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Abstract. We have designed and implemented an API for grid computing that can be used for devel-
oping grid-distributed parallel programs without leaving the level of the language in which the core
application is written. Our software framework is able to utilize the information about heterogeneous
grid environments in order to adapt the algorithmic structure of parallel programs to the particular
situation. Since our solution hides low-level grid-related execution details from the application by
providing an abstract execution model, it is able to eliminate some algorithmic challenges of nowa-
days grid programming.

1 Introduction

No parallel supercomputing application can execute efficiently on the grid that is not aware of the
fact that it runs in an heterogeneous network environment with heterogeneous nodes. We report on a
newly developed distributed programming software framework and API for grid computing. The goal
of this grid-based programming solution is to empower applications to perform scheduling decisions
on their own and utilize the information about the grid environment in order to adapt their algorithmic
structures to the particular situation.

Our system is not another grid workflow tool (it is not designed for applications that are just collec-
tions of independent sequential components). On the contrary, it is a real parallel programming frame-
work which hides low-level execution details from the applications by employing abstract execution
models for heterogeneous grid environments. Moreover, our solution is an advanced topology-aware
programming tool which takes into account not only the topology of the available grid resources but
also the point-to-point communication structure of parallel programs. In our approach, a pre-defined
schema is assigned to each given parallel program that specifies preferred communication patterns
of the program in heterogeneous network environments. The execution engine first adapts and maps
this schema to the currently available grid resources and then starts according to this mapping the
processes on the grid. Our API contains function calls which are able to query all the details of the
mapping information which contains both the adapted communication structure of the program and
the topological information of the allocated grid resources.

Regard an example where a user intends to execute a tree-like multilevel parallel application on the
grid. She specifies in advance that the given application shall consist of 20 processes organized into
a 3-levels tree structure. On the lowest level leaves belonging to the same parent process shall form
groups such that each group contains at least 5 processes scheduled to the same local network envi-
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ronment. For this specification, our software framework is able to determinate a suitable partition of
processes on the currently available grid resources and to start the processes according to this schedul-
ing. The partition is based on some heuristics, e.g.: our framework prefers such tree structures where
the sizes of the groups formed by the leaf processes belonging to the same parents are maximal; con-
sequently the processes of each such group can be scheduled to a cluster. Furthermore, our API maps
at runtime the predefined roles of processes in the specified logical hierarchy (global manager, local
manager and workers) to the allocated pool of grid nodes such that the execution time is minimized.

The rest of the paper is organized as follows. First we give in Section 2 a short survey about the
state of the art. Then we outline in Section 3 our idea about predefined communication schemas for
grid-distributed applications which served as basis for our work. In Section 4 we give an overview
on the overall software architecture of our grid programming framework. In Section 5 we present our
topology-aware API. We discuss in Section 6 the applied scheduling algorithm in detail. Finally, we
present in Section 7 a performance comparison with benchmark results between MPICH-G2 and our
system and conclude in Section 8.

2 State of the Art

A grid environment is inherently parallel, distributed, heterogeneous and dynamic, both in terms of
involved resources and their performance [9]. While it may be possible to build grid applications us-
ing existing programming tools [8], they are not particularly well-suited for developing and managing
flexible compositions or deal with heterogeneous hierarchies of machines, data and network with het-
erogeneous performance. [13] investigates what properties and capabilities grid programming tools
should possess to support not only efficient grid codes, but their effective development. Currently
there is not any tool that addresses all requirements in all situations.

Due to the OGF standardization efforts to compose a simple, stable, and uniform high-level program-
ming interface for the Grid, the Simple API for Grid Applications (SAGA) [10] was designed and
implemented in the last couple of years. SAGA integrates the most common grid programming ab-
stractions, but it yields only limited support for inter-process communication and it is not aimed to
cover any requirements of large-scale, high-performance computing on the grid.

Obtaining high-performance on the grid requires a balance of computation and communication among
all involved resources. Currently this can be done by manually managing computations, communica-
tions and data locality using message-passing (e.g.: MPI) or remote procedure call (e.g.: GridRPC).
Although GridRPC [15] may become an OGF standard as a parallel programming interface for the
grid (and it is supported by SAGA), it is restricted to the client-server model (as any other remote
procedure call API) and lacks the versatility and power of message-passing based APIs.

While MPI addresses some of the challenges in high-performance grid computing, it was originally
designed only for clusters or other homogeneous network environments [14]. A parallel program-
ming environment evolved for the grid must be topology-aware in that sense that it must be aware of
and exploit the characteristic of an available physical network architecture. Typical topology-aware
programming tools are e.g. MPICH-G2 [12] and MPICH-VMI [17]. Both of them are grid-enabled
MPI implementations based on the MPICH library. MPICH-G2 uses some grid services provided by
the Globus Toolkit pre-Web Service architecture. MPICH-VMI utilizes the middleware communica-
tion layer Virtual Machine Interface (VMI). The most important difference between MPICH-G2 and
MPICH-VMI is that:
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Figure 1. Applicable Communication Schemas

• while the earlier requires the user to manually provide the physical topology of the network
(upto 4 levels) using the Resource Specification Language (RSL) (if the user does not provide
this information, the processes of parallel programs are simply assigned to grid machines in
sequence, according to a given “machines” file),

• the latter constructs a 2-levels network topology at runtime using the Grid Cluster Resource
Manager (GCRM) which is an external service on the TeraGrid.

In 2007, a successor of MPICH-G2 was released called MPIg [3] which has already been able to start
parallel programs via the Web-Service architecture of the Globus Toolkit and which provides some
performance enhancements compared to MPICH-G2.

Summarizing the achievements of these MPI-based systems, we can say that existing topology-aware
programming tools make available the given topology information on the level of their programming
API and they optimize (only) the collective communication operations (e.g.: broadcast) with the help
of the topology information such that they minimize the usage of the slow communication channels.
But they are still not able to adapt the point-to-point communication pattern of a parallel programs to
network topologies such that they achieve a nearly optimal execution time on the grid.

3 Predefined Communication Schemas

In our approach, we conform the communication structure of parallel programs to particular grid
resources by applying some predefined communication schemas which classify the point-to-point
connections between the processes as “often used” and “rarely used” communication links. By this,
the schema assigned to a parallel program specifies the intended communication patterns of the pro-
gram in heterogeneous network environments. The schemas are formulated in a simple XML-based
syntax.

In general the schemas arrange processes into local groups. The processes of a local group are sup-
posed to interact each other frequently; they are therefore intended to execute in a local network
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environment (cluster or LAN). The following kinds of communication schemas are currently em-
ployed [5] (see Figure 1):

Groups This schema defines a prescription how processes of a parallel program may be partitioned
into local groups. In the schema we can specify the number of processes, a minimum size for
local groups and a divisor for the number of the local groups. We assume that each group can
interact with any other group with equal chance (so the supposed communication pattern among
the local groups is a fully connected graph).

In the example depicted in Figure 1a, the schema requires to schedule 12 concurrent processes
into local groups such that each group consists of 4 processes at least. The prescribed divi-
sor is 1, thus there is no restriction for the number of the groups. There are many possible
distributions which fulfill these conditions (some candidates are presented on Figure 1a). The
execution engine of our system attempts to find a corresponding process distribution which can
be scheduled to the available physical grid resources such that the assessed execution time of
the program is minimal.

Graph This schema is similar to “Groups”. However here one can give the accurate size of each local
group and can define additionally edges/links between the groups such that a communication
pattern among the groups is described (see Figure 1b). The purpose of these edges is to schedule
the connected groups close to each other (in terms of latency of the physical grid architecture).
Of course, this notation does not mean that only those groups can interact with each other that
are bound to each other by such a predefined edge (it is just used to indicate the preferences for
scheduling). If no edges are defined by a given schema “Graph”, then the schema is treated as a
schema “Groups” with fixed group sizes (so in this case it is supposed that the communication
pattern among the local groups is a fully connected graph).

Tree This schema specifies a tree-like multilevel parallelism with the given number of processes and
the given number of tree levels. The sizes of the local groups located on the lowest level (the
level of leaves) are not fixed but just a minimum number of processes comprised in such groups
is prescribed (the non-leaf processes represent one-element local groups).

If we regard the example depicted on Figure 1c, where a schema “Tree” is given with 19 pro-
cesses and with 3 levels such that the minimum size of the leaf groups is 5. Again we can
find several tree structures which fulfill the given requirements. The execution engine applies
a heuristic to select and schedule a tree structure as optimal as possible (first it is allowed to
map the structure to one local network environment, if this is not possible, then it is split and
assigned to two or three, etc). In addition, the engine attempts to place the parent processes of
the leaves (local managers) close to their children processes (in terms of latency).

Ring This schema is similar to schema “Groups” (its argument list is the same, too), but the local
groups always compose a ring (see Figure 1d). In the case of this schema, the execution engine
takes care of the placing of the groups, such that neighbors in the ring are scheduled on the
physical grid architecture close to each other (in terms of latency).

There is an additional schema called singleton which is used for scheduling such applications which
were designed only for homogeneous network environments (like pure MPI programs). In this schema
only the number of the processes is specified and these processes are assigned to the same local
network environment.
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Figure 2. Overview on the Software Framework

4 Software Architecture

We have implemented a first prototype version of our software framework [5, 6] called “Topology-
Aware API for the Grid” (TAAG). The implementation is based on the pre-Web Service architecture
of the Globus Toolkit [1] and on MPICH-G2 [12]. Our system consists of three major components
(see Figure 2):

Scheduling Mechanism This component depends on the Network Weather Service (NWS) [18],
which is a performance prediction tool that has become a de facto standard in the grid com-
munity. Since the NWS provides all necessary information concerning the utilizable grid re-
sources, the user needs not know any detail of the grid architecture. In addition to these perfor-
mance characteristics the scheduling algorithm needs a communication schema of a particular
application specified in an XML format.

Before each execution of a parallel program on the grid, the scheduling mechanism adapts and
maps a preferred communication pattern of the program to the available grid resources such
that it heuristically minimizes the assessed execution time (see Section 6). The output of the
algorithm is an XML-based mapping file which describes a mapping between the grid resources
and the given communication pattern.

Deployment Mechanism This mechanism is based on the job starting mechanism of the grid-enabled
MPI implementation MPICH-G2 [12]. It expects a mapping file generated by the scheduling
mechanism as input which contains among others the name and various locations of the exe-
cutable, the designated grid resources and the partition of processes. It then starts in two steps
the processes of an application on the grid according to the content of the mapping file:
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int TAAG_Init(char *file)
int TAAG_Initialized(int *flag)
int TAAG_Free()

int TAAG_Group_number(int *nr)
int TAAG_Group_rank(int rank, int *grpRank)
int TAAG_Group_size(int grpRank, int *nr)
int TAAG_Group_members(int grpRank, int nr, int *members)
int TAAG_Group_element(int grpRank, int index, int *rank)
int TAAG_Group_MPIGroup(int nrProcs, int *ranks, 
           int nrGroups, int *grpRanks, MPI_Group *grp)
int TAAG_Group_degree(int grpRank, int order, int *nr)

int TAAG_Tree_children(int rank, int level,
int nr, int *ranks)

int TAAG_Tree_isTree(int *flag)
int TAAG_Tree_isLeaf(int rank, int *flag)
int TAAG_Tree_root(int *rank)
int TAAG_Tree_depth(int *depth)
int TAAG_Tree_level(int rank, int *level)
int TAAG_Tree_parent(int rank, int *parent)
int TAAG_Tree_width(int rank, int level, int *nr)

int TAAG_Host_processes(int rank, int nr, int *ranks)
int TAAG_Host_latency(int rank1, int rank2,

double *latency)

int TAAG_Host_number(int *nr)
int TAAG_Host_address (int rank, char *address)
int TAAG_Host_properties(int rank, int *nrCPUs,

int *nrProcs)
           int nr, int *grps)

int TAAG_Group_way(int grpRank1, int grpRank2,
           int nr, int *grps)

int TAAG_Group_neighbours(int grpRank, int order,

int TAAG_Group_distance(int grpRank1, int grpRank2, int *nr)

Initialization and Termination:

Calls Related to Groups/Graphs:

Calls Related to Trees:

Calls Related to Grid Resources:

Figure 3. TAAG API Calls with respect to Initialization/Termination, Grid Resources as well as “Groups”,
“Graph” and “Tree” Schemas

• First, it distributes via gridFTP the mapping file into the directory /tmp on all designated
grid machines.

• Then it generates a RSL expression from the mapping file; with the help of this RSL
expression, it starts the application on the grid via MPICH-G2.

Topology-Aware API This API is an addition to the MPICH [2] programming library. Its purpose is
to query mapping files and inform parallel programs how their processes are assigned to physi-
cal grid resources and which are the designated roles for these processes. It provides informa-
tion such as in which local group a particular process resides or which are the characteristics of
local groups, graphs, trees or rings. For more details, see Section 5

The system has already been tested successfully on the sites altix1.uibk.ac.at (Altix 350)
and alex.jku.austriangrid.at (Altix ICE 8200) of the Austrian Grid.

5 The Topology-Aware API

The API is an addition to the MPICH [2] programming library. Its purpose is to inform a parallel
program

• how its processes are assigned to some physical grid resources,

• how its processes compose certain algorithmic hierarchies (e.g.:groups, graph, tree, etc.) and

• which are the designated roles for these processes.

All these tasks are performed according to the XML-based mapping file (which is generated by the
scheduling mechanism). For all programs which intend to use any calls of our API, the header file
taag.h must be included in its source. A part of the API is presented on the Figure 3; the function
calls can be classified as follows:
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Initialization/Termination calls initialize, check or deallocate the corresponding data structures
which describe the runtime environment and the algorithmic structures composed by the pro-
cesses (based on the mapping file provided by the scheduling mechanism), see Figure 3.

Groups/Graph-related calls deal with the local groups and their relations, see Figure 3 (since the
“Tree” and “Ring” schemas describe special graphs composed by local groups the calls in this
class can be applied in case of all kinds of communication schema). The simpler “Groups/
Graph”-related calls return values like the number of groups, the rank of a group to which
a given process belongs, the number of processes in a group and the ranks of all or some
processes contained by a group.

The call TAAG Group MPIGroup composes a single MPI Group structure from some given
individual processes and/or from the processes of some given local groups (by which new MPI
communicators can be created easily for carrying out collective operations among the specified
processes). Further calls are used if some edges are specified among the local groups; they
determine the number of neighbor groups, the ranks of the neighbor groups (first order neighbor
to n-th order neighbors), the distance of two groups and the way how to get from one group to
another along the specified edges (if possible).

Tree-related calls deal with communication patterns based on the schema “Tree”, see Figure 3.
Some of them decide about whether the given mapping file describes really a tree structure
or whether the given process rank belongs to a leaf process; other calls give back the rank of the
root process, the depth of the entire tree, the level on which a given process is located, the rank
of the parent process of a given process and finally the number of processes occur on a certain
level of a given subtree and the ranks of these (child) processes.

Ring-related calls deal with communication patterns based on the schema “Ring”. This class of
API calls contains only three different calls. One of them checks whether the given mapping
file describes really a ring structure. The other two return the ranks of the left or of the right
neighbor groups, respectively.

Grid Resources-related calls query the momentarily available grid resources such as the number
and the names of the allocated hosts as well as the number of CPUs, the number and ranks
of processes located on the host where the given process resides. Last but not least the call
TAAG Host latency returns the network latency value between two given processes (if they
are executed on the same host the return value is 0).

By this API, programmers need to specify mainly the roles of the processes in a given hierarchy, but
they do not need to know in advance the particular characteristic of the available grid architecture. For
instance, in the skeleton of the tree-like multilevel parallelism in Figure 4, essentially only the process
roles such as root, leaves and others are described after the initialization of the runtime environment.

We demonstrate the versatility of the TAAG API, by a simple distributed example application [6]
which can be used to establish different kinds of tree-like multilevel parallelism on the grid according
to a mapping file. A skeleton of this example program is presented in Figure 4. First, the program
initializes the runtime environment and the algorithmic structures composed by the processes accord-
ing to the mapping file (whose name and location are always specified as the first argument of the
program by the deployment mechanism of the TAAG system). Then the root of the tree creates some
computational tasks and distributes them among its child processes, which in turn distribute further
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if (rank == root) {        /***** root branch *****/

      if (flag == TAAG_FALSE) {              /***** non−leaf branch *****/

              TAAG_Tree_children(rank, 1, nrChildren, children);
              TAAG_Tree_width(rank, 1, &nrChildren);  

else {      /***** non−root branch *****/

         else {              /**** leaf branch ****/

        TAAG_Tree_width(rank, 1, &nrChildren);
        TAAG_Tree_children(rank, 1, nrChildren, children);
        ...
} //if

} //else
TAAG_FREE();
MPI_Finalize();

#include <mpi.h>
#include <taag.h>
...
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nrProcs);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
TAAG_Init(argv[1]);

TAAG_Tree_root(&root);

        ...

      TAAG_Tree_parent(rank, &parent);
      TAAG_Tree_isLeaf(rank, &flag);

         }//if
         } //else...

        ...

Figure 4. A Skeleton of the source of a Tree-Like Multilevel Parallel Application

these tasks among their children till the tasks reach the leaf processes. The leaves process the tasks
and return the outcome to the root via their parents.

The example program itself (without any modification in its source code) can be used to establish
different kinds of the tree-like multilevel parallelism on the grid by applying different “Tree” schemas
(with various number of processes arranged into arbitrary tree levels, etc.). The completed version of
this program code has been tested successfully together with various tree structures on several sites
of the Austrian Grid.

6 The Scheduling Mechanism

The task of the scheduling mechanism is to find a partition of processes based on the given schema
which can be mapped to the available hardware resources such that the assessed use of any slow com-
munication channel is minimized. This kind of communication-aware mapping is an NP-complete
problem which can be only efficiently solved by some kind of heuristic search algorithm. Similar
problems have already arisen three decades ago in the mapping of processes to parallel hardware
architectures (e.g.: hypercube) [7]. Nowadays the technique of communication-aware mappings is
recalled in connection with heterogeneous multi-cluster and grid environments [16].

6.1 The Scheduling Algorithm in the Case of the Schema “Groups”

In this section, we describe how the algorithm applied by the scheduling mechanism works in the
case of the schema “Groups”. The algorithm expects as input the list of the available hosts, a forecast
for the available CPU fractions on these hosts and a forecast for the latency values in milliseconds are
predicted for each pair of hosts, and finally a communication schema which specifies the preferred
heterogeneous communication patterns of a program. The first three groups of data are provided by
the NWS [18] while the schema is given by the user. The algorithm works roughly as follows:

1. First we classify all the links between each pair of hosts according to the order of magnitude
of latencies. For the generated classes we assign an ascending sequence of integer numbers
(latency levels). To the class which comprises the fastest links we assign the level 1, to the next
one we assign the level 2 and so forth.

2. We compose some not necessarily disjoint clusters (let us call them latency clusters) from all
the given hosts such that the latency levels of the links between any two member hosts of such a
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Figure 5. Composing Latency Clusters and Process Partitions

cluster cannot exceed a certain value (some of these latency clusters may comprise some others
with less maximum latency level), see Figure 5a. Furthermore each host itself is regarded as
a latency cluster with the latency level 0. Each latency cluster has a capacity feature which
determines how many processes can be assigned to it at most. This capacity is calculated
from the number of CPUs in the latency cluster multiplied with an integer coefficient. The
default value of the coefficient is 1, but one can specify a higher value via a command line
interface. The generated latency clusters are stored in a list which is sorted according to their
maximal latency levels in ascending order (and on the same level according to their capacities
in descending order).

3. We generate all those partitioning of processes (in which processes are organized into vari-
ous local groups) which fulfil the given preferred communication pattern of a program, see
Figure 5b.

4. Finally we map the generated process partitions to some latency clusters according to some
compound heuristic (which helps to avoid the combinatorial explosion of possibilities) which
roughly works as follows:

• The process partitions are pre-evaluated. Only those partitions are kept for the mapping
which either contains only one group or has at least one group whose size is equal to the
capacity of one of the latency clusters (independently from the latency values the optimal
mappings always contain at least one group which fits exactly into a latency cluster).

• A process partition is mapped to some latency clusters group by group (greater groups are
assigned earlier). Each group is assigned to a latency cluster whose latency level is min-
imal and available capacity is large enough for the group. According to some additional
low level heuristics a group can be assigned more than one latency cluster if their latency
levels are the same (this can result an alternative mapping for a particular partition).
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To find a reasonably efficient scheduling for the program in the space of solutions, we associate
a cost function to each mapping (between a process partition and some latency clusters). This
cost function takes into consideration the following characteristics of the mappings:

• the maximum latency level within the local groups,

• the maximum and the average latency values of all possible links among the local groups.

The algorithm always returns the mapping whose associated cost function is minimal.

6.2 The Scheduling Algorithm in the Case of the Schema “Graph”

In the case of the schema “Graph” the algorithm is slightly different because the number and sizes of
local groups are fixed by the given schema. So we count only with the given process partition and we
can therefore skip the third step of the algorithm above.

Additionally since the schema “Graph” specifies links among the local groups, in the cost function (in
step 4) we apply average latency value of the pre-defined connections instead of the average latency
value of all connections among the groups.

6.3 The Scheduling Algorithm in the Case of the “Tree” and the “Ring” Schemas

Although the number and the sizes of the local groups are not specified in the cases of the “Tree”
and the “Ring” schema, but each possible partition contains pre-defined connections among its local
groups. Hence, we apply in the cost function (in step 4) the average latency value of the pre-defined
connections instead of the average latency value of all connections among the groups.

Furthermore, in the case of the schema “Tree” we take into account that every local manager process
shall be scheduled together with the corresponding leaf group (they are mapped to the same latency
cluster).

6.4 Disadvantage of the Algorithm

The algorithm assumes that on each host of a grid architecture an NWS sensor runs and the laten-
cies between all pairs of hosts are measured. This all-to-all network sensor communication would
consume a considerable amount of resources (both on the individual host machines and on the inter-
connection network). For instance, the most common way to measure the end-to-end performance in a
grid architecture comprising 15 hosts is to periodically conduct the 152−15 = 210 network probes re-
quired to match all possible sensor pairs [18]. This problem may be overcome with a careful, network
topology dependent configuration of the Network Weather Service (by establishing a corresponding
clique hierarchy).

7 Comparative Benchmarks with MPICH-G2

To prove the efficiency of the concept of our communication schema based programming and schedul-
ing solution, we performed some comparative benchmarks with TAAG and (pure) MPICH-G2. For
this, we had to find a problem that requires a structured communication pattern which can be adapted
to heterogeneous network environments, but which can still be implemented easily in pure MPI, too.
We chose the well-known n-body problem as a basis of our tests. Here a large number of particles
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Figure 6. The Applied Test Configurations for the Pure MPI Program and for the TAAG-Based Version.

is given (with their positions and masses) as input; the task is to compute the future positions of the
particles by taking into account the mutual gravitational attraction among them.

In more detail, we choose as the core of our demonstration an open-source n-body simulation [11]. On
the basis of this application we implemented two variants of a toy solution, one in pure MPI and one
in TAAG. They solve a special case of n-body problem, where the given particles are arranged into
some subsystems called galaxies. The computation of the new positions of all particles of a galaxy
is assigned to a disjunct groups of processes. For simplicity, we assume that the galaxies are located
far enough from each other such that a collision is not possible between any two of them during the
investigated time intervals; the initial setup is prepared accordingly. Due to this assumption a galaxy
can be regarded from the other galaxies as a single heavy particle (as long as two galaxies do not
approach each other or collide).

So for computing the next position of a particle, on the one hand the actual positions of all other
particles of the comprising galaxy and on the other hand the total masses of and the coordinates of
the central mass points of the other galaxies are required. The former data is shared among the cor-
responding processes by applying a ring pipeline communication pattern on the lower level in which
(n−1)∗n messages are sent in every turn (where n is the number of those processes maintaining the
particles of a galaxy). The latter data have to be calculated and exchanged among the appointed man-
ager processes of process groups on the higher level (a more general version of the program which
will be prepared to take into consideration the collision between two or more galaxies is under devel-
opment). We have to notice that the implementation of even such a simple two levels algorithm was
already much more complicated in pure MPI than with the usage of the API of TAAG.

In the test cases, we used a setup in which the particles are organized into three galaxies such that the
sizes of the galaxies are in proportion 1:2:3. Furthermore the particles were always distributed evenly
among the processes, so each process maintains the positions of the same amount of particles.

The test cases were executed on two Austrian Grid sites alex.jku.austriangrid.at resid-
ing in Linz and altix1.uibk.ac.at residing in Innsbruck. The former consists of Intel Xeon
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Mpi1 Mpi2 Taag

Configurations Speedups

Mpi1/Taag Mpi2/TaagSteps
TimeParticles

/Procs.
Nr. Of
Procs.

18 500 10 1.212x1.5806s 1.715x

18 4000

161.1072s 203.6982s 1.21x 1.529x24018 1000 133.141s

40.4837s 1.234x 1.482x18 1000 32.7855s

18 2000 10 1.44x1.17x

6.0735s 1.506x1018 1000 1.18x

20.3422s

5.1444s

1.3031s

48.6121s

7.7509s

2.2361s

29.3047s23.8034s

10 107.3881s 136.3655s 87.1078s 1.232x 1.565x

60

Figure 7. Execution Times and Speedups

processors (2.5GHz) the latter comprises Intel Itanium processors (1.4GHz). The two machines are
connected via a gigabit WAN connection provided by the Austrian Academic Computer Network
(ACONet). In our tests, we used 18 processes and 18 CPUs (12 CPUs on alex and 6 CPUs on
altix1) such that every process can be assigned to a separate CPU (so 3 CPUs are assigned to the
smallest galaxy, 6 CPUs to the middle one and 9 CPUs to the largest galaxy).

In MPICH-G2, “machines” files are used to list the computers on which we wish to run our programs.
Next to an enumerated machine name in each line, a number appears which specifies the maximum
number of processes that can be executed on the machine. The processes are always scheduled to
the machine listed first. Then if we intend to use more processes than can be established on the first
machine, the remaining processes are scheduled to the subsequent machine in the list. Consequently,
the only way to influence the scheduling of the processes from a “machines” is by changing the order
of the machine names (it is supposed that the maximum number of executable processes are fixed for
each machine).

For scheduling the processes of the MPI program, we applied two different configurations given in
“machines” files (see Figure 6).:

• According to the first configuration labeled as “MPI1” where the machine altix1 is listed
first, the processes that maintain the particles of the second galaxy are distributed between
altix1 and alex (see Figure 6a).

• According to the second configuration labeled as “MPI2” where the machine alex is listed
first, the processes that maintain the particles of the third galaxy are distributed between alex
and altix1 (see Figure 6b).

Hence, in both MPI-related configurations from all the n∗(n−1) messages sent on the corresponding
ring pipeline, 2 ∗ (n− 1) messages have to be sent via the WAN network connection in every time
steps (where n is the number of processes maintaining the particles of a galaxy).

For scheduling the processes of the TAAG-based version of the program we applied the following
communication schema

GRAPH{3,0, [3,6,9], []}
which yields the optimal scheduling such that the first and the third galaxies are maintained on the
alex and the second galaxies are maintained on the altix1 (see Figure 6c). Apart from the way
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how the group of processes are established and assigned to galaxies, the both versions (the pure MPI
and the TAAG-based versions) of the program contain the same piece of code (we avoided the usage
of any convenient statements or programming structure introduced by our API).

The execution times presented on Figure 7 are average values of 5 computations and do not include
the overhead of the job submission in Globus. As it can be seen that the reachable speedup factor is
independent how we decreased or increased either the number of the particles or the time interval of
the simulations in the test cases. The use of our topology-aware API always speeded up the simulation
by a factor of 1.2 compared to the “MPI1” configuration and by a factor of 1.5 compared to the “MPI2”
configuration roughly. We have also investigated the case in which the optimal scheduling is possible
by MPICH-G2, too (e.g.: on both grid sites 9-9 CPUs are available). In these test cases, the average
execution times of the two versions of the application were quite alike. Consequently, we can state
that the usage of our TAAG framework offers at least as efficient program execution on the grid as
MPICH-G2.

In all likelihood in a more realistic test circumstances (in a testbed containing more than two clusters)
the achieved speedups would be higher because the chances for remote communication in a pure MPI
solution are much higher. In the future, we intend to develop an efficient distributed n-body simulation
(probably on the basis of the hierarchical Barnes-Hut algorithm [4]) whose execution beyond a certain
problem size shall require a more complex decomposition of process groups among physical hardware
resources. Since in these proposed simulations many to many grid sites interact with each other
according to a compound logical hierarchy (instead of the presented simple algorithmic structure
consisting of only two machines), we expect a more significant performance gain on the side of the
TAAG framework (in comparison with pure MPICH-G2).

8 Conclusions

Compared to these existing topology-aware programming tools, the major advantages of our solution
are the following:

• It takes into consideration the point-to-point communication pattern of a MPI parallel program
and tries to fit it to a heterogeneous grid network architecture,

• It preserves the achievements of the already existing topology-aware programming tools. This
means the topology-aware collective operations of MPICH-G2 are still available, since MPICH-
G2 serves as a basis for our software framework.

• Since our system hides low-level grid-related execution details from the application by pro-
viding an abstract execution model, it eliminates some algorithmic challenges of the high-
performance programming on the dynamic and heterogeneous grid environments. Program-
mers need to deal only with the particular problems which they are going to solve (like in a
homogeneous cluster environments).

• The distribution of the processes is always conformed to the loading of the network resources.

A drawback of our solution is that the applicable communication patterns cannot be retrieved from
the programs. If some schema is not enclosed to a distributed application, its effective scheduling
may not be possible at the moment. We propose to overcome this issue in a subsequent version of our
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software system where the programmer will be forced by the API library to specify a recommended
schema (with defined flexibility) via some function calls in the source of the programs. According
to our conception, the scheduling mechanism will be able to query this built-in information from the
compiled application.

As the next step, we intend to replace the MPICH-G2 in our software framework with its successor
called MPIg [3]. By this substitution, our TAAG system will be able to submit and execute parallel
programs via the Web-Service architecture of the Globus Toolkit, too (MPIg had only one internal
release at the end of 2007, which is freely available for testing and development purposes). Besides,
we also plan to develop on the basis of our TAAG programming framework some grid-distributed
parallel applications (e.g.: a distributed n-body simulation based on Barnes-Hut algorithm and some
other programs in the fields of the hierarchical distributed genetic algorithms) in cooperation with
other research groups.
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