix
i, where p0 6= 0 and m ∈ Z.

The indicial polynomial Ip(m) in m (seen as variable) of degree ≤ n, for the linear differential
equation

y(n) + an−1y
(n−1) + · · · + a1y

(1) + a0y = 0

at 0 is the coefficient of the term of lowest degree of x after substituting p in the differential equation.
It is obvious that Ip(m) will be independent of the coefficients a1, a2, . . . , and will involve a0 as a
multiplicative factor. The roots of Ip(m) (in an algebraic closure of k) are called local exponents of the
equation at 0. The equation Ip(m) = 0 is called the indicial equation.

Now we are ready to present the algorithm.

Algorithm:

Let us consider the equation

y(n) + an−1y
(n−1) + · · · + a0y = 0 (3.2.5)

where some ai ∈ k(x) has a pole at 0. Suppose that the expansion of f in the Laurent series at 0 is

f =
u

v
= xs + ls+1x

s+1 + · · · with s ∈ Z and s < 0.

The expansion of the ai in Laurent series at 0 is written as

ai =
∑

j≥ni

ai,jx
j for all i,
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where ai,ni
∈ k∗ and ni ∈ Z. If ai = 0 we put ni = ∞ and ai,ni

has no meaning. Then the lowest
power of x in Equation (3.2.5) are

s(s− 1)(s− 2) . . . (s− n+ 1)xs−n,

s(s− 1)(s− 2) . . . (s− n+ 1)(s− n+ 2)an−1,nn−1
xs−n+1+nn−1 ,

...

sa1,n1
xs−1+n1 , and

a0,n0
xs+n0 .

Let m denote the minimum of {−n,−n+ 1 + nn−1, . . . ,−1 + n1, n0}. The coefficient I(s) of xs+m

can be written as

ǫ1s(s− 1)(s− 2) . . . (s− n+ 1)+

+ǫ2s(s− 1)(s− 2) . . . (s− n+ 1)(s− n+ 2)an−1,nn−1
+ · · ·+

ǫ1sa1,n1
+ ǫ0a0,n0

,

where ǫi = 1 if the corresponding element in

{−n,−n+ 1 + nn−1, . . . ,−1 + n1, n0}

is minimal and ǫi = 0 otherwise.

The expression for I is a non-zero polynomial in s (seen as a variable) of degree ≤ n, this is precisely
the indicial polynomial for Equation (3.2.5) at 0.

Since f satisfies Equation (3.2.5) the coefficient I(s) of xs+m must be 0. Thus s is a solution of the
equation

I(s) = 0

which is exactly the indicial equation for Equation (3.2.5) at 0. We have three possibilities, namely

1. If there is no s with I(s) = 0 then we can stop the calculations since in that case there is no
rational solution f 6= 0 of the equation.

2. If there is no negative integer s with I(s) = 0 but there is an integer r ≥ 0 then we define s0 = 0.

3. If there is a negative integer solution of I(s) = 0 then s0 < 0 denotes the smallest one.

In other words, the possible values s for the exact power xs are the negative integers s with I(s) = 0.

Now we perform a similar calculation at ∞. Let ords(f) denote the order of the function f at the
point s.

Let αi denote the poles of ai. For every i, the method above yields an integer si ≤ 0 such that, for
any rational solution f 6= 0, one has ordαi

(f) ≥ si, or there are no rational solutions.

This means that (working in the Laurent series field k((x−1))) we can write

f =
T

N
∈ k(x)∗

with known
N =

∏

i

(x− αi)
−si and with some polynomial T.
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In order to estimate the degree of T let us consider the expansions in Laurent series of f and the ai

at ∞ (i.e., we make a calculation in the differential field k((x−1))). Suppose that the expansions have
the form

f = xt + gt+1x
t+1 + · · · and

ai =
∑

j≥mi

bi,jx
j for all i.

If ai 6= 0, then bi,mi
∈ k∗ and mi ∈ Z. If ai = 0 then we put mi = −∞ and bi,mi

has no meaning.
Then, the possible highest power of x in Equation (3.2.5) are

t(t+ 1)(t+ 2) . . . (t+ n+ 1)xt−n,

t(t+ 1)(t+ 2) . . . (t+ n+ 1)(t+ n+ 2)bn−1,mn−1
xt−n+1+mn−1 ,

...

tb1,m1
xt−1+m1 , and

b0,m0
xt+m0 .

Let M denote the maximum of {−n,−n+ 1 +mn−1, . . . ,−1 +m1,m0}. Let J(t) be the expression

ǫ1t(t+ 1)(t+ 2) . . . (t+ n+ 1)+

ǫ2t(t+ 1)(t+ 2) . . . (t+ n+ 1)(t+ n+ 2)bn−1,mn−1
+ · · ·+

ǫ1tb1,m1
+ ǫ0b0,m0

,

where ǫi = 1 if the corresponding term is equal to M and ǫi = 0 otherwise.

Then J(t) is a non-zero polynomial of degree ≤ n in t (seen as a variable). This is the indicial
polynomial of Equation (3.2.5) at ∞.

If there is no integer t with J(t) = 0 then we stop the procedure. In other case, let s∞ denote the
largest integer that is a zero in J . Then we find that t ≤ s∞.

Expanding f =
T

N
at ∞ leads to the inequality

deg(T ) ≤ s∞ + deg(N).

Let d be the bound for the degree of T and write

T = tdx
d + · · · + t0.

The equation satisfied by f provides an order n equation for T . This leads to a set of linear equations
for the coefficients ti. With linear algebra one can find all solutions. This ends the algorithm.

Example 5. Consider the equation

y(3) − 8x2 − 63x− 27

(24x+ 27)x
y(2) +

448x2 + 1080x+ 1080

3(8x+ 9)2x
y(1) − 24

(8x+ 9)2x
y = 0

with coefficients in partial fraction decomposition

a2 = −1

3
+

16

8x+ 9
+

1

x
, a1 = − 152

9(8x+ 9)
− 128

(8x+ 9)2
+

40

9x
, and
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a0 =
64

27(8x+ 9)
+

64

3(8x+ 9)2
− 8

27x
.

The poles of the coefficients are at 0 and at −9/8. First, let us consider the expansion in Laurent
series of the ai at 0, that is

a2 = x−1 +
13

9
− 128

81
x+

1024

729
x2 − 8192

6561
x3 +

65536

59049
x4 +O(x5),

a1 =
40

9
x−1 − 280

81
+

1088

243
x− 34304

6561
x2 +

339968

59049
x3 − 360448

59049
x4 +O(x5),

a0 = − 8

27
x−1 +

128

243
− 512

729
x+

16384

19683
x2 − 163840

177147
x3 +

524288

531441
x4 +O(x5).

Then the indicial polynomial at 0 is

I(s) = ǫ1s(s− 1)(s− 2) + ǫ2(s− 1)a2,n2
+ ǫ3sa1,n1

+ ǫ0a0,n0

where ǫi = 1 if the corresponding element in {−3,−2+n2,−1+n1, n0} is minimal and ǫi = 0 otherwise.
Since n2 = n1 = n0 = −1 we have

I(s) = s3 − 3s2 + 2s+ (s2 − s)a2,n2
= s3 − 2s2 + s.

Therefore, the indicial equation at 0 is

I(s) = 0, i.e., s3 − 2s2 + s = 0

which has solutions s = 0, 1, 1, whence s0 = 0. Then a term of the possible rational solution is

f1(x) = c1x
0 = c1, with c1 a constant.

Now, let us consider the expansion in Laurent series of the ai at −9/8, that is

a2 = 2

(
x+

9

8

)−1

− 11

9
− 64

81

(
x+

9

8

)
− 512

729

(
x+

9

8

)2

−

4096

6561

(
x+

9

8

)3

− 32768

59049

(
x+

9

8

)4

− 262144

531441

(
x+

9

8

)5

+O

((
x+

9

8

)6
)
,

a1 = −2

(
x+

9

8

)−2

− 19

9

(
x+

9

8

)(−1)

− 320

81
− 2560

729

(
x+

9

8

)
−

20480

6561

(
x+

9

8

)2

− 163840

59049

(
x+

9

8

)3

− 1310720

531441

(
x+

9

8

)4

−

10485760

4782969

(
x+

9

8

)5

+O

((
x+

9

8

)6
)
,

a0 =
1

3

(
x+

9

8

)−2

+
8

27

(
x+

9

8

)−1

+
64

243
+

512

2187

(
x+

9

8

)
+

4096

19683

(
x+

9

8

)2

+
32768

177147

(
x+

9

8

)3

+
262144

1594323

(
x+

9

8

)4

+

2097152

14348907

(
x+

9

8

)5

+O

((
x+

9

8

)6
)
.

Then, the indicial polynomial at −9/8 is

I(t) = ǫ1t(t− 1)(t− 2) + ǫ2(t− 1)b2,m2
+ ǫ3tb1,m1

+ ǫ0b0,m0
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where ǫi = 1 if the corresponding element in {−3,−2 + m2,−1 + m1,m0} is minimal and ǫi = 0
otherwise. Since m2 = −1, m1 = −2 and m0 = −2 we have

I(t) = t3 − 3t2 + 2t+ (t2 − t)b2,m2
+ tb1,m1

= t3 − 3t2 + 2t+ 2t2 − 2t− 2t.

Therefore, the indicial equation at −9/8 is

I(t) = 0, i.e., t3 − t2 − 2t = 0

which has solutions t = 0,−1, 2, whence t9/8 = −1. Then, another term of the possible rational solution
is

f2 =
c2

x+ 9
8

with c1 a constant.

After substituting

f1 + f2 = c1 +
c2

x+ 9
8

in the equation we obtain

−24(b1 + 8b2)

(8x+ 9)2x
= 0 ⇒ c1 = −8c2.

Taking c2 = − 1

64
we get c1 =

1

8
, and in fact the rational solution is

f =
1 + x

8x+ 9
.

If we consider the expansion in Laurent series of the ai at ∞ we obtain the same result.

3.3 Exponential Solutions of Linear Differential Equations

A major subproblem for algorithms that either factor ordinary linear differential equations or compute
their closed form solutions is to find solutions y which satisfy y′/y ∈ k, where k is the constant field for
the coefficients of the equations, these solutions are called exponentials. In other to look for exponential
solutions in k one should consider the associated Riccati equation and search for its rational solutions,
because the key property of the Riccati equation is:

If y 6= 0 is any solution of a linear differential equation, then u = y′/y a solution of the corresponding
Riccati equation, and vice versa.

Although the exponential solutions form only a subspace of the Liouvillian solutions, the main
subalgorithm of the algorithms that find the Liouvillian solutions Kovacic [1986] and Singer [1991] is
to find the exponential solution of higher order equations.

There are several algorithms for finding rational solutions of the Riccati equations in particular
cases, among them we have:

• solve riccati from Bronstein [1992a], coefficients in k(x) and solutions over k(x).

• RiccatiRational from Schwarz [1994], coefficients in Q(x) and solutions over Q(x).

• An improved solve riccati from Li and Schwarz [2001], coefficients in k(x) and solutions over
k(x).

There is however no known general algorithm for finding rational solutions of Riccati equations.

In this section we present the RiccatiRational algorithm which finds solutions in k(x) of the Riccati
equation associated with a linear differential equation having coefficients from k(x). The algorithm
looks for bounds on the coefficients of possible solutions and reduces the problem to solving a linear
system. If this system is feasible we obtain a rational solution of the associated Riccati equation and
at once a right-hand factor of the original linear differential equation.
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Let k be a differential field of characteristic 0 with algebraically closed field of constants C. Let
L ∈ k[∂] be given by

L = ∂n + an−1∂
n−1 + · · · + a1∂ + a0∂

0.

Let K ⊃ k be the Picard-Vessiot extension for L(y) = 0, set

V := { y ∈ K | L(y) = 0. }

and let G ⊂ GL(V ) be the differential Galois group of L.

A non-zero element y ∈ V ⊂ K with L(y) = 0 is called an exponential solution of L if

u :=
y′

y

lies in k. We will write, as a formal notation,

y = e
R

u.

Let y, u ∈ K satisfy y′ = uy. Formally differentiating this identity yields

y(i) = Pi(u, u
′, . . . , u(i−1))y,

where the Pi are polynomials with integer coefficients satisfying

P0 = 1, and Pi = P ′
i−1 + uPi−1 for all i ≥ 1.

Furthermore, y 6= 0 satisfies L(y) = 0 if and only if u :=
y′

y
satisfies

R(u) = Pn

(
u, . . . , u(n−1)

)
+ an−1Pn−1

(
u, . . . , u(n−2)

)
+ . . .+ a0 = 0. (3.3.6)

Equation (3.3.6) is the Riccati equation associated with L(y) = 0.

The next proposition proposed as an exercise in van der Put and Singer [2003], provides the relation
between exponential solutions of a linear differential equation and rational solutions of the associated
Riccati equation. Furthermore it points the way to detect first order right-hand factors.

Proposition 3. 1. An element v ∈ k is a solution of the Riccati equation if and only if ∂ − v is a
right-hand factor of L (i. e., L = L̃(∂ − v) for some L̃).

2. The element v ∈ K is a solution of the Riccati equation if and only if there is a y ∈ V ⊂ K,
y 6= 0 with y′/y = v.

Proof. 1. If v ∈ k is a solution of the Riccati equation R(u) = 0 there exist y1 ∈ K with y1 6= 0
and y′1 = vy1 such that y1 is a solution of the linear equation L(y) = 0. Let L1 be the operator
defined by

L1 = ∂ − v,

where its scalar equation is

L1(y) = 0 ⇒ (∂ − v)(y) = 0 ⇒ ∂(y) − vy = 0 ⇒ y′ − y′1
y1
y = 0.

Then y1 is also a solution of the equation L1(y) = 0, by Theorem (6), ∂−v is a right-hand factor
of L.

Conversely, suppose that v ∈ k is such that ∂ − v is a right-hand factor of L(y) = 0. Let y0 ∈ K
be solution of the equation ∂ − v, that is

(∂ − v)(y0) = 0 ⇒ ∂(y0) − vy0 = 0 ⇒ y′0 − vy0 = 0 y′0 = vy0.
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Since ∂ − v is a right-hand factor of L and y0 ∈ K is a solution of the equation y′ − vy = 0 we
have L(y0) = 0 and so y0 ∈ V .

Now, y0 ∈ V ⊂ K and y′0 = vy0 with v ∈ K, by the previous considerations we obtain that v is
a solution of the Riccati associated equation of L(y) = 0.

2. If the element v ∈ K is a solution of the Riccati equation, then by part 1. we have that ∂ − v
is a right-hand factor of L, and so ∂ − v and L have a common solution. Let y ∈ V with y 6= 0
such that (∂ − v)(y) = 0. Whence, we get

y′

y
= v.

Conversely, if y1 ∈ V ⊂ K is such that y1 6= 0 and y′1/y1 = v1 with v1 ∈ K then L(y1) = 0. On
the other hand, y′1 = v1y1 and by the previous considerations we obtain that v ∈ K is a solution
of the Riccati equation.

An element v ∈ K is called a Riccati solution for the equation L(y) = 0 if v is the logarithmic
derivative v = y′/y of some non-zero solution of y of L(y) = 0. If v is an algebraic Riccati solution (a
Riccati solution in k) then the minimal polynomial of v over k is called a Riccati polynomial of L.

Since for an exponential solution y of L(y) = 0, u = y′/y ∈ k(x), finding exponential solutions of
L(y) = 0 is equivalent to finding the rational solutions of 3.3.6.

Next we present the RiccatiRational algorithm from Schwarz [1994].

Algorithm RiccatiRational Schwarz [1994]:

Input: R(u) = 0 with ai ∈ Q(x) given as partial fractions

ai =

di∑

j=0

pi,jx
j +

s∑

σ=1

−1∑

j=dσ
i

qσ
i,j(x− xσ)j +

t∑

τ=1

eτ
i∑

j=1

Bτ
i,j(x)

Aτ (x)j

for i = 0, . . . , n− 1.

Output: A rational solution of the form:

q =
M∑

j=0

pjx
j +

s∑

σ=1

−1∑

j=Mσ

qσ
j (x− xσ)j +

t∑

τ

Nτ∑

j=1

Bτ
j (x)

Aτ (x)j
+

N∑

i=1

γi

x− ci
.

with γi ∈ N, is the well known structure of rational solutions to be determined.

1. Determine the bounds M , Mσ, and Nτ .

2. Determine the algebraic systems for the coefficients p0, . . . , pM , qσ
1 , . . ., q

σ
Mσ , and bτ1,0, . . . , b

τ
Nτ ,mτ−1,

solve them and construct the solution candidates from these solutions.

3. For each candidate found in (2.), determine the equation for the possible polynomial factor and
determine a bound for it.

4. Determine the polynomial factor and return the complete solution.

The next example is taken from Schwarz [1994], however we make the computations differently.
Instead to compute the bounds M , Mσ, and Nτ with the theorems Bound 1, 2 and 3 of Schwarz [1989],
in an easier way, we compute the indicial equations of the polynomial part, rational part at any pole
and the logarithmic derivative part at any other kind of singularities.
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Example 6. Consider the equation

y(2) +

[
x2 + 4 +

3

(x− 5)2
+

x+ 3

(x2 + 1)2

]
y(1)+

[
x2 + 2x+ 3 +

3

(x− 5)2
− 6

(x− 5)3
+

x

(x2 + 1)2
− 12x− 4

(x2 + 1)3

]
y = 0

where the indicial equation for the polynomial part is

P (m) = 0 ⇒ 1 = 0,

which has no solutions, then

M = max ( 2, integer solution of P (m) = 0 ) = 2

So the bound for the polynomial part is M = 2, that means that the possible polynomial part of the
solution has degree 2, say

up = p2x
2 + p1x+ p0.

Substituting the possible polynomial part of the solution in the equation

u(1) + u2 + (x2 + 4)u+ x2 + 2x+ 3 = 0

we get

2p2 + p1 + (p2x
2 + p1x+ p0)

2 + (x2 + 4)(p2x
2 + p1x+ p0) + x2 + 2x+ 3 = 0 ⇒

(p2
2 + p2)x

4 + (2p2p1 + p1)x
3 + (p2

1 + 2p2p0 + 4p2 + p0 + 1)x2+

(2p2 + 2p1p0 + 4p1 + 2)x+ (p2
2 + p1 + 4p0 + 3) = 0 ⇒





p2
2 + p2 = 0

2p2p1 + p1 = 0

p2
1 + 2p2p0 + 4p2 + p0 + 1 = 0

2p2 + 2p1p0 + 4p1 + 2 = 0

p2
2 + p1 + 4p0 + 3 = 0

⇒





(p2 + 1)p2 = 0

(p2 + 1
2 )p1 = 0

p2p0 + 2p2 + 1
2p

2
1 + 1

2p0 + 1
2 = 0

.

All coefficients are determined uniquely by this system, which has solution p2 = −1, p1 = 0 and
p0 = −3. Therefore, the polynomial part of the possible solution is

up = −x2 − 3.
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We try to find a possible bound at the rational pole x1 = 5, where the indicial equation is

Q(mσ) = 0 ⇒ 3mσ − 6 = 0 ⇒ mσ = 2

with
Mσ = min (negative integer solution ofQ(mσ) = 0 ) = −2.

So the bound for the rational part is Mσ = −2, that means that the possible rational part of the
solution has the form

ur = b1(x− 5)−1 + b2(x− 5)−2 =
b1

x− 5
+

b2
(x− 5)2

.

Substituting the possible rational part of the solution in the equation

u(1) + u2 +
3

(x− 5)2
u+

3

(x− 5)2
− 6

(x− 5)3
= 0

we get

− b1
(x− 5)2

− 2b2
(x− 5)3

+
b21

(x− 5)2
+

2b1b2
(x− 5)3

+
b22

(x− 5)4
+

3

(x− 5)2

[
b1

x− 5
+

b2
(x− 5)2

]
+

3

(x− 5)2
− 6

(x− 5)3
= 0 ⇒





b22 + 3 = 0

−2b2 + 2b1b2 + 3b1 − 6 = 0

−b1 + b21 + 3 = 0

⇒





(b2 + 3)b3 = 0

b1b2 − b2 + 3
2b1 − 3 = 0

.

The complete solution is obtained as b2 = −3 and b1 = 0. Therefore, the rational part of the possible
solution is

ur = − 3

(x− 5)2
.

Finally, we try to find a possible bound at the singularity x2 + 1, where the indicial equation is

Q(nτ ) = 0 ⇒
(
−3

4
− 1

4
i

)
nτ +

(
3

2
+

1

2
i

)
= 0 ⇒ nτ = 2

with
Nτ = min (negative integer solution ofQ(nτ ) = 0 ) = −2.

So the bound for the logarithmic derivative part is Nτ = −2, that means that the possible logarithmic
part of the solution has the form

ul = (xb2 + b1)(x
2 + 1)−1 + (xb4 + b3)(x

2 + 1)−2 =
xb2 + b1
x2 + 1

+
xb4 + b3
(x2 + 1)2

.

Substituting the possible logarithmic derivative part in the equation

u(1) + u2 +
x+ 3

(x2 + 1)2
u+

x

(x2 + 1)2
− 12x− 4

(x2 + 1)3
= 0
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we get

−b2x
4 + 2b1x

3 + 3b4x
2 + 4b3x+ 2b1x− b4 − b2

(x2 − 1)3
+

u2 +
x+ 3

(x2 + 1)2
u+

x

(x2 + 1)2
− 12x− 4

(x2 + 1)3
= 0 ⇒





b22 − b2 = 0

2b1b2 − 2b1 + 1 = 0

2b2b4 − 3b4 + b21 + 2b22 = 0

2b1b4 + 2b2b3 + 4b1b2 + 3b2 − 3b1 − 10 − 4b3 = 0

2b1b3 + 2b2b4 + 4 + 2b2 + 3b1 − b4 + 2b21 + b22 + b24 = 0

2b1b4 + 2b3b4 + 2b2b3 + 2b1b2 + 3b2 + 3b4 − 11 − b1 − 3b3 = 0

4 + 3b1 + b2 + 3b3 + b4 + b21 + 2b1b3 + b23 = 0

⇒





b1b4 + b2b3 + 1
2b1 + 3

2b2 − 2b3 − 6 = 0

b24 + 2b1b3 − 2b2b4 + 5b4 − b2 + 3b1 + 4 = 0

b24 + b4 − b23 − 3b3 = 0

b3b4 + 3
4b4 + 1

2b3 = 0

.

The non-linear system comprising the highest equation for b3 and b4 has to be transformed into a
Gröbner bases. Due to factorization two non-trivial alternatives are obtained:





b3 + 3 = 0

b4 + 1 = 0
or





b24 + 3b3 + 5 = 0

b23 + 3b3 + 5
2 = 0

.

From the first alternative we get b4 = −1 and b3 = −3. Substituting them in the remaining equations,
the linear system 




b2 + 2
3b1 = 0

b2 − 3b1 = 0
⇒





b2 = 0

b1 = 0
⇒

is obtained with the solution b1 = b2 = 0.Therefore, the logarithmic derivative part of the possible
solution is

ul = − x+ 3

(x2 + 1)2
.

Combining these results yields the solution candidate

u = up + ur + ul = −x2 − 3 − 3

(x− 5)2
− x+ 3

(x2 + 1)2
.

It turns out that this is already a genuine solution of the Riccati equation. It generates the factor-
ization

(∂ + 1)

[
∂ + x2 + 3 +

3

(x− 5)2
+

x+ 3

(x2 + 1)2

]
.

The other two alternatives lead to complex expressions which do not turn into solutions of the
Riccati equation.
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3.4 The Beke’s Algorithm

In this section we will give an exposition of the classical Beke algorithm for factoring linear differential
operators in the field k(x). The original paper Beke [1894] appeared at the end of the 19th century and
after almost one hundred years it has been improved and implemented in Computer Algebra Systems
by Schwarz [1989], Schwarz [1994], Bronstein [1994], Bronstein and Petkovšek [1996].

In 1894 Beke gave a method for factorization of linear differential operators in the ring Q(x)[∂].
The original idea of Beke’s algorithm is:

“To decide, in finitely many steps, if a linear homogeneous differential equation is reducible or not,
and to construct in the first case an irreducible equation, which has all its solutions in common with
the given reducible equation”.

In modern language we would say:

“To decide in finitely many steps if a differential operator is reducible or not, and to construct in
the first case a non-trivial right-hand factor”.

To find a factor via Beke’s algorithm one must first compute another operator (the second exte-
rior power) and then compute a first order right-hand factor, construct an auxiliary operator whose
associated Riccati equations have among their solutions all possible coefficients of the possible factor.
From the auxiliary operator one can read off degree bounds of the numerators and denominators of
these coefficients. The main disadvantage of Beke’s approach is its tremendous complexity, originating
from the necessity to solve several Riccati equations.

Throughout this section k is a field of characteristic 0, (k(x), ′) is equipped with derivation ′ = d/dx,
L ∈ k(x)[∂] is

L = ∂n + an−1∂
n−1 + · · · + a1∂ + a0∂

0

and K ⊃ k(x) stands for a Picard-Vessiot extension for L(y) = 0. Let

V = { f ∈ K | L(f) = 0 }

denote the solution space of L in K and let G(K/k) ⊂ GL(V ) be the differential Galois group of L.
By Proposition (3), a first order operator ∂ − v is a right-hand factor of L if and only if v ∈ K is a
rational solution of the associated Riccati equation, and also if there is y1 ∈ V such that y′1 = vy1.
Such an y1 is an exponential solution of the equation L(y) = 0.

Beke’s algorithm for first order right-hand factors. Beke [1894]:

Input: A linear differential operator

L = ∂n + an−1∂
n−1 + · · · + a1∂ + a0∂

0.

with rational coefficients ai ∈ k(x) for all i.

Output: A first order right-hand factor

∂ − b with b ∈ k(x).

1. Determine the associated Riccati equation R(x) = 0 of the corresponding scalar equation L(y) =
0.

2. Find a rational solution b ∈ k(x) of the equation R(x) = 0 with the method specified in Section
2.3 or another method mentioned there.

3. If none exists, return “There is no first order right-hand factors” and end, else return “∂ − b is
the right-hand factor” and end.
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What happens now if we want to have a right-hand factor of order m with 1 < m < n?

Suppose that there exist another operator M ∈ k(x)[∂] of order m < n with

M = ∂m + bm−1∂
m−1 + · · · + b1∂

1 + b0∂
0

such that M is a right factor of L. In other words, the linear homogeneous differential equations
M(y) = 0, i.e.,

y(m) + bm−1y
(m−1) + · · · + b1y

′ + b0y = 0, (3.4.7)

of order m, which has all its solutions in common with the scalar equation L(y) = 0.

Let {y1, . . . , ym} be a fundamental set of solutions of Equation (3.4.7), as we already know by
Proposition (3), the coefficients of Equation (3.4.7) can be represented by this fundamental set in
terms of the Wronskians in the following way

bm−r = −wm−r

w
for all r = 1, . . . ,m

where w = w(y1, . . . , ym) = wm is the Wronskian of y1, . . . , ym and wm−r is obtained from w by

replacing y
(m−r)
1 by y

(m)
1 , y

(m−r)
2 by y

(m)
2 and so on, for all r = 1, . . . ,m. In particular we have:

bm−1 = −w
′

w
.

in other words, w is an exponential solution of an linear differential equation.

Now the question is:

How can we find a set of equations, actually linear homogeneous differential equations, whose
coefficients can be described in a rational way by the coefficients of the the given equation?

The easy way to find them is the following:

1. Write the derivative of each generalized Wronskian as a linear combination of the Wronskians
themselves. Differentiating the determinants wi according to the independent variable, we obtain
as a result a linear group of the Wronskians. In particular,

w′
0, . . . , w

′
m ∈ k[w0, . . . , w

′
m]

actually, the coefficients of the wi in the expression of each wi are polynomials in the coefficients
of the original equation.

2. By successive differentiation and suitable elimination, taking into account that the set of Wron-
skians is closed under differentiation if the original equation is used to substitute derivatives of
order higher than n− 1, for each of the Wronskians we obtain an

(
n
m

)
-th order linear differential

equation, i.e., there exist ci,0, . . . , ci,(n

m) ∈ k such that

(n

m)∑

j=0

ci,jw
(j)
i = 0 for all i.

These equations are called associated equations.

Once we have the associated equations, we want to determine bm−1. To this aim we consider the
associated equation of w = wm and search for exponential solutions, i.e., for rational solutions of the
associated Riccati equation.

For a rational coefficient bm−1 to exist the equation for wm−1 must have a solution with a rational
logarithmic derivative due to Liouville’s relation. If this is true, the equations for the remaining coeffi-
cients bi are obtained from the associated equations for the Wronskians wi. If each of these equations
has a rational solution, a candidate for a right hand factor of the equation L(y) = 0 has been found.
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First we build this way the differential equation for w

cm,σw
σ + cm,σ−1w

(σ−1) + · · · + cm,0w = 0 with σ =

(
n

m

)
. (3.4.8)

In order that Equation (3.4.7) exists, bm−1 =
w′

w
has to be rational. This means, Equation (3.4.8)

has to have a solution whose logarithmic derivative is rational. If there is no such solution, we stop the
process.

Beke’s algorithm for right factors of higher order. Beke [1894]:

Input: A linear differential equation

y(n) + an−1y
(n−1) + an−2y

(n−2) + · · · + a1y
′ + a0y = 0

with ai ∈ k(x) for all i and m < n.

Output: A right-hand factor

y(m) + bm−1y
(m−1) + bm−2y

(m−2) + · · · + b1y
′ + b0y = 0

with bi ∈ k(x). If no genuine factor exists, the input equation is returned unchanged.

1. Determine the associated equations.

2. Determine a solution of the equation for bm−1 found in step 1 with rational logarithmic derivative
and determine bm−1 from it. If none exists then end.

3. Determine the equation for bj .

4. Find rational solutions of the equation determined in step 3 and determine bj from it. If none
exists, then end, else go to step 5.

5. From the coefficients bj , construct a right hand factor of the left side of the input equation and
return.

Example 7. Let L ∈ k(x)[∂] be the operator

L = ∂3 + a2∂
2 + a1∂ + a0∂

0,

and consider the scalar equation L(y) = 0, i.e.,

y(3) + a2y
(2) + a1y

′ + a0y = 0.

Suppose first that there exists a first order operator M1 = ∂ + b∂0. Let y0 ∈ k(x) be a solution of

the equation M1(y) = 0. Then, b =
y′

0

y0
, and b ∈ k(x) is a rational solution of the associated Riccati

equation

R3(u) = P3

(
u, u′, u(2)

)
+ a2P2

(
u, u′, u(n−2)

)
+ a1P1(u, u

′, u(2)) + a0 = 0

where the Pi are polynomials with integer coefficients satisfying

P0 = 1, and Pi = P ′
i−1 + uPi−1 for all i ≥ 1.

Now, suppose that there exists a second order right factor operator

M2 = ∂2 + b1∂ + b0∂
0.

Let {y1, y2} ∈ k(x) be a fundamental set of solutions of M2(y) = 0, and consider the generalized
Wronskians:

ω0 =

∣∣∣∣
y′1 y′2
y
(2)
1 y

(2)
2

∣∣∣∣ , ω1 =

∣∣∣∣∣
y1 y2
y
(2)
1 y

(2)
2

∣∣∣∣∣ , ω2 =

∣∣∣∣
y1 y2
y′1 y′2

∣∣∣∣ .
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The associated linear system is





ω′
0 = −a2ω0 + a0ω2

ω′
1 = ω0 − a2ω1 − a1ω2

ω′
2 = ω1

.

Therefore, the associated equations are:





(a0)
2ω

(3)
0 + 2(a0a2 − a′0)a0ω

(2)
0 +

{
a0(a2a0 − a′0)a2 + 2a0(a

′
2a0 − a2a

′
0) + (a0)

2a1 −
[
a0a

(2)
0 − 2a0(a

′
0)

2
]}

ω′
0+

[
a1a2(a0)

2 + a0(a
′
2a0 − a2a

′
0)a2 + (a0)

2a
(2)
2 − a0a

(2)
0 a2

−2a0a
′
0a

′
2 − 2(a′0)

2a2 − (a0)
3
]
ω0 = 0,

a2
0ω

(3)
1 + 2a0(a0a2 − a′0)ω

(2)
1 +

[a2
0a

2
2 + a2

0a1 + 2a2
0a

′
2 − 3a0a

′
0a2 + 2(a′0)

2 − a0a
(2)
0 ]ω′

1+

[a2
0a1a2 − a3

0 + a2
0a2a

′
2 − a0a

′
0a

2
2 − 2a0a

′
0a

′
2 + 2(a′0)

2 − a0a
(2)
0 a2 + a2

0a
(2)
2 ]ω1 = 0

ω
(3)
2 + 2a2ω

(2)
2 + (a1 + a2

2 + a′2)ω
′
2 + (−a0 + a1a2 + a′1)ω2 = 0

In order words, 



ω
(3)
0 + P0,2ω

(2)
0 + P0,1ω

′
0 + P0,0ω0 = 0

ω
(3)
1 + P1,2ω

(2)
1 + P1,1ω

′
1 + P1,0ω1 = 0

ω
(3)
2 + P2,2ω

(2)
2 + P2,1ω

′
2 + P2,0ω2 = 0

,

where

P0,2 =
2(a0a2 − a′0)a0

(a0)2
,

P0,1 =
a0(a2a0 − a′0)a2 + 2a0(a

′
2a0 − a2a

′
0) + (a0)

2a1 −
[
a0a

(2)
0 − 2a0(a

′
0)

2
]

(a0)2
,

P0,0 =
a1a2(a0)

2 + a0(a
′
2a0 − a2a

′
0)a2 + (a0)

2a
(2)
2 − a0a

(2)
0 a2 − 2a0a

′
0a

′
2 − 2(a′0)

2a2 − (a0)
3

(a0)2
,

P1,2 =
2a0(a0a2 − a′0)

a2
0

,

P1,1 =
a2
0a

2
2 + a2

0a1 + 2a2
0a

′
2 − 3a0a

′
0a2 + 2(a′0)

2 − a0a
(2)
0

a2
0

,

P1,0 =
a2
0a1a2 − a3

0 + a2
0a2a

′
2 − a0a

′
0a

2
2 − 2a0a

′
0a

′
2 + 2(a′0)

2 − a0a
(2)
0 a2 + a2

0a
(2)
2

a2
0

,

P2,2 = 2a2, P2,1 = (a1 + a2
2 + a′2), and P2,0 = (−a0 + a1a2 + a′1).
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Finally, the associated Riccati equations are





u3
0 + 3u′0u0 + u

(2)
0 + P0,1(u

2
0 + u′0) + P0,2u0 + P0,0 = 0

u3
1 + 3u′1u1 + u

(2)
1 + P1,1(u

2
1 + u′1) + P1,2u1 + P1,0 = 0

u3
2 + 3u′2u2 + u

(2)
2 + P2,1(u

2
2 + u′2) + P2,2u2 + P0,0 = 0

.

3.5 The Schwarz’s LODEF Algorithm

Schwarz made an analysis of the costs of factorizing linear homogeneous differential equations with
rational coefficients. He then described the algorithm of Beke differently. He recursively reduces the
order of possible right factors, beginning with order n - 1, ending with the search for first order factors.
Moreover, he estimates bounds for the degree of the coefficients of possible right factors and computes
the size of polynomial and rational solutions of certain differential equations. In this way he developed
the RiccatiRational algorithm to complete the last step of the Beke algorithm, that is, solving the
generalized Riccati equations derived from the associate equations.

To factor operators over k we proceed as follows:

Let L = L2L1 where L2 has order n − r and L1 has order r. Since the solutions of L1(y) = 0 are
also solutions of L(y) = 0, we can write

L1(y) = y(r) + br−1y
(r−1) + · · · + b0y =

∣∣∣∣∣∣∣∣∣

y y1 . . . yr

y′ y′1 . . . y′r
...

... . . .
...

y(r) y
(r)
1 . . . y

(r)
r

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

y1 . . . yr

y′1 . . . y′r
... . . .

...

y
(r−1)
1 . . . y

(r−1)
r

∣∣∣∣∣∣∣∣∣

where y1, . . . , yr are solutions of L(y) = 0. Note that the denominator of the right-hand side of the
latter equation is the Wronskian of a fundamental set of solutions of L1. Therefore it is exponential
over k. Consider L ∈ Q(x)[∂],

L = ∂n + an−1∂
n−1 + · · · + a1∂ + a0∂

0

and let {y1, . . . , yn} be a fundamental set of solutions of L(y) = 0. Build the matrix




y1 y2 . . . ym

y′1 y′2 . . . y′m
...

... . . .
...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
m


 (3.5.9)

where m < n. We denote the determinants of the m×m sub-matrices of (3.5.9) by z1, . . . , z(n

m). The set

{zν | ν = 1, . . . ,
(

n
m

)
} may be considered as a set of new functions, which is closed under differentiation

if the original differential equation is used to substitute derivatives of order higher than n− 1.

By suitable differentiations and elimination for each of these functions, an
(

n
m

)
-th order linear

differential equation may be obtained. These equations are called associated equations for the
original one.
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Procedure. Schwarz [1989]: The full range for the index ν is subdivided into n−m+1 subintervals
I(k) which are defined by

I(k) =

{
ν

∣∣∣∣
(
k

m

)
+ 1 ≤ ν ≤

(
k + 1

m

)
, m− 1 ≤ k ≤ n− 1

}

An index ν belongs to I(k) if in the corresponding zν the highest derivatives of y1, y2, . . . , yn are
exactly of order k. Each z′ν may be expressed as a linear homogeneous function of the zν , where
ν = 1, . . . ,

(
n
m

)
, by using the original differential Equation (3.1.1) for substituting derivatives of order

higher than n− 1. As we enumerate with respect to z, these relations may be written in the form

z′ν =
∑

µ∈I(k)∪I(k+1)

ανµzµ,

where ανµ is integer for ν ∈ I(k), m− 1 ≤ k ≤ n− 2, and

z′ν =

(n

m)∑

µ=1

ανµzµ,

where ανµ is linear homogeneous in a0, . . . , an−1 for ν ∈ I(n−1). The associated equations are general-
izations of Liouville’s relation.

Example 8. For n = 3 we have the equation

y(3) + a2y
(2) + a1y

′ + a0y = 0.

If m = 1 then k = 1, and

I(1) =

{
ν

∣∣∣∣
(

1

1

)
+ 1 ≤ ν ≤

(
1 + 1

1

) }
= {2}.

If m = 2 then k = 1 or 2, and

• for k = 1,

I(1) =

{
ν

∣∣∣∣
(

1

2

)
+ 1 ≤ ν ≤

(
1 + 1

2

) }
= {1},

• for k = 2,

I(2) =

{
ν

∣∣∣∣
(

2

2

)
+ 1 ≤ ν ≤

(
2 + 1

2

) }
= {2, 3}.

There are three second-order determinants,

z1 =

∣∣∣∣
y1 y2
y′1 y′2

∣∣∣∣ , z2 =

∣∣∣∣∣
y1 y2
y
(2)
1 y

(2)
2

∣∣∣∣∣ , z3 =

∣∣∣∣
y′1 y′2
y
(2)
1 y

(2)
2

∣∣∣∣ .

From these expressions we get

z′1 = z2, z
′
2 = −a1z1 − a2z2 + z3, w

′
3 = −a0z1 − a2z3.

Therefore, the third order equations for w1 and w1 are

z
(3)
1 + 2a2z

(2)
1 + (a1 + a2

2 + a′2)z
′
1 + (−a0 + a1a2 + a′1)z1 = 0 (3.5.10)

a2
0z

(3)
2 + 2a0(a0a2 − a′0)z

(2)
2 +

[a2
0a

2
2 + a2

0a1 + 2a2
0a

′
2 − 3a0a

′
0a2 + 2(a′0)

2 − a0a
(2)
0 ]z′2+ (3.5.11)

[a2
0a1a2 − a3

0 + a2
0a2a

′
2 − a0a

′
0a

2
2 − 2a0a

′
0a

′
2 + 2(a′0)

2 − a0a
(2)
0 a2 + a2

0a
(2)
2 ]z2 = 0.
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Algorithm LODEF Schwarz [1989]:

Input: A linear differential equation

y(n) + an−1y
(n−1) + an−2y

(n−2) + · · · + a1y
′ + a0y = 0 (3.5.12)

with ai ∈ Q(x) for all i = 0, . . . , n− 1.

Output: A right-hand factor

y(m) + bm−1y
(m−1) + bm−2y

(m−2) + · · · + b1y
′ + b0y = 0

of order m < n with bi ∈ Q(x). If no genuine factor exists, the input equation is returned unchanged.

m := 0, j := 1

1. m := m+ 1. If m = n return the input equation.

2. Determine the associated equations.

3. Determine a solution of the equation for bm−1 found in step 2 with rational logarithmic derivative
and determine bm−1 from it. If none exists, go to step 1.

4. j := j + 1. If j > m go to step 7.

5. Determine the equation for bj .

6. Find rational solutions of the equation determined in step 5 and determine bj from it. If none
exists, go to step 1, else go to step 4.

7. From the coefficients bj , construct a factor of left side of Equation (3.5.12) and return.

The above yields all the possible candidates for right factors of order m, and trial divisions either
determine an actual factor, or prove that there is no such factor.

Example 9. Let us consider the equation

L2(y) = y(3) +
x− 1

x
y(2) +

x2 − 2

x
y′ +

2

x2
y = 0,

where

a2 =
x− 1

x
, a1 =

x2 − 2

x
, a0 =

2

x2
.

Differentiating a2, a1 and a0, we get

a′2 =
1

x2
, a′1 =

x2 + 2

x2
, a′0 =

−4

x3
, a

(2)
2 =

−2

x3
, a

(2)
1 =

−4

x3
, a

(2)
0 =

12

x4
.

In this case n = 3, and we can take m = 2. By Equation (3.5.10), the corresponding associated
equation for z1 is:

z
(3)
1 + 2

(
x− 1

x

)
z
(2)
1 +

(
x3 + x2 − 4x+ 2

x2

)
z′1 +

(
x3 − 2x+ 2

x2

)
z1 = 0. (3.5.13)

By Equation (3.5.10) the corresponding associated equation for z2 is:

z
(3)
2 +

2(x+ 1)

x
z
(2)
2 +

(x3 + x2 + 2x− 1)

x2
z′2 +

(x4 − x3 − x+ 1)

x3
z2 = 0. (3.5.14)

The generalized Riccati equation associated to Equation (3.5.13) is:

u(2) +

[
3u+ 2

(
x− 1

x

)]
u′ + u3 + 2

(
x− 1

x

)
u2 +

(
x3 + x2 − 4x+ 2

x2

)
u+

(
x3 − 2x+ 2

x2

)
= 0,
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which has solution

u = 1 ⇔ y′

y
= 1 ⇔ ω′

ωS3

= 1.

By the Liouville’s relation, Equation (3.1.4) , we obtain r1 = −1. To obtain the equation for r2,
substitute

z2 = ver1 = ve−1

in the associated Equation (3.5.14). We get

v(3) − (x− 2)

x
v(2) +

(x3 − x− 1)

x2
v′ − (x3 − 1)

x3
v = 0,

and its generalized Riccati associated equation is:

u(2) +

[
3u− (x− 2)

x

]
u′ + u3 − (x− 2)

x
u2 +

(x3 − x− 1)

x2
u− (x3 − 1)

x3
= 0.

The solution of the generalized Riccati equation is

v =
x2 − 1

x
, and then r2 =

x2 − 1

x
.

Therefore,

y(2) + y′ +
(x2 − 1)

x
y = ∂2(y) + ∂(y) +

(x2 − 1)

x
∂0(y) =

[
∂2 + ∂ +

(x2 − 1)

x
∂0

]
(y)

is a right factor of the equation. Now, in order to find a left factor in this case we subtract the derivative
of the right factor from the original equation and rearrange the terms to obtain:

− 1

x

(
y(2) + y′ +

(x2 − 1)

x
y

)
.

Then, ∂ − 1

x
is the left factor. We can factor L2(y), as:

L2 =

(
∂ − 1

x
∂0

)[
∂2 + ∂ +

(x2 − 1)

x
∂0

]
.

Remark 3.5.1. We have solved the last Riccati equation with the algorithm RiccatiRational of Schwarz
[1994], explained in section 3.

3.6 The Bronstein’s Algorithm

In this section we present the efficient algorithm due to Bronstein [1994], for computing the associated
equations appearing in the Beke factorization method. It produces several possible associated equations,
of which only the simplest can be selected for solving.

Let k be a field of characteristic 0, n,m ∈ Z with n ≥ m > 0, A ∈ kn×m a matrix with entries in
k, given by

A =




a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

...
...

an1 an2 . . . anm




n×m

and any set
S = { s1, . . . , sm }
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of m positive integers with
1 ≤ s1 < · · · < sm ≤ n.

Let AS denote the square sub-matrix obtained from the rows s1, . . . , sm

AS =




as11 as12 . . . as1m

as21 as22 . . . as2m

...
...

...
...

asm1 asm2 . . . asmm




m×m

and let ωAS
be its determinant. Let ′ : k → k be a derivation and consider L ∈ k(x)[∂],

L = ∂n + an−1∂
n−1 + · · · + a1∂ + a0∂

0.

Let K ⊃ k(x) be a Picard-Vessiot extension for L(y) = 0, V = {y ∈ K | L(y) = 0} the solution
space of L in K and G ⊂ GL(V ) the differential Galois group of L. Suppose that there exists another
operator M ∈ k(x)[∂] of order m < n with

M = ∂m + bm−1∂
m−1 + · · · + b1∂ + b0∂

0 = 0

such that M is a right factor of L. In other words, the scalar equation

M(y) = y(m) + bm−1y
(m−1) + · · · + b1y + b0y

(0) = 0

of order m has all its solutions in common with the scalar equation L(y) = 0. Let {y1, . . . , ym} ⊂ K
be the fundamental set of solutions of the scalar equation M(y) = 0, and define the n-th generalized
Wronskian matrix of {y1, . . . , ym} to be the n×m matrix:

W =




y1 y2 . . . ym

y′1 y′2 . . . y′m
...

...
...

...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
m




n×m

. (3.6.15)

Now, consider the following sets:

S0 = { 2, . . . ,m+ 1 },

Si = { 1, . . . , i } ∪ { i+ 2, . . . ,m+ 1 }, for i = 0, . . . ,m, and

Sm = { 1, . . . ,m }.

(3.6.16)

Then

ωSi
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 y2 . . . ym

y′1 y′2 · · · y′m
...

...
...

...

y
(i−1)
1 y

(i−1)
2 . . . y

(i−1)
m

y
(i+1)
1 y

(i+1)
2 . . . y

(i+1)
m

...
...

...
...

y
(m−1)
1 y

(m−1)
2 . . . y

(m−1)
m

y
(m)
1 y

(m)
2 . . . y

(m)
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In particular, WSm
is the usual Wronskian matrix of {y1, . . . , ym}. In fact, in this case we have

Sm = {1, . . . ,m} with n = m. Then

WSm
=




y1 y2 . . . ym

y′1 y′2 . . . y′m
...

...
...

...

y
(m−1)
1 y

(m−1)
2 . . . y

(m−1)
m




m×m
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and

ωSm
=

∣∣∣∣∣∣∣∣∣

y1 y2 . . . ym

y′1 y′2 . . . y′m
...

...
...

...

y
(m−1)
1 y

(m−1)
2 . . . y

(m−1)
m

∣∣∣∣∣∣∣∣∣

.

Example 10. If m = 2 then for i = 0, 1, 2 we have,

S0 = { 2, 3 }, S1 = { 1 } ∪ { 3 } = { 1, 3 }, and S2 = { 1, 2 }

where

ωS0
=

∣∣∣∣
y′1 y′2
y′′1 y′′2

∣∣∣∣ , ωS1
=

∣∣∣∣
y1 y2
y′′1 y′′2

∣∣∣∣ , and ωS2
=

∣∣∣∣
y1 y2
y′1 y′2

∣∣∣∣ .

If m = 3 then for i = 0, 1, 2, 3 we have,

S0 = { 2, 3, 4 }, S1 = { 1 } ∪ { 3, 4 } = { 1, 3, 4 }, S2 = { 1, 2 } ∪ { 4 } = { 1, 2, 4 },

and S3 = { 1, 2, 3 }
where

ωS0
=

∣∣∣∣∣∣∣

y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣∣
, ωS1

=

∣∣∣∣∣∣∣

y1 y2 y3
y
(2)
1 y

(2)
2 y

(2)
3

y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣∣
,

ωS2
=

∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(3)
1 y

(3)
2 y

(3)
3

∣∣∣∣∣∣
, and ωS3

=

∣∣∣∣∣∣

y1 y2 y3
y′1 y′2 y′3
y
(2)
1 y

(2)
2 y

(2)
3

∣∣∣∣∣∣
.

From Theorem 5 we know that, if the set {y1, . . . , ym} is a fundamental system of solutions of
M(y) = 0 then

ωSm
6= 0

and for each i = 0, . . . ,m− 1 exists then ci,0, . . . , ci,(n

m) ∈ K such that

(n

m)∑

j=0

ci,jω
(j)
si

= 0.

This means that each ωS satisfies a linear ordinary differential equation of order at most
(

n
m

)
with

coefficients in K. These equations are called the m-th associated equations of L.

Let S be a set of positive integers and assume that it is sorted in increasing order. Define the
following operations in S:

Increment the i-th element of S: S+
i = (S ∪ {1 + si}) \ { si }.

Replace the i-th element of S by l: S
[l]
i = (S ∪ {l}) \ { si }.

Number of elements of S which are strictly between l and si:

δ
[l]
i (S) = # { s ∈ S : l < s < si }.

We only need to manipulate the subsets of {1, . . . , n} for a given integer n (the order of the operator
we want to factorize), and we can apply the above set of operations to minors of a rectangular matrix:
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Let R be any commutative ring, and A an n×m matrix with coefficients in R where n ≥ m given
by:

A =




a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

...
...

an1 an2 . . . anm




n×m

.

For any set S = { s1, . . . , sm } of m integers with

1 ≤ s1 < s2 < · · · < sm ≤ n

we define

ω+
S,i =

{
ωA

S
+
i

if 1 + si /∈ S ∪ {n+ 1 }
0 if 1 + si ∈ S ∪ {n+ 1 }

. (3.6.17)

In particular, if 1 + si /∈ S ∪ {n+ 1 } then

ωA
S
+
i

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

as11 as12 . . . as1m

...
...

...
...

asi−11 asi−12 . . . asi−1m

a1+si1 a1+si2 . . . a1+sim

asi+11 asi+12 . . . asi+1m

...
...

...
...

asm1 asm2 . . . asmm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and for 1 ≤ l ≤ n we define

ω
[l]
S,i =





(−1)δ
[l]
i

(S)ωA
S
[l]
i

if l /∈ S \ { si }

0 if l ∈ S \ { si }
(3.6.18)

i.e., if l /∈ S ∪ { si } then

ω
[l]
S,i = (−1)δ

[l]
i

(S)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

as11 as12 . . . as1m

...
...

...
...

asi−11 asi−12 . . . asi−1m

al1 al2 . . . alm

asi+11 asi+12 . . . asi+1m

...
...

...
...

asm1 asm2 . . . asmm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The following two lemmas, corresponding to Lemma 1 and 2 of Bronstein [1994] respectively, give
us explicit formulas for the derivative of each ωS as a linear combination of the minors. The proofs are
straightforward from the properties of the determinants and the previous definitions, for that reason
we omit the details.

Lemma 3.

n /∈ S ⇒ ω′
S =

m∑

i=1

ω+
S,i.

Lemma 4. If there exist a1, . . . , an ∈ k such that

y
(n)
i = −

n∑

j=1

an−jy
(n−j)
i for i = 1, . . . ,m, then

n ∈ S ⇒ ω′
S =

m−1∑

i=1

ω+
S,i −

n−1∑

j=0

ajω
[j+1]
S,m .
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Let
L = ∂n + an−1∂

n−1 + · · · + a1∂ + a0∂
0

be a linear ordinary differential operator with coefficients in R. For any integer 0 < m < n we defined
the m-th associated system of L to be the first order linear system

ω′ = Mm(L)ω

where ω is the vector of all the m×m minors of W , the generalized Wronskian matrix of {y1, . . . , ym},
and L(yi) = 0 for 0 ≤ i ≤ m. Mm(L) is the matrix of coefficients of the derivatives of the minors as
linear combinations of the minors themselves.

The algorithm for computing the associated system is then:

Bronstein’s Algorithm, Bronstein [1994]:

Input: Two integers, one n (the order of the operator we want to factorize), and another m (the
order of the possible right factor).

Output: The m-th associated system of a generic operator of order n.

1. Enumerate all the subsets of m integers in { 1, . . . , n },

ω =
(
S1, . . . , S(n

m)

)T

.

2. For each i express ω′
Si

as
(ui1, . . . , uim ) · ω

for some uij ’s in K, using Lemma (3) if n /∈ Si, and Lemma (4) if n ∈ Si.

3. The matrix Mm(L) is then (uij) for i, j ∈
{

1, . . . ,
(

n
m

) }
.

Example 11. Let L = ∂4+a3∂
3+a2∂

2+a1∂+a0∂
0 be the generic operator of order 4. Let us compute

its second associated system.

Step 1: Order the subsets of size 2 of { 1, 2, 3, 4 }:

S1 = { 1, 2 }, S2 = { 1, 3 }, S3 = { 2, 3 }, S4 = { 1, 4 },

S5 = { 2, 4 }, and S6 = { 3, 4 }.

Step 2: Apply Lemma 3 to those subsets which do not contain 4:

ω′
S1

=

2∑

i=1

ω+
{1,2},i = ω+

{1,2},1 + ω+
{1,2},2.

By Equation (3.6.17):

ω+
{1,2},1 =





ω{1,2}+
1

if 2 /∈ { 1, 2 } ∪ { 5 }

0 if 2 ∈ { 1, 2 } ∪ { 5 }
,

that is,
ω+
{1,2},1 = 0

and

ω+
{1,2},2 =





ω{1,2}+
2

if 3 /∈ { 1, 2 } ∪ { 5 }

0 if 3 ∈ { 1, 2 } ∪ { 5 }
,
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where
ω+
{1,2},2 = ω{1,2}+

2
= ωS2

,

since
{ 1, 2 }+

2 = ({ 1, 2 } ∪ { 3 }) \ { 2 } = { 1, 3 }.
Therefore,

ω′
S1

= ωS2
= 0ωS1

+ 1ωS2
+ 0ωS3

+ 0ωS4
+ ωS5

+ 0ωS6
. (3.6.19)

Similarly,
ω′

S2
= ωS3

+ ωS4
= 0ωS1

+ 0ωS2
+ 1ωS3

+ 1ωS4
+ 0ωS5

+ 0ωS6
, (3.6.20)

and
ω′

S3
= ωS5

= 0ωS1
+ 0ωS2

+ 0ωS3
+ 0ωS4

+ 1ωS5
+ 0ωS6

. (3.6.21)

Now apply Lemma (4) to those subsets which do contain 4:

ω′
S4

=

1∑

i=1

ω+
{1,4},i −

3∑

j=0

ajω
[j+1]
{1,4},2

= ω+
{1,4},1 − a0ω

[1]
{1,4},2 − a1ω

[2]
{1,4},2 − a2ω

[3]
{1,4},2 − a3ω

[4]
{1,4},2.

By Equation (3.6.17):

ω+
{1,4},1 =





ω{1,4}+
1

if 2 /∈ { 1, 4 } ∪ { 5 }

0 if 2 ∈ { 1, 4 } ∪ { 5 }
,

where
ω+
{1,4},1 = ω{1,4}+

1
= ωS5

,

since
{ 1, 4 }+

1 = ({ 1, 4 } ∪ { 2 }) \ { 1 } = { 2, 4 }.
Applying Equation (3.6.18) to the other kind of sets we obtain:

ω
[1]
{1,4},2 =





(−1)δ
[1]
2 ({1,4})ω{1,4}[1]

2
if 1 /∈ { 1, 4 } \ { 4 }

0 if 1 ∈ { 1, 4 } \ { 4 }
,

that is,

ω
[1]
{1,4},2 = 0;

ω
[2]
{1,4},2 =





(−1)δ
[2]
2 ({1,4})ω{1,4}[2]

2
if 2 /∈ {1, 4} \ {4}

0 if 2 ∈ {1, 4} \ {4}
then,

ω
[2]
{1,4},2 = (−1)δ

[2]
2 ({1,4})ω{1,4}[2]

2

where
δ
[2]
2 ({1, 4}) = # ({ s ∈ { 1, 4 } : 2 < s < 4 }) = 0

and
{1, 4}[2]

2 = { 1, 2, 4 } \ { 4 } = { 1, 2 }.
Therefore

ω
[2]
{1,4},2 = ωS1

.

On the other hand,

ω
[3]
{1,4},2 = ωS2

and ω
[4]
{1,4},2 = ωS4

,
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whence
ω′

S4
= −a1ωS1

− a2ωS2
+ 0ωS3

− a3ωS4
+ 1ωS5

+ 0ωS6
. (3.6.22)

Similarly,
ω′

S5
= a0ωS1

+ 0ωS2
− a2ωS3

+ 0ωS4
− a3ωS5

+ 1ωS6
, (3.6.23)

and
ω′

S6
= 0ωS1

+ a0ωS2
+ a1ωS3

+ 0ωS4
+ 0ωS5

− a3ωS6
. (3.6.24)

Step 3: By Equations (3.6.19), (3.6.20), (3.6.21), (3.6.22), (3.6.23), and (3.6.24) the second asso-
ciated system for a generic operator of order four is:

ω′ =




0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0

−a1 −a2 0 −a3 1 0
a0 0 −a2 0 −a3 1
0 a0 a1 0 0 −a3



ω

where ω is the column vector

ω = (ωS1
, ωS2

, ωS3
, ωS4

, ωS5
, ωS6

)
T
.

In conclusion,

M2(L) =




0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0

−a1 −a2 0 −a3 1 0
a0 0 −a2 0 −a3 1
0 a0 a1 0 0 −a3



. (3.6.25)

Now we will see how to go from the associated system to the associated equations. We assume from
now on that the coefficients of the operator to factor are in some differential field k.

The following sequence of matrices:

Mm,1(L), . . . ,Mm,N (L)

where N =
(

n
m

)
is defined by Mm,1(L) = Mm(L), and

Mm,i(L) = M ′
m,i−1(L) +Mm,i−1(L)Mm(L), (3.6.26)

for 2 ≤ i ≤ N , where ′ means point-wise differentiation.

Example 12. For i = 2 we have

Mm,2(L) = M ′
m,1(L) +Mm,1(L)Mm(L).

Substituting Mm,1 we get

Mm,2(L) = M ′
m(L) +Mm(L)Mm(L), i.e.,

Mm,2(L) = M ′
m,1(L) + [Mm(L)]

2
.
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Example 13. Consider following the operator

L = ∂4 − 2x∂2 − 2∂ + x2∂0

with coefficients
a3 = 0, a2 = −2x, a1 = −2, and a0 = x2.

By the matrix (3.6.25), the associated matrix of the second associated system is:

M2(L) =




0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
2 2x 0 0 1 0
x2 0 2x 0 0 1
0 x2 −2 0 0 0



,

and by Equations (3.6.26) the corresponding sequence of matrices is:

M2,1(L) = M2(L),

M2,2(L) =




0 0 1 1 0 0
2 2x 0 0 2 0
x2 0 2x 0 0 1
x2 4 4x 2x 0 1
2x 2x2 0 0 2x 0
0 2x x2 x2 −2 0



,

M2,3 =




2 2x 0 0 2 0
2x2 4 6x 2x 0 2
2x 2x2 0 0 2x 0
6x 6x2 6 6 6x 0

2 + 2x2 6x 6x2 2x2 2 2x
0 2 + 2x2 0 4x 2x2 −2



,

M2,4 =




2x2 4 6x 2x 0 2
8x 8x2 6 6 8x 0

2 + 2x3 6x 6x2 2x2 2 2x
18 + 6x3 30x 18x2 6x2 18 6x

12x2 8 + 8x3 18x 10x 8x2 4
8x+ 2x4 12x2 6 + 6x3 6 + 2x3 8x 2x2



,

M2,5 =




8x 8x2 6 6 8x 0
20 + 8x3 36x 24x2 8x2 20 8x

12x2 8 + 8x3 18x 10x 8x2 4
48x2 48 + 24x3 90x 42x 24x2 24

44x+ 8x4 60x2 18 + 24x3 18 + 8x3 44x 8x2

20 + 20x3 44x+ 8x4 42x2 18x2 20 + 8x3 12x



,

and

M2,6 =




20 + 8x3 36x 24x2 8x2 20 8x
60x2 56 + 32x3 108x 52x 32x2 28

44x+ 8x4 60x2 18 + 24x3 18 + 8x3 44x 8x2

180x+ 24x4 228x2 90 + 72x3 90 + 24x3 180x 24x2

80 + 92x3 200x+ 32x4 204x2 84x2 80 + 32x3 60x
116x2 + 8x5 64 + 100x3 144x+ 24x4 80x+ 8x4 84x2 32 + 8x3



.

Proposition 4. Bronstein [1994]. For each i ≥ 2 we have

ω(i) = Mm,i(L)ω.
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For any subset S of m integers in { 1, . . . , n }, we write ω∗
S for the column vector

(
ω′

S , ω
′′
S , . . . , ω

(N)
S

)T

(3.6.27)

and nS for the index of S in the chosen ordering of those subsets. Define the matrix AS to be the
N ×N matrix such that the i-th row of AS is the nS-th row of Mm,i for each i. Then we have

ASω = ω∗
S (3.6.28)

and the following situations:

Case 1: If AS is non-singular then the nS-th equation in the system

ωS = A−1
S ω∗

S (3.6.29)

is the associated equation for ωS , while the other equations give formulas for all the other ωT ’s as

linear combinations of ω′
S , . . . , ω

(N)
S .

Case 2: If AS is singular then let (u1, . . . , uq ) be the kernel of the transpose of AS . Since each
ui ∈ KN corresponds to a linear dependence of the rows of AS , each dot product

ui.ω
∗
S (3.6.30)

gives an associated equation for ωS . If q = N − rank(AS) > 1, we obtain an overdetermined system of
associated equations for ωS , which is handled as one equation with extra conditions.

Lemma 5. Bronstein [1994]. Let W as in Equation (3.6.15), and suppose that there exist b1, . . . , bm ∈
K such that

y
(m)
i = −

m∑

j=1

bm−jy
(m−j)
i for i = 1, . . . ,m.

Then, for any set S of m integers in { 1, . . . , n } there exist cs ∈ K with

ωS = cSω{1,...,m}.

As a consequence, either ωS = 0 or
ω′

S

ωS
∈ K for each S.

Procedure. Bronstein [1994]: To complete the algorithm, we search for right-factors of L of order
m < n. If there is such a factor, say M , we consider a fundamental set of solutions { y1, . . . , ym } of
the equation M = 0. In this case

ω{1,...,m} 6= 0

and we compute the associated system and the matrices Mm,i(L) given in Equation (3.6.26). We look
for a subset S such that AS is non-singular.

Case 1: If AS0
is non-singular for some S0, then we compute the associated equations for ωS0

as
described in Equation (3.6.29). We are interested only in solutions whose logarithmic derivatives are
in K, otherwise, by Lemma (5), ωS0

= 0.

Since ω{1,...,m} is a linear combination of ω′
S0
, . . . , ω

(N)
S0

, ω{1,...,m} = 0, which implies that L has no
right factor of order m. Otherwise, we do not need to compute or solve any other associated equation,

as we have expressions available for all the other ωT ’s as linear combinations of ω′
S0
, . . . , ω

(N)
S0

, and the
candidates for ωS0

yield all the possible candidate factors.

Case 2: If AS is singular for every S, then we need associated equations for ωS0
, . . . , ωSm

, where
Si is given by Equation (3.6.16). We first compute the associated equation for ωSm

= ω{1,...,m} as
described in Equation (3.6.29). As before we search only for solutions with logarithmic derivatives in
K.
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By Gaussian elimination on ASm
, we get an invertible matrix B and an upper triangular matrix

U such that ASm
= BU , and we can obtain expressions for some other ωSi

’s as linear combinations of

ω′
Sm
, . . . , ω

(N)
Sm

from the equations

Uω = B−1ω∗
Sm
.

Then we generate the associated equations for the next required ωSi
, and either look for its solutions

with logarithmic derivatives in K, or replace ωSm−i
by

(−1)iω{1,...,m}bi

and search for all the solutions bi in K. We repeat this process until candidates for all the ωSi
’s are

found. Note that after each step, the decomposition

ASi
= BU

may yield expressions for the other ωSi
’s.

We can summarize the algorithm in the following steps:

Algorithm 2. The Beke-Bronstein Algorithm, Bronstein [1994]:

Input: A linear differential operator

∂n + an−1∂
n−1 + · · · + a1∂ + a0∂

0

with coefficients in the field k.

Output: A right factor of order m < n

∂m + bm−1∂
m−1 + · · · + b1∂ + b0∂

0,

with coefficients in k. If no genuine factor exists the input operator is returned unchanged.

Look for right factors of order m (1 ≤ m ≤ n − 1), using the pre-computations provided by the
Bronstein’s Algorithm, as follows:

1. Build an equation whose solution space is spanned by all the Wronskians of order m.

2. Solve for exponential solutions.

3. Test which solutions are Wronskians, and obtain a right factor.

Example 14. Let us consider again the operator of Example (13)

L = ∂4 − 2t∂2 − 2∂ + t2∂0.

Order the 2-element subsets of of {1, 2, 3, 4} as in Example (11), that is,

S1 = { 1, 2 }, S2 = { 1, 3 }, S3 = { 2, 3 }, S4 = { 1, 4 },

S5 = { 2, 4 }, and S6 = { 3, 4 }.
According to Equation (3.6.27) we have the following column vectors:

ω∗
S1

=
(
ω′

S1
, ω′′

S1
, ω′′′

S1
, ω

(4)
S1
, ω

(5)
S1
, ω

(6)
S1

)T

,

ω∗
S2

=
(
ω′

S2
, ω′′

S2
, ω′′′

S2
, ω

(4)
S2
, ω

(5)
S2
, ω

(6)
S2

)T

,

ω∗
S3

=
(
ω′

S3
, ω′′

S3
, ω′′′

S3
, ω

(4)
S3
, ω

(5)
S3
, ω

(6)
S3

)T

,
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ω∗
S4

=
(
ω′

S4
, ω′′

S4
, ω′′′

S4
, ω

(4)
S4
, ω

(5)
S4
, ω

(6)
S4

)T

,

ω∗
S5

=
(
ω′

S5
, ω′′

S5
, ω′′′

S5
, ω

(4)
S5
, ω

(5)
S5
, ω

(6)
S5

)T

,

ω∗
S6

=
(
ω′

S6
, ω′′

S6
, ω′′′

S6
, ω

(4)
S6
, ω

(5)
S6
, ω

(6)
S6

)T

. (3.6.31)

By the sequence of matrices M2,i for i = 1, . . . , 6 of Example (12),

A1 =




0 1 0 0 0 0
0 0 1 1 0 0
2 2x 0 0 2 0

2x2 4 6x 2x 0 2
8x 8x2 6 6 8x 0

20 + 8x3 36x 24x2 8x2 20 8x



,

A2 =




0 0 1 1 0 0
2 2x 0 0 2 0

2x2 4 6x 2x 0 2
8x 8x2 6 6 8x 0

20 + 8x3 36x 24x2 8x2 20 8x
60x2 56 + 32x3 108x 52x 32x2 28



,

A3 =




0 0 0 0 1 0
x2 0 2x 0 0 1
2x 2x2 0 0 2x 0

2 + 2x3 6x 6x2 2x2 2 2x
12x2 8 + 8x3 18x 10x 8x2 4

44x+ 8x4 60x2 18 + 24x3 18 + 8x3 44x 8x2



,

A4 =




2 2x 0 0 1 0
x2 4 4x 2x 0 1
6x 6x2 6 6 6x 0

18 + 6x3 30x 18x2 6x2 18 6x
48x2 48 + 24x3 90x 42x 24x2 24

180x+ 24x4 228x2 90 + 72x3 90 + 24x3 180x 24x2



,

A5 =




x2 0 2x 0 0 1
2x 2x2 0 0 2x 0

2 + 2x3 6x 6x2 2x2 2 2x
12x2 8 + 8x3 18x 10x 8x2 4

44x+ 8x4 60x2 18 + 24x3 18 + 8x3 44x 8x2

80 + 92x3 200x+ 32x4 204x2 84x2 80 + 32x3 60x



,

and

A6 =




0 x2 −2 0 0 0
0 2x x2 x2 −2 0
0 2 + 2x3 0 4x 2x2 −2

8x+ 2x4 12 t2 6 + 6x3 6 + 2x3 8x 2x2

20 + 20x3 44x+ 8x4 42x2 18x2 20 + 8x3 12x
116x2 + 8x5 64 + 100x3 144x+ 24x4 80x+ 8x4 84x2 32 + 8x3



,

where A6 is the only invertible matrix. Its inverse is

A−1
6 =




0 1
2 −x

3
x2(8x3−31)2

30(x3−2)
(31x6−56x3+48)
60(x6−10x3+16)

−x(2x6−6x3+19)
30(x6−10x3+16)

0 0 1
6

−x(2x3−5)
10(x3−2)

−x2(11x3−19)
30(x6−10x3+16)

(3x6−8x3+10)
60(x6−10x3+16)

− 1
2 0 x2

12
−x3(2x3−5)
20(x3−2)

−x4(11x3−19)
60(x6−10x3+16)

x2(3x6−8x3+10)
120(x6−10x3+16)

1
2 0 −x2

12
(6x6+x3−20)

60(x3−2)
x(11x6+7x3−64)
60(x6−10x3+16)

−x2(x6−6)
40(x6−10x3+16)

0 − 1
2

x
6

−x2(x3−5)
15(x3−2)

−x3(3x3−2)
20(x6−10x3+16)

x(x6−x3+10)
60(x6−10x3+16)

t −x2

2
x3

6 − 1
3

−x(2x6−20x3+5)
30(x3−2)

−3x2(x6−4x3+10)
20(x6−10x3+16)

(x9−6x6+30x3+10)
60(x6−10x3+16)




.
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By Equations (3.5.13), (3.6.31) and (3.6.29)

ωS6
= A−1

S6
ω∗

S6
.

By Equation (3.6.29), from the sixth row of A−1
6 we obtain the following associated equation for

ωS6
:

ωS6
= xω′

S6
− 1

2
x2ω′′

S6
+

1

6
(x3 − 2)ω′′′

S6
− x(2x6 − 20x3 + 5)

30(x3 − 2)
ω

(4)
S6

−3x2(x6 − 4x3 + 10)

2p(x)
ω

(5)
S6

+
x9 − 6x6 + 30x3 + 10

6p(x)
ω

(6)
S6
,

where p(x) = 10(x6 − 10x3 + 16). In particular,

x9 − 6x6 + 30x3 + 10

6p(x)
ω

(6)
S6

=
3x2(x6 − 4x3 + 10)

2p(x)
ω

(5)
S6

+
x(2x6 − 20x3 + 5)

30(x3 − 2)
ω

(4)
S6

(3.6.32)

−1

6
(x3 − 2)ω′′′

S6
+

1

2
x2ω′′

S6
− xω′

S6
+ ωS6

.

For the singular matrices, by Equation (3.6.32), the associated equations for ωS1
, ωS2

, and ωS3
are

given by the the first, second and third rows of A−1
S6

, according to the chosen ordering of the sets, which
yield formulas for the other minors in terms of ωS6

and its derivatives:

ωS1
= −x(2x

6 − 6x3 + 19)

3p(x)
ω

(6)
S6

+
(31x6 − 56x3 + 48)

6p(x)
ω

(5)
S6

+
x2(8x3 − 31)

30(x3 − 2)
ω

(4)
S6

− 1

3
xω′′′

S6
+

1

2
ω′′

S6
,

ωS2
=

(3x6 − 8x3 + 10)

6p(x)
ω

(6)
S6

− x2(11x3 − 19)

3p(x)
ω

(5)
S6

− x(2x3 − 5)

10(x3 − 2)
ω

(4)
S6 +

1

6
ω′′′

S6
,

ωS3
=
x2(3x6 − 8x3 + 10)

12p(x)
ω

(6)
S6

− x4(11x3 − 19)

6p(x)
ω

(5)
S6

− x3(2x3 − 5)

20(x3 − 2)
ω

(4)
S6

+
1

12
x2ω′′′

S6
− 1

2
ω′

S6
.

As the space of solutions of Equation (3.6.30) is generated by the functions x3 − 2, x2 and x, the
general solution is given by

ωS6
= ax3 + bx2 + cx− 2a,

where a, b, and c are arbitrary constants. Hence

ω′
S6

= 3ax2 + 2bx+ c, ω′′
S6

= 6ax+ 2b, ω′′′
S6

= 6a,

and ω
(4)
S6

= ω
(5)
S6

= ω
(6)
S6

= 0.

Therefore,

ωS1
= ax+ b, ωS2

= a, and ωS3
= −ax2 − bx− c

2
.

Now, if ∂2 + b1∂ + b2 is a possible right factor of L, then by Equation (3.1.3) for our particular
enumeration of the sets S we get

b1 = −ωS2

ωS1

= − a

ax+ b
, and b2 =

ωS3

ωS1

=
−ax2 − bx− c/2

ax+ b
.

Compare with Example (10) for m = 2 in the reverse ordering from 3 to 1. Finally, dividing the
operator L by

∂2 − a

ax+ b
∂ +

−ax2 − bx− c/2

ax+ b

on the right we obtain the following quotient q and the remainder r:

q = ∂2 +
a

(ax+ b)
∂ +

[−2a2x3 − 4abx2 − 2b2x− 2a2 + acx+ bc

2(ax+ b)2

]
,
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and r =
(4ab+ c2)

4(ax+ b)2
∂.

For exact right division we get the conditions:

4ab+ c2 = 0 and either a 6= 0 or b 6= 0.

Let us take a = 0. Now, in order to have a factorization of the form

L = ∂4 − 2x∂2 + x2 = LlLr,

with

Ll = ∂2 − c2

(c2x− 4b2)
∂ −

[
c4x3 − 8b2c2x2 + 2b(8x3 + c3)x+ c4 − 8b3c

(c2x− 4b2)2

]
,

and

Lr = ∂2 − c2

(c2x− 4b2)
∂ −

(
c2x2 − 4b2x− 2bc

c2x− 4b2

)
,

where b and c are constants not both 0, we realize that for b = 1 and c = 0

Ll = ∂2 − x and Lr = ∂2 − x

satisfy the requirements. In conclusion,

∂4 − 2x∂2 − 2∂ + x2 = (∂2 − x)(∂2 − x).



4. ADVANCED METHODS

In this chapter we will present methods for factoring linear differential operators which are not based
on Beke’s algorithm. We discuss Singer’s eigenring factorization method, introduced in Singer [1996],
Newton polygons introduced in Malgrange [1979], and van Hoeij’s factorization methods introduced
in van Hoeij [1997a] and in van Hoeij [1997b].

Let Kp denote the field with p elements. The core of Berlekamp’s algorithm for factoring a squarefree
polynomial f ∈ Kp[x] is the structure of the quotient

A = Kp[x]/Kp[x] · f.

In particular, if f = f1 · · · fm where the fi are pairwise relatively prime irreducible polynomials of
degree di, then A is the direct sum of fields,

A = Kpd1 ⊕ · · · ⊕ Kpdm .

If Φ is the map Φ : x 7→ xp − x, then dimKp
(ker Φ) = m. Therefore, computing the kernel of the

map Φ gives a quick way of determining the number of factors of f and, in particular, irreducibility.

Singer tried to generalize this idea to non-commutative polynomial rings and faced various problems.
For example, let k be a field and σ a non-trivial automorphism of k and consider the ring k[x;σ] of
polynomials in x over k with the usual addition and multiplication defined by

x · a = σ(a) · x for all a ∈ k.

Let f ∈ k[x;σ] and consider the left ideal k[x;σ] · f . The quotient

M = k[x;σ]/k[x;σ] · f

is a left k[x;σ]-module without a cononical ring structure. Singer replaces M with the ring E(M) of
k[x;σ]-endomorphisms of M , called the eigenring of k[x;σ] · f . In Griesbrecht [1992] it is shown that
f is irreducible if and only if E(M) has no zero divisors (and in fact is a field).

Considering the ring D = k[∂] one can start to proceed as with the ring k[x;σ]. In contrast to k[x;σ],
D has in general a poor supply of two sided ideals. Furthermore, one cannot completely rely on these
rings to determine irreducibility. Singer therefore looked beyond purely ring theoretic properties to find
criteria for irreducibility. The key fact is that to each linear operator L ∈ D one can associate a linear
algebraic group Gal(K/k), the Galois group of L(y) = 0, where K is its Picard-Vessiot extension, and
that L’s factorization properties are intimately related with the structure and representation theory
of Gal(K/k).

There are distinguished two cases:

1. Gal(K/k) is a reductive group, and

2. Gal(K/k) is a non-reductive group.

When Gal(K/k) is a reductive group, properties of EndD(D/D · L) determine if L is reducible.

Recall that a linear algebraic group is a subgroup or the group of invertible n×n matrices (under
matrix multiplication) that is defined by polynomial equations. An algebraic group is a group that
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caries the structure of an algebraic variety, such that the multiplication and inverse are given by regular
functions.

A reductive group is an algebraic group G such that the unipotent radical of the radical of G is
trivial and G 6= {e} is connected. The unipotent radical of G is the normal subgroup of all unipotent
elements in the radical of G.

The radical of G is the identity component of the unique maximal normal solvable subgroup of G,
which is automatically closed in the Zariski topology. The identity component of G, as a topological
group, denoted by G◦ is the unique connected component that contains the identity element e of G.
An algebraic group G is connected when G = G◦.

Now for an introduction of the other methods, assume that f ∈ C[[x, y]], the ring of formal power
series in the indeterminates x and y with complex number coefficients, and suppose that we are
interested in solving for y the equation f(x, y) = 0, to find a sort of series in x, y(x) such that
f (x, y(x)) = 0. Suppose that

f =
∑

j,i>0

Aj,ix
jyi

is an element of C[[x, y]], and plot on R2 the discrete set of points with non-negative integral coordinates

∆(f) = {(j, i) |Aj,i 6= 0}
called the Newton diagram of f . The idea is to have a polygonal line whose vertices are points of
∆(f) and whose sides leave the origin of coordinates and the whole of ∆(f) in different half-planes, so
that we obtain the set

∆′(f) = ∆(f) + (R+)2.

Then consider the convex hull ∆(f) of ∆′(f) (i.e., the minimal convex set containing ∆′(f)); the
border of ∆(f) consists of two half-lines parallel to the axis and a polygonal line (maybe reduced to
a single vertex) joining them. The Newton polygon of f , denoted by N(f), is this polygonal line
(which has their sides oriented from left to right and from top to bottom).

If the vertices of a Newton polygon, taken according to orientation, are

Pl = (ml, nl), l = 1, . . . , r,

then
ml < ml+1 and nl > nl+1, l = 1, . . . , r − 1.

The slopes of the Newton polygon are

µl =
nl+i − nl

ml+1 −ml
for l = 1, . . . , r − 1.

The height h(N) and the width w(N) of the Newton polygon N are defined, respectively, as the
maximal ordinate and the maximal abscissa of its vertices, that is,

h(N) = n1 and w(N) = m1.

In particular, height and width of the Newton polygons are additive functions. If n > 1 is an integer,
consider C

(
(x1/n)

)
as an extension of C((x)), consistining of elements of the form

s =
∑

j≥d

ajx
j/n.

Let C 〈〈x〉〉 stand for the union of all C
(
(x1/n)

)
. In the sequel C 〈〈x〉〉 will be taken as the set of

all formal Laurent series
s =

∑

j>>d

ajx
j/n with d, n ∈ Z, and n ≥ 1.

Define the order of s to be ordx(s) = ∞ if s = 0 and

ordx(s) =
min{ j | aj 6= 0 }

n

otherwise. The fractionary power series s with ordx(s) > 0 are called Puiseux series. The main
properties of Puiseux series are:
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• A Puiseux series s ∈ C
[
[x1/n]

]
is a y-root of f ∈ C [[x, y]] if and only if y − s divides f in

C
[
[x1/n, y]

]
.

• Assume that the Newton polygon N(f) has a positive height, otherwise it has no y-roots, with
the Newton-Puiseux algorithm, which is an inductive procedure, we can find all y-roots of f .

• The series given rise up to by the Newton-Puiseux algorithm are Puiseux series.

• (Puiseux’s theorem) If f ∈ C[[x, y]] and h (N(f)) > 0, then there is a Puiseux series s which
is a y-root of f , namely f (x, s(x)).

As a consequence the ring C [[x, y]] is a unique factorization domain, and the field C 〈〈x〉〉 is alge-
braically closed.

For further details about the Newton polygons and the Newton-Puiseux algorithm we recommend
the book of Casas-Alvero [2000].

A generalization of Newton polygons to the ring k((x))[∂] is given in Malgrange [1979]. He shows
that in the following two cases a differential operator L ∈ k((x))[∂] is reducible in this ring and how a
factorization can be computed:

1. An operator with broken Newton polygon (i.e., more than one slope).

2. An operator with one slope > 0 where the Newton polynomial is reducible and not a power of
an irreducible polynomial.

More recently, van Hoeij [1997a] unified these two cases of factorization and the factorization of
regular singular operators (operators with only one slope µ = 0 in the Newton polygon), in the so
called coprime index 1 factorizations.

Since the elements of k((x)) consist of infinitely many terms only a finite number of them can be
computed. van Hoeij uses local factorization, whose main ingredients are Newton polygons and Newton
polynomials, to factor L ∈ k((x))[∂] into L = QR with some accuracy. Coprime index 1 factorization
means that gcd(Q,R) = 1 and then the factorization can be lifted by the usual Hensel lifting algorithm.

4.1 The Singer’s Factorization Method

In this section we will present an exposition about the first method for factoring linear differential
operators not based in the Beke’s algorithm, the Singer’s eigenring factorization method, which was
introduced by Singer [1996].

The eigenring ED(L) of a differential equation L(y) = 0, is the finite dimensional C-algebra of all
endomorphisms of the equation, where C is the subfield of constants of k. It is the set of all rational
solutions of another differential equation associated to L. Singer gives the following method for its
computiation:

Suppose the dimension of ED(L) is more than 1, then take an element R ∈ k[∂] in ED(L) which is
not a constant (we should take R of order less than ord(L)). Now R is a k-linear map from V (L), the
space of solutions of the equation, to V (L). We can obtain a basis of V (L) by computing the matrix
of the map R in this basis and take an eigenvalue c ∈ k. Then

gcrd(R− c, L) ∈ k[∂]

is a non-trivial factor of L.

Let (k, ′) be a differential field of characteristic 0 with algebraically closed field of constants C. Let
D = k[∂] be the ring of linear ordinary differential operators, that is, the non-commutative polynomial
ring in the variable ∂, where

∂a = a∂ + a′ for all a ∈ k.
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For any L ∈ D given by
L = an∂

n + · · · + a0∂
0 with an 6= 0,

the order of L, denoted by ord(L) is said to be the integer n and ord(0) = −∞. The ring D is both
a left and right Euclidean ring, that is, for any L1 6= 0, L2 ∈ D there exist unique Qr, Rr, Ql, Rl ∈ D
with

ord(Rr), ord(Rl) < ord(L1)

such that
L2 = QrL1 +Rr and L2 = L1Ql +Rl.

For k ⊂ K, the space of solutions of L(y) = 0 in K is denote by SolnK(L). If

dimC SolK(L) = ord(L),

then we will say that K contains a full set of solutions of L.

Recall that an element L ∈ D of positive order is said to be reducible if L = L1L2 for some
operators L1, L2 ∈ D of positive order. In this case, L1, L2 are called factors of L. If L is not reducible,
we say that it is irreducible.

Given two operators L1, L2 ∈ D the greatest common right divisor of L1 and L2, denoted by
gcrd(L1, L2) is defined to be the monic non-zero operator of greatest order which divide both operators
L1 and L2 on the right.

Two operators L1, L2 ∈ D are said to be relatively prime if there is no operator of positive order
dividing both on the right.

Given two operators L1, L2 ∈ D the least common left multiple of L1 and L2, denoted by
[L1, L2 ]l is defined to be the monic non-zero operator of smallest order such that both L1 and L2

divide this operator on the right. One can extend this definition to the least common left multiple
[L1, . . . , Lm ]l of any finite set of operators {L1, . . . , Lm }.

An operator L ∈ D is said to be completely reducible if it is a k-left multiple of the least common
left multiple of a set of irreducible operators.

The module D/D · L is not a ring and one cannot apply Berlekamp techniques directly to this
module. A substitute for this module is the ring EndD(D/D · L).

Let L1, L2 ∈ D and denote by R the equivalence class of R in D/D · L2, and define

E(L1, L2) = {R ∈ D/D · L2 |L1R is divisible on the right by L2 }.

It is easy to show that this condition depends only on the equivalence class and not on the choice
representative. Note that ED(L1, L2) is closed under addition and multiplication by elements in C.

If L1 = L2 = L, one can define a multiplication on this vector space and the resulting ring is called
the (left) eigenring of L and is denoted by ED(L), i.e.

ED(L) = {R ∈ D/D.L | LR = SL, for some S ∈ D }

The multiplication on ED(L) is defined in the following way: for R1, R2 ∈ ED(L), let

R1 ·R2 = R1R2.

This shows that ED(L) is a C-algebra. More important, if L is a completely reducible operator,
then:

• L is irreducible in k [∂] if and only if ED(L) = C.
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• If ED(L) contains a non-trivial element R, then gcrd(R− c, L) must be a non-trivial right factor
of L for some c ∈ C.

Factoring completely reducible operators thus reduces to computing ED(L), which is done in the
following way:

Let n = ord(L), A be the n× n companion matrix corresponding to L,

B = In ⊗A−AT ⊗ In,

where In is the n× n identity matrix, and let Y ∈ kn2

be the rational solution of Y ′ = BY . If,

R = y0 + yn∂ + y2n∂
2 + · · · + y(n−2)n∂

n−2 + y(n−1)n∂
n−1

then R ∈ ED(L), where Y = ( y0, y1, . . . , yn2−n ).

If one has found an element R ∈ ED(L), R of order greater than or equal to 1, then one can produce
a non-trivial factor of L. To do this, let R ∈ ED(L) be of ord(R) ≥ 1. Then LR is divisible on the right
by L. Therefore, if z is a solution of L(y) = 0, we have that R(z) is again a solution of L(y) = 0. This
implies that z 7→ R(z) is a linear map of the solution space of L(y) = 0 into itself. If c is an eigenvalue
of this map then

(R− c)(y) = 0 and L(y) = 0

have a common solution. Since 0 < ord(R − c) < n, the gcrd(R − c, L) will be a non-trivial factor of
L. Therefore, given R ∈ ED(L), the condition

gcrd(R− c, L) 6= 1

defines a non-empty set of at most n constants and for each of these

gcrd(R− c, L)

will be a non-trivial factor of L. The advantage of this approach is that the system Y ′ = BY is easy
to compute and that it is a first order system.

Example 15. Consider the operator L = ∂2 in k = C(x). Its corresponding companion matrix is

A =




0 1

0 0


 .

The matrix B = I2 ⊗A−AT ⊗ I2, where I2 is the 2 × 2 identity matrix, is

B =




0 1 0 0

0 0 0 0

−1 0 0 1

0 −1 0 0




.

We try to find a rational solution Y ∈ C(x)2
2

with Y = ( y0, y1, y2, y3 ) of the system Y ′ = BY ,
i.e., 



y′0

y′1

y′2

y′3




=




0 1 0 0

0 0 0 0

−1 0 0 1

0 −1 0 0







y0

y1

y2

y3




⇒





y′0 = y1

y′2 = −y0 + y3

y′3 = −y1

⇒
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



y0 =
∫
y1dx+ c3

y3 = −
∫
y1dx+ c2

y2 =
∫ (

−
∫
−y1dx− c3 −

∫
y1 + c2

)
dx+ c1

.

If y1 = 0 and c3 = −1 then by the first equation y0 = −1. On the other hand, if c2 = 0 in the
second equation then y3 = 0 and y2 = x+ c3, taking c3 = 0 we get y2 = x. Whence Y = (−1, 0, x, 0 ).
If

R = y0 + y2∂ = −1 + x∂

then R ∈ E(∂2) with ord(R) ≥ 1. In other words, L has a right-hand factor. To find it, the condition

gcrd(x∂ − 1 − c, ∂2) 6= 1

gives us the non-empty set { c1 = 0, c2 = −2 } such that

gcrd(R− ci, L)

is a non-trivial factor of L. Therefore,

∂2 = ∂ · ∂ =

(
∂ +

1

x

)
·
(
∂ − 1

x

)
.

4.2 Factorization via Newton Polygons

The Newton polygon is a tool for understanding the behavior of polynomials over local fields. In the
original case, as we have seen in the introduction of this chapter, the local field of C[[x]] is its field of
fractions C((x)). The Newton polygon is an effective device for understanding the leading terms of

y(x) =
∑

j≥d

ajx
j/n

of the Puiseux series expansion solutions to equations

f (x, y(x)) = 0,

where f ∈ C[[x, y]]; that is, implicitly defined algebraic functions. The exponents j/n depending on
the chosen branch, and the solutions themselves are power series in C[[x1/n]] for a denominator n cor-
responding to the branch. The Newton polygon gives an effective, algorithmic approach to calculating
n and hence the y-roots of f .

In this section we present the use of the Newton polygons for factoring linear differential operators,
following the exposition of van der Put and Singer [2003], which is due to the works of Malgrange
[1979] and Ramis [1978].

Let k be a field of characteristic 0. A typical non-zero element a(x) ∈ k((x)) can be written as

a(x) = xm
∑

j≥0

ajx
j =

∑

j≥m

aj−mx
j where a0 6= 0 and m ∈ Z.

The order of a, denoted by ord(a), is the exponent m of the first non-vanishing term of a. By
definition the ord(0) = ∞.

Once again we consider k((x)) as a differential field equipped with derivation ′ = d/dx. The ring
k((x))[∂] is governed by the rule

∂x = x∂ + 1.
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Consider a new indeterminate δ := x∂, actually δ ∈ k((x))[∂], and denote k((x))[δ] as the skew ring
of linear differential operators in the indeterminate δ. Then, we have

δx = xδ + x in k((x))[δ].

By the isomorphism k((x))[δ] ∼= k((x))[∂] which sends δ to x∂ and any other arbitrary operator

∑

i

aiδ
i 7→

∑

i

ai(x∂)i,

we can represent differential operators in the form

L = anδ
n + · · · + a0δ

0 with an 6= 0. (4.2.1)

This form has several advantages, in particular if

ai =
∑

j>>−∞
ajix

j for all i,

then by the isomorphism k((x))[δ] ∼= k[δ]((x))

L =

n∑

i=0




∑

j>>−∞
ajix

j


 δi =

∑

0≤i≤n,j>>−∞
ajix

jδi =
∑

j>>−∞
xjL(j)(δ).

where

L(j)(δ) =

n∑

i=0

ajiδ
i ∈ k[δ] for j >> −∞

are polynomials in δ of degree bounded by the ord(L). With this we can obtain later the multiplication
formula (

∑

i

xiL1(i)(δ)

)

∑

j

xjL2(j)(δ)


 =

∑

m

xm
∑

i+j=m

L1(i)(δ + j)L2(j)(δ).

Roughly speaking, we can construct the Newton polygon N(L) of f in the following way:

The Newton polygon N(L) of an operator L is the convex hull of the union of all rectangles with
vertices (0, j), (i, j), (i,∞) and (0,∞), for all points (i, j) for which xjδi has a non-zero coefficient in
L (i.e., the minimal convex set containing all these rectangles)”.

Now, we are going to formalize this construction, in order to do this we need some basic definitions
like polyhedral sets and Minkowski sum, and certain ordering on the points of the plane R2.

A polyhedral set is a subset of R2 that is the intersection of a finite number of closed half-planes.
For practical reasons, we will consider connected polyhedral sets with non-empty interior.

The boundary of such a set is the union of a finite number of closed line segments called edges.
The endpoints of the edges are called vertices or extremal points.

The vertices and the edges of a polyhedral set are collectively referred to as the faces of the set.

Given two subsets M1 and M2 in R2 the Minkowski sum of these two sets is the result of adding
every element of M1 to every element of M2, i.e., the set

M1 +M2 = {m1 +m2 | m1 ∈M1,m2 ∈M2 }.

In particular, any face of the sum M1 +M2 is the sum of the faces of M1 and M2. The same is true
for vertices.
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Fig. 4.1: Sets M1 and M2, resp.
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Fig. 4.2: M1 + M2

For example, if we have two 2-simplices (triangles) in R2, with points represented by

M1 = { (1, 0), (0, 1), (0,−1) } and M2 = { (0, 0), (1, 1), (1,−1) },

as we have in Figure (4.2), then their Minkowski sum is

M1 +M2 = { (1, 0), (2, 1), (2,−1), (0, 1), (1, 2), (1, 0), (0,−1), (1, 0), (1,−2) }.

as we can see in Figure (4.2).

Define the following partial order in R2

(x1, y1) ≥ (x2, y2) ⇐⇒ y1 ≥ y2 and x1 ≤ x2.

The monomials in D = k((x))[δ] are the elements of the form xmδn. The Newton polygon N(L)
of L 6= 0 is the convex hull of the set

{ (x, y) ∈ R2 | there is xmδn in L with (x, y) ≥ (n,m) }.

N(L) has finitely many extremal points

{ (n1,m1), . . . , (nr+1,mr+1) }

with
0 ≤ n1 ≤ n2 ≤ · · · ≤ nr+1 = n.

The positive slopes of L are

µ1 < · · · < µr with µi =
mi+1 −mi

ni+1 − ni
and µr+1 = ∞.

If n1 > 0 then one adds a slope µ0 and in this case we put n0 = 0. This definition has the property
that all the slopes are ≥ 0.

If L has only one slope µ = 0 then L is called regular singular.

Let f : [0, n] −→ R be given by
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1. f(n0) = f(n1) = m1.

2. f(ni) = mi for all i.

3. f is (affine) linear on each segment [ni, ni+1] .

The slopes are the slopes of the graph. The length of the slope ki is ni+1 −ni. We reserve the term
special polygon for a convex set that is the Newton polygon of some differential operator.

Let b(L) denote the graph of f . The boundary part B(L) of L is

B(L) =
∑

(n,m)∈b(L)

an,mz
mδn.

Write
L = B(L) +R(L).

We say that L1 > L2 if the points of b(L1) either lie in the interior of N(L2) or on the vertical ray

{ (nr+1, y) | y > mr+1 }.

Clearly R(L) > B(L) and R(L) > L. We note that the product of two monomials

M1 := xm1δn1 and M2 := xm2δn2

with m1,m2 ∈ Z and n1, n2 ∈ N is not a monomial. In fact, the product is

xm1+m2(δ +m2)
n1δn2 . (4.2.2)

However,
B(M1M2) = xm1+m2δn1+n2 .

As consequence of Formula (4.2.2) we have the formula

x−iL(j)(δ)xi = L(j)(δ + i) for all i ≥ 0 and j >> −∞. (4.2.3)

Form (4.2.1) has several advantages, because if L1, L2 ∈ D where

L1 =
∑

i>>−∞
xiL1(i)(δ) and L2 =

∑

j>>−∞
xjL2(j)(δ),

by Formula (4.2.3) we get the multiplication formula

(
∑

i>>−∞
xiL1(i)(δ)

)


∑

j>>−∞
xjL2(j)(δ)


 =

∑

m>>−∞
xm

∑

i+j=m

L1(i)(δ + j)L2(j)(δ).

(4.2.4)

The main properties of the Newton polygons are

• N(L1L2) = N(L1) +N(L2),

• the set of slopes of L1L2 is the union of the sets of slopes of L1 and L2,

• the length of the slope of L1L2 is the sum of length of the same slope for L1 and L2,

for all L1, L2 ∈ k((x))[δ].

The next theorem will provide us a way to factor linear differential operators using Newton polygons.
For a proof we refer to van der Put and Singer [2003], pp. 88.
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Theorem 7. Suppose that the Newton polygon of a monic differential operator L can be written as
a sum of two special polygons P1, P2 that have no slope in common. Then there are unique monic
differential operators L1, L2 such that Pi is the Newton polygon of Li and L = L1L2. Moreover,

D/DL ∼= D/DL1 ⊕D/DL2.

We will illustrate the theorem with the next example taken from van der Put and Singer [2003].

Example 16. Let us consider the operator L = xδ2 + δ − 1 where ord(L) = 2 and m = 0.

1

2
0

-1

10-1
i

j4

4

3

3

2

Fig. 4.3: N (L): Newton polygon of L

The Newton polygon N(L) of L is represented in Figure (4.3). From this figure we can see that the
Newton polygon N(L) is the sum of two special polygons P1 with unique slope 0, and P2, with unique
slope 1, namely
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Fig. 4.4: Specials polygons P1 and P2, resp.



4. Advanced Methods 76

By Theorem (7) we want to find L1, L2 ∈ k((x))[δ] such that Pi is the Newton polygon of Li and
L = L1L2. Suppose that

L1 = L1(0)(δ) + xL1(1)(δ) + · · · ,

L2 = L2(0)(δ) + xL2(1)(δ) + · · · .
Since n1 = 1 (i.e. the abscissa of the extremal point (1, 0)) and ord(L) we have L1(0)(δ) is monic

polynomial of degree 1 and the L1(i)(δ) have degree 0 for i > 0.

On the other hand, P2 has no slope equal to 0, this means that L2(0)(δ) is a constant. In fact
L2(0)(δ) = 1, because (0, 0) is an extremal point of P2. Comparing the coefficients of x0 in L = L1L2

we get
L1(0)(δ)L2(0)(δ) = L(0)(δ) =⇒ L1(0)(δ) = δ − 1.

Comparing the coefficients of x1 we have

L1(0)(δ + 1)L2(1)(δ) + L1(0)(δ)L2(0)(δ) = L(1)(δ) ⇒

δL2(1)(δ) + L1(1)(δ) = δ2.

This implies that L2(1)(δ) = δ and L1(1)(δ) = 0. It can be shown by induction that

L1(i)(δ) = L2(i)(δ) = 0 for i ≥ 2.

Therefore, the operator L factors as L = L1L2 where

L1 = δ − 1 and L2 = xδ + 1.

4.3 Factorization via Newton Polynomials and Coprime Index 1

From Malgrange [1979] we know that an element of k((x))[∂] which has only one slope in the Newton
polygon and which has an irreducible Newton polynomial is irreducible in k((x))[∂]. He shows that
in the following two cases a differential operator L ∈ k((x))[∂] is reducible in this ring and how a
factorization can be computed:

1. An operator with broken Newton polygon (i.e. more than one slope).

2. An operator with one slope > 0 where the Newton polynomial is reducible and not a power of
an irreducible polynomial.

In van Hoeij [1997a] these two cases of factorization and the factorization of regular singular oper-
ators are unified in the so called coprime index 1 factorization.

Since the elements of k((x)) consist of infinitely many terms, only a finite number of them can be
computed. This means that a factorization can only be determinated up to some finite accuracy.

We start this section with some basic definitions like filtered ring, filtration and associated graded
ring. These important concepts will become very useful, since often information can be obtained by
passing from a ring with a “natural” filtration to the associated graded ring, and then translating the
result back to the original ring. In particular, this is useful if the ring is filtered by (additive) subgroups,
such that the associated graded ring is commutative.

A filtration of a ring D is a chain of additive subgroups Di of D, such that

1 ∈ D0, · · · ⊃ Di−1 ⊃ Di ⊃ Di+1 ⊃ · · · , i ∈ Z,with

DiDj ⊂ Di+j for all i, j ∈ Z, and D =
⋃

i∈Z

Di.
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A ring equipped with a filtration is called a filtered ring.

A grading {Di}i∈Z of the ring D is a sequence of additive subgroups Di of D such that

D =
⊕

i∈Z

Di and DiDj ⊆ Di+j for all i, j ∈ Z.

A ring with a grading {Di} is called graded. The elements of Di are called homogeneous of
degree i. A homogeneous element of R is simply an element of one of the groups Di. If f ∈ D, there
is a unique expression for f of the form

f = f0 + f1 + · · · with fi ∈ Di and fj = 0 for j >> 0,

the fi are called the homogeneous components of f . In particular, the component D0 is a subring
of D containing 1D.

Let D be a filtered ring with a filtration {Di}i∈Z. The associated graded ring, denoted by gr(D)
is defined as

gr(D) =
⊕

i∈Z

Di/Di+1 (as additive groups),

equipped with the obvious addition and multiplication given by

(r +Di+1)(s+Dj+1) = (rs+Di+j+1), for r ∈ Di, s ∈ Dj .

The symbol map σ : D → gr(D) is defined as:

σ(0) = 0, and σ(f) = f +Di+1 if f ∈ Di\Di+1.

Let D be a ring, a discrete valuation on the ring D is a map v : D → Z ∪ {∞} such that

• v(fg) = v(f) + v(g),

• v(f + g) ≥ min (v(f), v(g)), and

• v(0) = ∞,

for all f, g ∈ D. As a consequence of the first two properties we have

v(f + g) = min (v(f), v(g)) if v(f) 6= v(g).

A valuation v defines a filtration on a ring D as follows

Di = { f ∈ D | v(f) ≥ i }.

For a positive integer a the set D0/Da has the structure of a ring.

For a ring D with a valuation v we define a truncation σa with accuracy a for non-zero elements
f ∈ D and a positive integer a as follows

σa(f) = f +Dv(f)+a ∈ Dv(f)/Dv(f)+a.

Let k be a field of characteristic 0 and consider the ring D = k((x))[δ], where δ = x∂ ∈ k((x))[∂].
Let L ∈ D be a differential operator given by

L =
∑

j,i

ajix
jδi.

Let s ∈ Q be a rational number with s ≥ 0, write s = u/d with u, d ∈ Z, gcd(u, d) = 1 and d > 0.
Then the function vs : D → Z ∪ {∞} given by

vs



∑

j,i

ajix
jδi


 = inf{jd− iu : aji 6= 0},
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defines a discrete valuation on D. We take infimum instead of minimum for formal reasons with respect
to the zero operator. As mentioned above, the valuation vs gives a filtration (Di)i∈Z

Di = {L ∈ D|vs(L) ≥ i}

and a truncation σa,s with accuracy a

σa,s(L) = L+Dvs(L)+a ∈ Dvs(L)/Dvs(L)+a.

To σ1,s for L ∈ D corresponds the so-called Newton polynomial Ns(L) of L for slope s (which
does not correspond to the usual definition of the Newton polynomial), and roughly speaking we can
compute it in the following way:

“The length l(s) of a slope s in the Newton polygon N(L) is defined as the length of the projection
of this slope onto the x-axis. The Newton polynomial Ns(L) is a polynomial in a new indeterminate
T of degree

l(s)

d
,

and its monomials can be computed from the points which lie exactly on the slope s and the leading
coefficients of the corresponding aji”.

In particular, σ1,s(L) is an element of

D =
⋃

i∈Z

Di/Di+1.

A multiplication is defined for elements of D, and an addition is only defined for f, g ∈ D which
are elements of the same Di/Di+1. There is a k-linear bijection N ′

s : D0/D1 → k[T ] which is also a
ring isomorphism if i = 0. If i = 0 then N ′

0 is defined by

xuδd 7−→ T.

For every i ∈ Z there is a unique pair of integers ui, di with

0 ≤ di < d and vs(x
uiδdi) = i

such that the map φi : D0/D1 → Di/Di+1 defined by

φi(a) = xuiδdia

is a bijection. Now, for s > 0 let N ′
s : Di/Di+1 → k[T ] be defined by

N ′
s(a) = N ′

s

(
φ−1

i (a)
)

as we see in the next diagram

D0/D1 k[T ]

Di/Di+1

................................................................................................................................................................... ............
N ′

s

............................................................................................................
.....
.......
.....

φi

............
.
............
.
............
.
............
.
............
.
............
.
............
.
....................
............

N ′
s

.

N ′
s is also defined for non-zero elements of L ∈ D asN ′

s (σ1,s(L)). For slope s = 0 define the Newton
polynomial N0(L) as N ′

0(L). By Formula (4.2.4) the following property follows for Q,R ∈ D

N0(QR) = ST=T+v0(R)(N0(Q))N0(R).

Here ST=T+v0(R)(N0(Q)) means N0(Q) with T replaced by T + v0(R). For slope s > 0 we have the
following property for Q,R ∈ D

N ′
s(QR) = T pN ′

s(Q)N ′
s(R).
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Here p is either 0 or 1, depending on the slope s and the valuations vs(Q) and vs(R). Let i = vs(Q)
and j = vs(R). Then

φi(1) · φj(1) = xui+ujδdi+dj mod Di+j+1.

This is either equal to φi+j(1) or xuδdφi+j(1) mod Di+j+1, depending on whether di+dj is smaller
than d or not. In the first case p = 0, in the second case p = 1.

Now, for s > 0 define the Newton polynomial Ns(L) of L for slope s > 0 as N ′
s(L) divided by T

to the power the multiplicity of the factor T in N ′
s(L). Then

Ns(QR) = Ns(Q)Ns(R)

for s > 0 and for all Q,R ∈ D. If s > 0 then

σ1,s(Q)σ1,s(R) = σ1,s(QR) = σ1,s(R)σ1,s(Q)

for all Q and R in D. If s = 0 then

σ1,s(Q)σ1,s(R) = σ1,s(QR) = S−vs(Q) (σ1,s(R)) · Svs(R) (σ1,s(Q)) .

So σ1,s is commutative (i.e. is the same for QR and RQ) if s > 0. If s = 0 then σ1,s is commutative
up to substitutions S−vs(Q) and Svs(R) which map δ to δ plus some integer.

The Newton polynomial is useful for factorization in D because if L = QR then σ1,s(Q)σ1,s(R) =
σ1,s(L). So a factorization of L induces a factorization of the Newton polynomial.

The roots of N0(L) in k are called the exponents of L. If L ∈ D is regular singular (i.e. L has
only one slope s = 0, or equivalently deg(N0(L)) = ord(L)) and all exponents of L are integers, then
L is called semi-regular.

Property: If L = QR then the Newton polynomial of the right-hand factor Ns(R) divides Ns(L).
However, for a left-hand factor this need not hold. But if s > 0 or if v0(R) = 0 (for example if R is
regular singular and monic) then

Ns(L) = Ns(Q)Ns(R)

so in such cases Ns(Q) divides Ns(L).

Example 17. Consider the operator

L = δ3 +

(
2x+ 1

x2

)
δ2 −

(
2x2 − x− 1

x3

)
δ +

(
x2 − x− 1

x3

)
=

−x−3 − x−2 + x−1 + x−3δ + x−2δ − 2x−1δ + x−2δ2 + 2x−1δ2 + δ3 =

x−3(−1 + δ) + x−2(−1 + δ + δ2) + x−1(1 − 2δ + δ2) + δ3.

The Newton polygon N(L) of L is given in Figure (4.5), where the slopes are s = 0, 1, and 2. We
compute the Newton polynomial Ns(L) of L for the slope s:

1. Compute the deg(Ns(L)) using l(s) the length of the slope s.

2. Compute the monomials using the leading coefficient of the points which lie exactly on the slope
s.

• For s = 0 we get

deg(N0(L)) =
l(s)

1
=
l(0)

1
=

1

1
= 1

and for the points (0,−3) and (1,−3) we have a0,−3 = −1, a1,−5 = 1. Then,

N0(L) = a0,−3 + a1,−3 T = −1 + T.
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Fig. 4.5: Newton polygon of L

• For s = 1 we have

deg(N1(L)) =
l(1)

1
=

1

1
= 1

and for the points (1,−3) and (2,−2) we have a1,−3 = 1, and a2,−2 = 1. Then,

N1(L) = a1,−3 + a2,−2 T = 1 + T.

• For s = 2 we get

deg(N2(L)) =
l(2)

1
=

1

1
= 1

and for the points (2,−2) and (3, 0) we have a2,−2 = 1 and a3,0 = 1. Then,

N2(L) = a2,−2 + a3,0 T = 1 + T.

Now let us compute the Newton polynomial in the formal way using the valuation vs for each of the
slopes. For s = 0 we have u = 0, d = 1, whence

v0(L) = inf(−3.1 − 0.0,−2.1 − 0.0,−1.1 − 0.0,−3.1 − 1.0,

−2.1 − 1.0,−2.1 − 1.0,−2.1 − 2.0,−1.1 − 2.0, 0.1 − 3.0) =

inf(−3,−2,−1,−3,−2,−1,−2,−1, 0) = −3.

v0(L) = −3.

For s = 1
2 we have u = 1 and d = 2, whence

v1(L) = inf(−3,−2,−1,−4,−3,−2,−4,−3,−3) = −4.

v1(L) = −4.

For s = 2 we have u = 2 and d = 1, whence

v2(L) = inf(−3,−2,−1,−5,−4,−3,−6,−5,−6) = −6
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Fig. 4.6: Newton polygon of L

v2(L) = −6.

On the other hand, the truncation for each of the slopes are

σ1,0(L) = L+Dv0(L)+1 ∈ Dv0(L)/Dv0(L)+1 ⇒ σ1,0(L) = L+D−3 ∈ D−3/D−2.

Similarly,

σ1,1(L) = L+D−4 ∈ D−4/D−3, and σ1,2(L) = L+D−6 ∈ D−6/D−5.

Now, we need to compute the polynomials N ′
s(L) for all the slopes,

• For s = 0 the bijection N ′
0 : D0/D1 → k[T ] is defined by

N ′
0(x

0δ1) = N ′
0(δ) = T.

Now, for i = v0(L) = −3 and d = 1 we have 0 ≤ di < 1 and v0(x
uiδdi) = −3 that means

di = 0 and u1.1 − di.0 = −3 ⇒ ui = −3.

Let φ−3 : D0/D1 → D−3/D−2 be defined as

φ−3(a) = x−3δ0a = x−3a

whence
N ′

0(L) = N ′
0 (σ1,0(L)) = N ′

0(L+D−3) = N ′
0(−x−3 + x−3δ) =

−N ′
0(x

−3) +N ′
0(x

−3δ) = −N ′
0

(
φ−1
−3(x)

)
+N ′

0

(
φ−1
−3(xδ)

)
=

−N ′
0(1) +N ′

0(δ) = −1 + T.

Therefore,
N ′

0(L) = −1 + T ⇒ N0(L) = 1 + T.
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• For s = 1 the bijection N ′
1 : D0/D1 → k[T ] is defined by

N ′
1(x

1δ1) = T.

For i = v1(L) = −4 and d = 1 we have

0 ≤ d−4 < 1 and v1(x
u−4δd−4) = −4

that means
d−4 = 0 and u−4.1 − d−4.1 = −4 ⇒ u−13 = −4.

Let φ−4 : D0/D1 → D−4/D−3 be defined by

φ−4(a) = x−4δ0a = x−4a

whence
N ′

1(L) = N ′
1(σ1,1(L)) = N ′

1(L+D−4) =

N ′
1(x

−3δ + x−2δ2) = N ′
1

(
φ−1
−4(xδ)

)
+N ′

1

(
φ−1
−4(x

2δ2)
)

=

N ′
1(xδ) +N ′

1(x
2δ2) = T + T 2 = T (1 + T )

Therefore,
N1(L) = N ′

1(L)/T = 1 + T.

• For s = 2 the bijection N ′
2 : D0/D1 → k[T ] is defined by

N ′
2(x

2δ1) = T

For i = v2(L) = −6 and d = 1 we have

0 ≤ d−6 < 1 and v1(x
u−6δd−6) = −6

that means
d−6 = 0 and u−61 − d−6.1 = −6 ⇒ u−6 = −6

Let φ−6 : D0/D1 → D−6/D−5 be defined as

φ−6(a) = x−6δ0a = x−6a

whence
N ′

2(L) = N ′
2(σ1,1(L)) = N ′

2(L+D−6) = N ′
2(x

−2δ2 + δ3) =

N ′
2(x

−2δ2) +N ′
2(δ

3) = N ′
2

(
φ−1
−6(x

4δ2)
)

+N ′
2

(
φ−1
−6(x

6δ3)
)

=

N ′
2(x

4δ2) +N ′
2(x

6δ3) = T 2 + T 3 = T 2(1 + T ).

Therefore,
N2(L) = N ′

2(L)/T 2 = 1 + T.
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Suppose that L ∈ k((x))[δ] is monic and L = QR is a non-trivial factorization, where Q and R are
monic elements of k((x))[δ]. The coprime index of a factorization L = QR is the smallest positive
integer t for which the following holds:

For all integers a ≥ t and monic elements Q̃ and R̃ of D, if

σa,s(Q̃) = σa,s(Q) and σa,s(R̃) = σa,s(R) and σa+t,s(Q̃R̃) = σa+t,s(L)

then
σa+1,s(Q̃) = σa+1,s(Q) and σa+1,s(R̃) = σa+1,s(R).

Coprime index 1 means that gcd(Q,R) = 1 and then the factorization can be lifted by the usual
Hensel lifting algorithm. In this case we must solve a system of the form

lσ1,s(R) + σ1,s(Q)r = g

where g is computed by multiplying the so far computed truncations (called Q̃ and R̃) of Q and R and
subtracting this product from L. This equation can be converted to an equation

qR0 + rQ0 = g

for certain q, r,Q0, R0, g ∈ k[T ] and q, r unknown. Such an equation can be solved by the Euclidean
algorithm.

Now the question is:

How to compute σa+1,s(Q) and σa+1,s(R) from σa,s(Q), σa,s(R) and L?

Suppose that t ≤ a, we will use indeterminates for those coefficients of σa+t,s(Q) and σa+t,s(R)
which are not yet known. Then the equation

σa+t,s(QR) = σa+t,s(L)

gives a set of equations in these unknowns. t ≤ a is needed to ensure that all the equations are linear.

Coprime index t means that σa+t,s(Q) and σa+t,s(R) can be uniquely determined from these linear
equations. A truncation

σa,s(R) = R+Dvs(R)+a

is store as an element R̃ ∈ k[x, 1/x, δ] with no terms in Dvs(R)+a. Now write

r =
∑

j,i

rjix
jδi

where the sum is taken over all j, i such that

vs(R) + a ≤ vs(x
jδi) < vs(R) + a+ t and i ≤ ord(R).

Here rj,i are indeterminates. We set

rji = 0 for i = ord(R), and j 6= 0

and set
rji = 1 for i = ord(R), and j = 0.

Similarly write Q̃ and q. Now look for values for the lji and rji such that

R̃+ r and Q̃+ q

approximate R and Q up to accuracy a+ 1. If the coprime index is t, the accuracy is at least a+ 1 if
the following holds:

σa+t,s

(
(Q̃+ q)(R̃+ r)

)
= σa+t,s(L),
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or equivalently
(Q̃+ q)(R̃+ r) ≡ L mod Dvs(L)+a+t

(Q̃+ q)(R̃+ r) = Q̃R̃+ qR′ + Q̃r + qr.

To determine
qR̃ mod Dvs(L)+a+t

it suffices to have R̃ up to accuracy t because

vs(q) + vs(R̃) ≥ vs(L) + a.

Similarly vt,s(Q̃) suffices to compute

Q̃r mod Dvs(L)+a+t.

vs(qr) ≥ vs(L) + a+ a ≥ vs(L) + a+ t

so qr vanishes modulo Dvs(L)+a+t. Hence

L ≡ Q̃R̃+ qσt,s(R̃) + σt,s(Q̃)r mod Dvs(L)+a+t.

By equating the coefficients of the left-hand side to the coefficients of the right-hand side (the
coefficients of all monomials of valuation < vs(L) + a + t) we find the linear equation in qji and rji.

To determine these equations we must multiply q by σ(R̃), (= σt,s(R) because R̃ equals R up to the
accuracy a and t ≤ a) which is the lowest block of R with slope s and with t in the Newton polygon

of R. Similarly we must compute σt,s(Q̃)r.

Algorithm Coprime Index 1 Factorizations

Input: L ∈ k((x))[δ], L monic

Output: All monic coprime index 1 factorizations L = QR in k((x))[δ] such that does not have a
non-trivial coprime index 1 factorization.

Note: The definition of coprime index 1 depends on the valuation that is chosen on k((x))[δ].

for all slopes of L do

g := Ns(L)

Compute a prime factorization of g in k[T ], g = cge1
1 . . . ger

r ,

where the gi are the different monic irreducible factors and c ∈ k.

if s = 0 then

M := {g1, . . . , gr}
N := M \ { g ∈M | ∃h ∈M ∧ i ∈ N+ s. t. g(T ) = h(T + i) }

else

N := {ge1
1 , . . . , g

er
r }

end if

for h in N do

Write h = T p + hp−1T
p−1 + · · · + h0T

0.

Write s = u/d with d > 0 and gcd(u, d) = 1
(if s = 0 then u = 0, d = 1)

R̃ := δpd + hp−1x
−nδ(p−1)d + hp−2x

−2nδ(p−2)d+
· · · + h0x

−pnδ0.
(4.3.5)
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Now R̃ has Newton polynomial h. We want to lift R̃ to a right-
hand factor R such that R̃ is R modulo Dvs( eR)+1.

Q̃ := an operator such that σ1,s(L) = σ1,s(Q̃R̃).

Q̃ is uniquely determined by requiring that Q̃ has no
monomials of valuation > vs(Q̃).

L, Q̃, R̃ with the lift algorithm gives a factorization L = QR

end do

end do

Example 18. Let us consider again the operator of Example 17

L = −x−3 − x−2 + x−1 + x−3δ + x−2δ − 2x−1δ + x−2δ2 + 2x−1δ2 + δ3,

where the slopes of the Newton polygon are s = 0, 1, and 2, and the Newton polynomials for each of
the slopes are

N0(L) = −1 + T, N1(L) = 1 + T, and N2(L) = 1 + T.

We want to find operators R̃ which has Newton polynomial Ns and also operators Q̃ such that
σ1,s(L) = σ1,s(Q̃R̃) for each of the slopes.

• For s = 0 we have u = 0 and d = 1, N = {T − 1} with p = 1. By Equality 4.3.5,

R̃ = δ1 + (−1)x0δ1 = δ − 1,

then
v0(R̃) = inf(0.1 − 1.0, 0.1 − 0.0) = inf(0, 0) = 0

and
σ1,0(L) = σ1,0(Q̃R̃) ⇒ L+Dv0(L)+1 = Q̃R̃+Dv0( eQ eR)+1 ⇒

L+D−3+1 = Q̃R̃+Dv0( eQ)+v0( eR)+1 ⇒ L+D−2 = Q̃R̃+Dv0( eQ)+1.

In particular,
−2 = v0(Q̃) + 1 ⇒ v0(Q̃) = −3.

Whence,
L+D−2 = Q̃R̃+D−2 ⇒ −x−3 + x−3δ = Q̃(δ − 1) ⇒

x−3(−1 + δ) = Q̃ (δ − 1).

Thus, Q̃ = x−3.

• For s = 1 we have u = 1 and d = 1, N = {T + 1} with p = 1. By Equality 4.3.5,

R̃ = δ1 + 1x−1δ0 = δ + x−1,

then
v1(R̃) = inf(−1.1 − 0.1, 0.1 − 1.1) = inf(−1,−1) = −1

and
σ1,1(L) = σ1,1(Q̃R̃) ⇒ L+Dv1(L)+1 = Q̃R̃+Dv1( eQ eR)+1 ⇒

L+D−4+1 = Q̃R̃+Dv1( eQ)+v1( eR)+1 ⇒ L+D−3 = Q̃R̃+Dv1( eQ)−1+1.
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In particular, v1(Q̃) = −3. Whence,

L+D−3 = Q̃R̃+D−3 ⇒ x−3δ + x−2δ + x−2δ2 = Q̃ (x−1 + δ) ⇒

x−2δ(x−1 + δ) = Q̃ (x−1 + δ) ⇒ Q̃ = x−2δ.

Thus, Q̃ = x−2δ.

• For s = 2 we have u = 2 and d = 1, N = {T − 1} with p = 1. By Equality 4.3.5,

R̃ = δ1 + (−1)x−2δ0 = δ + x−2,

then
v2(R̃) = inf(−2.1 − 0.2, 0.1 − 1.2) = inf(−2,−2) = −2,

and
σ1,2(L) = σ1,2(Q̃R̃) ⇒ L+Dv2(L)+1 = Q̃R̃+Dv2( eQ eR)+1 ⇒

L+D−6+1 = Q̃R̃+Dv2( eQ)+v2( eR)+1 ⇒ L+D−5 = Q̃R̃+Dv2( eQ)−2+1.

In particular,
−5 = v2(Q̃) − 1 ⇒ v2(Q̃) = −4.

Whence,
L+D−5 = Q̃R̃+D−5 ⇒ x−2δ2 + δ−3 = Q̃ (x−2 + δ).

It is easy to verify that there is no operator Q̃ with v2(Q̃) = −4 which can satisfy the last equality.
In fact,

x−2δ2 + δ−3 = (x−2 + δ)δ2

but not on the left, because it is also clear by the non-commutativity of the multiplication in D,
that

(x−2 + δ)δ2 6= δ2(x−2 + δ).

Now, we want to lift Q̃ and R̃ to Q and R. Let q, r ∈ D be given by

q =
∑

j,i

qjix
jδi and r =

∑

j,i

rjix
jδi,

where qji and rji are unknowns and the sums are taken over all j, i such that

vs(Q̃) + 1 ≤ vs(x
jδi) < vs(Q̃) + 2 and vs(R̃) + 1 ≤ vs(x

jδi) < vs(R̃) + 2 ⇒

respectively. So,
(Q̃+ q)(R̃+ r) +Dvs(L)+1 = L+Dvs(L)+1.

Then we have also

qji =





0 for i = ord(Q̃) and j 6= 0

1 for i = ord(Q̃) and j = 0

, rji =





0 for i = ord(R̃) and j 6= 0

1 for i = ord(R̃) and j = 0

,

and
qr ∈ Dvs(L)+1.
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• For s = 0 we have R̃ = δ − 1, Q̃ = x−3 and for q we get

v0(Q̃) + 1 ≤ v0(x
jδi) < v0(Q̃) + 2 ⇒ −2 ≤ v0(x

jδi) < −1 ⇒

v0(x
jδi) = −2,

for r we get
v0(R̃) + 1 ≤ v1(x

jδi) < v1(R̃) + 2 ⇒ 1 ≤ v0(x
jδi) < 2 ⇒

v0(x
jδi) = 1,

in turn
q02 = 1 and qj2 for j 6= 0, and r01 = 1 and rj1 for j 6= 0.

Whence,
r = r10x and q = q−20x

−2 + q−11x
−1δ + δ2.

Substituting the product Q̃R̃ and the operator L in the equality

Q̃R̃+ qR̃+ Q̃r = L,

we obtain,
x−3δ(δ − 1) + Q̃r + qR̃ =

−x−3 − x−2 + x−1 + x−3δ + x−2δ − 2x−1δ + x−2δ2 + 2x−1δ2 + δ3.

After some computations and simplifications we get

q−20x
−2δ − q−20x

−2 + q−11x
−1δ2 − q−11x

−1δ − δ2 + r10x
−4 =

−x−2 + x−1 + x−2δ − 2x−1δ + x−2δ2 + 2x−1δ2 ⇒





q−2,0 = 1

q−1,1 = 2

q1,0 = 0

−δ2 = x−1 + x−2δ2

.

This system is not feasible because x is an indeterminate and it is not equal neither 0 nor 1.
However, if we take the obtained values for the coefficients and substitute in q and r then

q = x−1δ + δ2 and r = 0,

and afterwards in Q and R we get

Q = x−3 + x−1δ + δ2 and R = δ − 1,

we see that indeed these two possible factors do not lead us to a factorization of the operator L.

• For s = 1 we have we have R̃ = x−1 + δ, Q̃ = x−2δ and for q we get

v1(Q̃) + 1 ≤ v1(x
jδi) < v1(Q̃) + 2 ⇒ −2 ≤ v1(x

jδi) < −1 ⇒

v1(x
jδi) = −2,

for r we get
v1(R̃) + 1 ≤ v1(x

jδi) < v1(R̃) + 2 ⇒ 0 ≤ v1(x
jδi) < 1 ⇒

v1(x
jδi) = 0,
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in turn
q02 = 1 and qj2 for j 6= 0, and r01 = 1 and rj1 for j 6= 0.

Whence,
r = r00 and q = q−20x

−2 + q−11x
−1δ + δ2.

Substituting the product Q̃R̃ and the operator L in the equality

Q̃R̃+ qR̃+ Q̃r = L,

we obtain,
x−2δ(x−1 + δ) + Q̃r + qR̃ =

−x−3 − x−2 + x−1 + x−3δ + x−2δ − 2x−1δ + x−2δ2 + 2x−1δ2 + δ3.

After some computations and simplifications we get

q−20x
−3 + (q−20 + q−11 + r00)x

−2δ − q−11x
−2 + q−11x

−1δ2 =

−x−2 + x−2δ + x−1δ2 ⇒





q−2,0 = 0

q−2,0 + q−1,1 + r00 = 1

q−1,1 = 1

⇒





q−2,0 = 0

q−1,1 = 1

r0,0 = 0

.

So,
q = x−1δ + δ2 and r = 0.

Therefore,
Q = x−2δ + x−1δ + δ2 and R = x−1 + δ

are the factors of the only coprime 1 factorization of the operator L. Actually, Q and R are a left-hand
factor and a right-hand factor, respectively, of the operator L.

4.4 The van Hoeij’s Factorization Method for Computing a Right-Hand Factor

In this section we will present the van Hoiej’s methods to factor differential operators that are not
based on Beke’s algorithm. In van Hoeij [1997b], he uses algorithms to find local factorizations (i.e.
factors with coefficients in k((x)), where k is a field of characteristic zero) and applies an adapted
version of Padé approximation to produce a global factorization.

In order to do this, one should make a good choice of a singular point p of the operator L and a
formal local right-hand factor of degree 1 at this point. After a translation of the variable (x 7→ x+p or

x 7→ x−1) and a shift ∂ 7→ ∂+e with e ∈ k(x), the operator L has a right-hand factor of the form ∂− y′

y

with an explicit y ∈ k[[x]]. Now one tries to find out whether y′

y belongs to k(x). Equivalently, one tries

to find a linear relation between y and y′ over k[x]. This is carried out by a Padé approximation. The
method extends to finding right-hand factors of higher degree and applies in that case a generalization
of the Padé approximation.

This local-to-global approach has been implemented in Maple V.5. We start this section, which is
extracted from van Hoeij [1997b], with some basic definitions like ramification of a field and ramification
index, and the construction of the universal extension of a differential ring.

A ramification of the field k((x)) is a field extension k((x)) ⊂ k((r)), where r is algebraic over
k((x)) with minimum polynomial rn − ax for a non-zero a ∈ k and positive integer n. If a = 1 this is
called a pure ramification.
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For r ∈ k((x)) (not necessarily with minimum polynomial rn − ax), the ramification index
of r, denoted by ram(r), is the smallest positive integer n for which r ∈ k((x1/n)). If K is a finite
algebraic extension of k((x)) then the ramification index of K is the smallest positive integer n for
which K ⊂ k((x1/n)).

All finite algebraic extensions k((x)) ⊂ K are of the following form:

K = l((r))

where k ⊂ l is a finite extension and l((x)) ⊂ l((r)) is a ramification.

Let V be the universal extension of k((x)), i.e., the differential ring extension of k((x)) consistent
of all solutions of all L ∈ D = k((x))[δ], which is constructed as follows:

Define the set
E =

⋃

n∈N

k
[
x1/n

]
.

Consider Exp(e) and log(x) as indeterminates and define the free k((x))-algebra W in these inde-
terminates

W = k((x)) [ {Exp(e) | e ∈ E }, log(x) ] .

Define the derivatives

Exp(e)′ =
e

x
Exp(e) and log(x)′ =

1

x
.

This turns W into a differential ring. We can think of Exp(e) as

Exp(e) = exp

(∫
e

x

)

because x d
dx acts on Exp(e) as multiplication by e. Define the ideal I is generated by the following

relations:
Exp(e1 + e2) = Exp(e1) · Exp(e2) for e1, e2 ∈ E

and
Exp(q) = xq ∈ k((x)) for q ∈ Q.

This ideal is closed under differentiation. Now define V as the quotient ring V = W/I, hence V is
a differential ring with k the field of constants of V . For e ∈ E denote

Ve = Exp(e).
(
k.k((x))[e]

)
[log(x)] ⊂ V.

Note that
k.k((x))[e] = k.k

((
x1/n

))
[e]

where n is the ramification index of e. Define ∼ on E as follows:

e1 ∼ e2 ⇔ e1 − e2 ∈ 1

ram(e1)
Z

i.e., e1 − e2 is an integer divided by the ramification index of e1. Then

Ve1
= Ve2

⇔ e1 ∼ e2

so Ve is defined for e ∈ E/ ∼. Denote the set of solutions of L ∈ D\{0} in V as V (L). This is a k-vector
space. Since every L ∈ D\{0} has a fundamental set of solutions in V it follows that

dim(V (L)) = ord(L).

The number dim(V (L)) is useful for factorization because it is independent of the order of multi-
plication, i.e.

dim(V (fg)) = dim(V (gf)).
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Now split V (L) in a direct sum and look at the dimension of the components

V =
⊕

e∈E/∼
Ve.

The Ve are k-linear spaces and also D-modules. So

Ve(L) ⊂ Ve for all L ∈ D\{0}

Then L(Ve) = Ve because L is surjective on V . The kernel of L on Ve is denoted by

Ve(L) = V (L) ∩ Ve.

Denote
µe(L) = dim (Ve(L)) .

This number is called the multiplicity of e in L. The multiplicities µe are useful for factorization
because they are also independent of the order of the multiplication, e.i., if f, g ∈ D\{0} then

µe(gf) = µe(fg) = µe(f) + µ(g).

It is also follows from the fact that the dimension of the kernel of the composition of two surjective
maps equals the sum of the dimension of the kernels.

An element e ∈ E/ ∼ is called an exponential part of L if µe(L) > 0. The sum of the multiplicities
of all exponential parts of L equals the order of L.

Let e ∈ k((x)). Then the substitution map Se : D → D is a k((x))-homomorphism defined by

Se(δ) = δ + e,

which is a ring automorphism. Then,

V (L) = Exp(e) · V (Se(L)).

Let L ∈ D\{0} and e ∈ E. Let n be the ramification index of e. Let P = N0 (Se(L)) be the Newton
polynomial corresponding to slope 0 in the Newton polygon of Se(L) ∈ k((x1/n))[δ]. Now µe(L) is
defined as the number of roots (counted with multiplicity) of P in 1

nZ. If e1 ∼ e2 then

µe1
(L) = µe2

(L) for all L ∈ D\{0}

hence µe(L) is defined for e ∈ E/ ∼ as well.

Let K be a finite algebraic extension of k((x)) and let L ∈ K[δ]. Then L is called semi-regular
over K if L has a fundamental system of solutions in K[log(x)]. This is equivalent to the following two
conditions

• L is regular singular.

• The roots of the Newton polynomial N0(L) are integers divided by the ramification index of K
over k((x)).

Note that the definition of semi-regular depends on the field K. For L ∈ D we have

µ0(L) = ord(L)

if and only if all solutions of L are elements of

V0 = k · k((x))[log(x)]

if and only if L is semi-regular over k((x)). A regular operator is semi-regular as well.
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For a point p ∈ P 1(k) = k ∪ {∞} let lp : k → k be the k-automorphism defined by

lp(x) =





x+ p if p ∈ k

1/x if p = ∞
.

It can be extended to a ring automorphism of k(x)[∂] by defining

lp(∂) =





∂ if p ∈ k

−x2∂ if p = ∞
.

For any differential operator L ∈ k(x)[∂] the operator lp(L) viewed as an element of k((x))[δ]
instead of k((x))[∂], is called the localization of L at the point x = p.

Let e ∈ E/ ∼, L ∈ k(x)[∂] and p ∈ P 1(k). Define

µe,p(L) = µe(lp(L)).

If µe,p(L) > 0 then e is called an exponential part of L at the point p, and the number µe,p(L)
is called the multiplicity of e at the point p.

If p is a semi-regular point of L then L has only a trivial (i.e., zero module ∼) exponential part at
p.

Denote by µ∗(L) : (E/ ∼) × P 1(k) → N the function which maps (e, p) to µe,p(L). Then, for
f, g ∈ k(x)[∂] we have

µ∗(fg) = µ∗(f) + µ∗(g).

Let L ∈ k(x)[∂] and suppose a non-trivial factorization L = QR exists with Q,R ∈ k(x)[∂]. We
want to determine a right-factor of L. This could be done if we knew a non-zero subspace W ⊂ V (R).
We only know that V (R) ⊂ V (L) but this does not give any non-zero element of V (R).

For any exponential part e of L at a point p ∈ P 1(k) we have (after replacing f, L,R by lp(L), lp(Q), lp(R)
we may assume that p = 0)

Ve(R) ⊂ Ve(L) and µe(Q) + µe(R) = µe(L).

Suppose that we are in a situation where µe(Q) = 0. Then the dimension of Ve(R) and Ve(L) are
the same and hence we have found a subspace Ve(L) = Ve(R) of V (R), i.e.,

Ve(L) ⊂ V (R).

Then we can factor L. Note that we do not necessarily find the factorization QR, it is possible that
instead of R a right-hand factor of R is found. In other words

Se(Re) ∈ k((x))[e, δ]

is a right-hand factor of R, where Re is the semi-regular part of f .

We want to have a local right-hand factor r of R. There are several strategies:

1. We can take r = S−e(Re), or we can take a first order right-hand factor in k((x))[e, δ] of S−e(Re).

2. Another strategy, to speed up the algorithm, is first to try to factor L in k(x)[∂] instead of k(x)[∂].
If no factorization in k(x)[∂] is obtained, then we can get rid of the computations afterwards to
search a factorization in k(x)[∂].
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If we want to factor L in k(x)[∂] then we can take r ∈ D of minimal order such that S−e(Re) is a
right-hand factor of r. So, depending on whether we want to factor L in k(x)[∂] or in k(x)[∂], we have
a right-factor r ∈ k((x))[δ] or r ∈ k((x))[e, δ] of R.

From now on assume that r ∈ D, the other case works precisely the same (just replace k by k).

Let n = ord(L). The goal is to compute an operator

R = ad∂
d + · · · + a0∂

0 ∈ k[x, ∂]

that has r as a right-hand factor. Here d should be minimal. Because r divides both L and R on the
right it also divides gcrd(L,R). Then

gcrd(L,R) = R

because d is minimal. We conclude that R is a right-hand factor of L. If d < n a non-trivial factorization
is obtained this way.

There are two ways to choosing the number d. The first is to try all values d = 1, 2, . . . , n − 1.
Suppose that for a certain d we find an R that has r as a right-hand factor and for numbers smaller
than d such R could not found. Then d is minimal and hence R is a right-hand factor of L.

The second approach to take d = n− 1. If we find

R = ad∂
d + · · · + a0∂

0 ∈ k[x, ∂]

that has r as a right-factor we can compute gcrd(L,R). This way we also find a right-factor of L.

Sometimes it is possible to conclude a priori that there is no right-hand factor of order n− 1. If for
instance all irreducible local factors have order ≥ 3 then the order of a right-hand factor if ≤ 3 and so
we can take d = n− 3 instead d = n− 1.

We can compute a bound N for the degree of the ai. So the problem now is:

Are there polynomials ai ∈ k[x] of degree ≤ N , not all equal to 0, such that r is a right-hand factor
of

R = ad∂
d + · · · + a0∂

0 ?

Let m be the order of r. The D-module D/Dr is a k((x))-vector space of dimension m with basis
∂0, ∂1, . . . , ∂m−1. Write ∂0, ∂1, . . . , ∂d on this basis as vectors v0, . . . , vd in k((x))m. Now multiply
v0, . . . , vd with a suitable power of x such that the vi become elements of k[[x]]m. r is a right-factor of
R if and only if

a0v0 + · · · + advd = 0

in k[[x]]m. This is a system of linear equations with coefficients in k[[x]] which should be solved over
k[x]. One way of solving this is to convert it to a system of linear equations over k using the bound
N . A much faster way is the Beckermann-Labahn algorithm Beckermann and Labahn [1994]. Their
method is the following.

Sketch of the Beckermann-Labahn algorithm

• Let Mi ⊂ k[x]d+1 be the k[x]-module of all sequences (a0, a1, . . . , ad) for which

v(a0v0 + · · · + advd) ≥ i.

The “valuation” v of a vector is defined as the minimum of the valuation of its entries. The
valuation of 0 is infinity.

• Choose a basis ( as k[x]-module) of M0.

• For i = 1, 2, 3, . . . compute a basis of Mi using the basis for Mi−1.
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Define the degree of a vector of polynomials as the maximum of the degree of these polynomials.
From the basis for Mi we can find a non-zero polynomial Ai ∈Mi with minimal degree. Suppose there
exists such

R = ad∂
d + · · · + a0∂

0 ∈ k[x, ∂]

having r as a right-hand factor. Then there exists such R with all

deg(ai) ≤ N

where N is a bound we can compute. So then there is a non-zero (a0, . . . , ad) of degree ≤ N which is
an element of every Mi. Because of the minimality of deg(Ai) it follows that then deg(Ai) ≤ N for all
i. So whenever deg(Ai) > N for any i we know that there is no R ∈ k(x)[∂] of order d which has r as
a right-hand factor.

Algorithm Construct R

For i = 0, 1, 2, . . . do

• Compute Mi and Ai ∈Mi of minimal degree.

• If deg(Ai) > N then RETURN “R does not exist”.

• If deg(Ai) = deg(Ai−3) then

Comment: The degree did not increase 3 steps in a row so it is likely that a right-hand factor is
found.

If Ai = (a0, . . . , ad) then write R = ad∂
d + · · · + a0∂

0. Divide by ad to make R monic. Test if
R and f have a non-trivial right-hand factor in common. If so, return this right-hand factor,
otherwise continue with the next i.



5. CONCLUSIONS

In this thesis, starting from an overview of symbolic factorization of linear differential operators, a new
result – a procedure for factoring second order partial differential operators – was presented. Beginning
with the ring of linear differential operators the research took us – through differential Galois theory
and the body of methods for finding rational and exponential solutions of linear differential equations –
to the state of the art: Singer’s eigenring factorization algorithm, factorization via Newton’s polygons,
and the van Hoeij’s methods for local factorization.

In Chapter 1, we presented an algorithmic solution of the problem of factoring second order linear
partial differential operators. Based on purely algebraic methods and by using techniques of differential
algebra, we solved the problem in its original settings.

In contrast with the case of ordinary differential operators, the advantage of this approach is that,
in the most general case, it is not necessary to solve a Riccati equation for partial differential operators.

Comparing our method with other known ones, we have found that:

• Compared with (Miller [1932]), our work is characterized by the following.

– We do not only propose a possible right factor but rather we find the factorization when it
exists, without appealing to the necessity to define new structures or to extend the original
domain in which we are working.

– While Miller found only a possible right-hand factor, we devise a complete factorization of
the operator, and, in each case, we avoid dividing the operator by the right-hand factor.

– We do not make a case distinction, since we propose to find a square root and to solve a
system of two linear equations in two unknowns plus one first order linear partial differential
equation.

– If the square root exists and if the system of algebraic equations which we obtain has a
unique solution, we consider the extra linear partial differential equation. The extra partial
differential equation is used as a test equation, rather than been used as an additional
condition.

• Comparing our approach with the Hensel descent of Grigoriev and Schwarz [2004], for second
order linear differential operators we have found following.

– We need neither to define new objects nor to work in another algebraic structure, because we
find the factorization at once in the domain of definition of the linear differential operators.

– Instead of solving the problem by reformulating it in a commutative ring, we solve it in the
original non-commutative setting.

– We do not need to apply undetermined coefficients, after applying polynomial factorization
in each particular case. This reduces the complexity of our approach.

We would like to mention also that:

• The structure of Theorem (2) proposes an algorithmic method, algorithm gl1, whose proof of
correctness is given by the proof of Theorem (2). This method can be easily implemented in any
computer algebra system;
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• The method above has been generalized to operators of third order, but this results in a more
complicated system of equations. In contrast to the second order case, we must solve certain
differential equations, which, in particular cases, are simplified with the aid of characteristic sets.

In Chapter 2 we have introduced a formula for the complete factorization of a given element of the
ring of linear differential operators. This factorization is always possible when a fundamental set of
solutions of a differential equation is available. With the formula above we have explained, in a direct
way, the classical Beke algorithm (Beke [1894]) and its variants, as well as the algorithm LODEF by
Schwarz [1989], and the Beke-Bronstein algorithm Bronstein [1994].

We can summarize Beke’s algorithm in the following way:

• For first order right-hand factors, the idea is to find a rational solution of the Riccati equation
associated with the linear scalar equation defined by the linear differential operator. If this Riccati
equation has a rational solution, then it is also at once an exponential solution of the linear scalar
equation. This exponential solution yields a first order right-hand factor.

• For searching right-hand factors of higher order, the idea is to determine the coefficients of the
possible right-hand factor of order m, where m < n and n is the order of the given operator. After
having chosen m we have to express the associated equations for it (i.e., the differential equations
in the generalized Wronskians, of a subset of m elements, of a fundamental set of solutions of the
scalar equation); solve the equations for rational solutions; and construct a right-hand factor. If
one of the associated equations has not rational solution, then stop the process by saying that
there is not a right-hand factor of order m. Then try another m, and so on.

After almost one hundred years, Schwarz [1989] automated Beke’s algorithm, extending it to search
recursively from possible right-hand factors of order n− 1, until possible right-hand factors of order 1.
He described also a different way to find the associated equations, and implemented this procedure –
the algorithm LODEF – in the Scrachpad II computer algebra system. He then analysised the cost of
factorization of linear differential operators with rational function coefficients, estimating bounds for
the size of the polynomials in the numerator of the rational function solutions. With these ideas, he
developed the RiccatiRational algorithm, to complete the last step of the Beke algorithm, namely to
solve the generalized Riccati equations derived from the associated equations.

A faster approach – the Beke-Bronstein algorithm, Bronstein [1994] – is an efficient procedure
for computing the associated equations, based on elementary operations on sets of positive integers.
It produces many possible choices of the associated equation. The algorithm is designed to select the
simplest equations for solving. These ideas were formalized, Two years later in Bronstein and Petkovšek
[1996], in the so called “Pseudo-Linear Algebra”. The resulting theory was formulated afterwards as
operations in differential modules (Chapter 2 of van der Put and Singer [2003]).

There are several algorithms for finding rational solutions of linear differential equations, some of
them depending on the coefficient field and others on the order of the equation. For our explanation
of how to find rational solutions of linear differential equations, we have chosen an algorithm for
finding solutions of differential equations with rational function coefficients. The procedure depends
on a theorem which says that a solution can only have a pole at either α or ∞, if at least one of the
coefficients has pole either at α or ∞. After identifying the poles of the coefficients, we expand them
in Laurent series at each of the poles, we use indicial equations to find bounds on the numerator of the
coefficients of the solution, and with linear algebra we can find the numerators and hence the solution.

In contrast to the case of rational solutions of linear differential equations, there are few algorithms
for finding either exponential solutions of linear differential equation or rational solutions of the asso-
ciated Riccati equation, only for particular cases. We have discussed the RiccatiRational algorithm –
Schwarz [1994] – for finding rational solutions in the coefficient field of the Riccati equation associated
with a given linear differential equation. The algorithm searches for bounds on the coefficients of the
possible solution and is ultimately reduced to solving a system of linear equations. If the system is
feasible, we obtain a rational solution of the associated Riccati equation and at once a right-hand
factor of the original linear differential equation. In our example, we have simplified the application of
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the algorithm, namely the computation of the bounds given in Schwarz [1989], using the techniques
commonly applied only to rational solutions in the general case.

Recently Cluzeau and van Hoeij [2004] presented a new algorithm, based on local and modular
computation, for finding exponential solutions of differential equations with rational function coeffi-
cients. The approach reduces the number of possibilities in the combinatorial part of the algorithm.
The authors have also showed how unnecessary extensions of the constants can be avoided. Their idea
is to use information mod p in several ways, in order to speed up the computations the exponen-
tial solutions in characteristic 0. They also devised a recursive algorithm – Algorithm FindASol – for
constructing a field extension over which an exponential solution, if one exists, can be found.

We concluded this work, in Chapter 3, by presenting the known algorithms for commutative poly-
nomials with a view to adaptation, generalization, and reformulation of their analogues for linear
differential operators, as follows

• Berlekamp algorithm for the Singer’s eigenring algorithm (Singer [1996]),

• Newton polygons for geometric factorization and module decomposition (van der Put and Singer
[2003]),

• Puiseux series and local parametrization of curves for factorization via Newton polygons and the
coprime index 1 (van Hoeij [1997a]),

• Padé approximation for the van Hoeij’s algorithm for finding right-hand factors (van Hoeij
[1997b]).

In conclusion, this work presents the results of our studies in differential Galois theory, as applied
to symbolic factorization of differential operators. Starting from the clarification and systematiza-
tion of the theoretical foundations relevant to factorization, we have evolved original ideas about the
factorization of partial diffential operators and provided the thoretical foundations and algorithmic
specifications for second order linear operators. Furthemore, we have complemented the theoretical
work with a number of concrete examples chosen from relevant application areas.

This work can be extended in a number of ways. On the theoretical side, we feel that interesting
future work could be in the area of differential elimination, where our results may be instrumental
in solving linear differential equations by operators. On the applications side, the our results can
complement a computer-algebra system, by proving tools for solving a class of partial differential
equations, by factorization.
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approximants. SIAM J. Matrix Analysis and Applications, 16:804–823, 1994.

Emanuel Beke. Die Irreducibilität der homogenen linearen Differentialgleichungen. Mathematische
Annalen, 45:185–195, 1894.
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reine und angewandte Mathematik, 84, 1878.

M. Juras. Generalized Laplace invariants and classical integration methods for second-order scalar
hyperbolic partial differential equations in the plane. In J. Janyske, editor, Proceedings of the 6th
International Conference on “Differential Geometry and Applications”, Masaryk Univ., Brno, Czech
Republik, August 28 - September 1, pages 275–284, 1995.

Irving Kaplansky. Introduction to Differential Algebra. Actualités Scientifiques et Industrielles 1251.
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