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Abstract. In this paper, we suggest a possible confluence of the theory
of hybrid automata and the techniques of algorithmic algebra to cre-
ate a computational basis for systems biology. We describe a method
to compute bounded reachability by combining Taylor polynomials and
cylindric algebraic decomposition algorithms. We discuss the power and
limitations of the framework we propose and we suggest several possible
extensions. We briefly show an application to the study of the Delta-
Notch protein signaling system in biology.

1 Prologue

Presently, there is no clear way to determine if the current body of biological
facts is sufficient to explain phenomenology. In the biological community, it is
not uncommon to assume certain biological problems to have achieved a cog-
nitive finality without rigorous justification. In these particular cases, rigorous
mathematical models with automated tools for reasoning, simulation, and com-
putation can be of enormous help to uncover cognitive flaws, qualitative simpli-
fication or overly generalized assumptions. Some ideal candidates for such study
would include: prion hypothesis, cell cycle machinery (DNA replication and re-
pair, chromosome segregation, cell-cycle period control, spindle pole duplication,
etc.), muscle contractility, processes involved in cancer (cell cycle regulation, an-
giogenesis, DNA repair, apoptosis, cellular senescence, tissue space modeling
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enzymes, etc.), signal transduction pathways, circadian rhythms (especially the
effect of small molecular concentration on its robustness), and many others.

Fortunately, similar issues had been tackled in the past by other disciplines:
verification of VLSI circuits, hybrid supervisory controllers, robotics, etc. Yet,
biology poses new challenges. The most interesting biology combines unimag-
inable diversity with an understanding of molecular events in minute detail. A
single base-pair change can influence the folding of a protein, and alter the femto-
second dynamics of any of a tangle of interacting macromolecules. Of course, a
system of millions of ordinary differential equations (ODEs) and their accurate
simulation via numerical integration will not have much effect on uncovering
the key biological insights. What sort of natural computational abstractions of
biological systems can then be most effective? Can we understand biology by
“simulating the biologist, and not biology”?

1.1 Biological Models

The central dogma of biology is a good starting point for understanding a math-
ematical formalism for biochemical processes involved in gene regulation. This
principle states that biochemical information flow in cells is unidirectional—DNA
molecules code information that gets transcribed into RNA, and RNA then gets
translated into proteins. To model a regulatory system for genes, we must also
include an important subclass of proteins (transcription activators), which also
affects and modulates the transcription processes itself, thus completing the cy-
cle. We can write down kinetic mass-action equations for the time variation of
the concentrations of these species, in the form of a system of ODEs [10, 14, 23].
In particular, the transcription process can be described by equations of the Hill
type, with its Hill coefficient n depending on the cooperativity among the tran-
scription binding sites. If the concentrations of DNA and RNA are denoted by
xM , yM , etc., and those of proteins by xP , yP , etc., then the relevant equations
are of the form:

ẋM = −k1xM + k3
1 + θyn

P

1 + yn
P

(1)

ẋP = −k2xP + k4xM (2)

where the superscripted dots denote the time-derivatives.
Each equation above is an algebraic differential equation consisting of two

algebraic terms, a positive term representing synthesis and a negative term repre-
senting degradation. For both RNA and DNA, the degradation is represented by
a linear function; for RNA, synthesis through transcription is a highly nonlinear
but a rational Hill-type function; and for proteins, synthesis through translation
is a linear function of the RNA concentration. In the equation for transcription,
when n = 1, the equations are called Michaelis-Menten equations; yP denotes
the concentration of proteins involved in the transcription initiation of the DNA,
k1 and k2 are the forward rate constants of the degradation of RNA and proteins
respectively, k3 and k4 are the rate constants for RNA and protein synthesis and
θ models the saturation effects in transcription.



If one knew all the species xi involved in any one pathway, the mass-action
equations for the system could be expressed in the following form

ẋi = fi(x1, x2, . . . , xn), i = 1, 2, . . . , n

When the number of species becomes large, the complexity of the system of
differential equations grows rapidly. The integrability of the system of equa-
tions, for example, depends on the algebraic properties of appropriate bracket
operations [19, 18]. But, we can approximately describe the behavior of such a
system using a hybrid automaton [2, 21]. The “flow”, “invariant”, “guard”, and
“reset” conditions can be approximated by algebraic systems and the decision
procedures for determining various properties of these biological systems can be
developed using the methods of symbolic algorithmic algebra.

1.2 Intercellular Communication

Communication between adjacent cells are used by biological systems in coor-
dinating the roles, which can be ultimately assigned to any individual cell. For
instance, in both vertebrates as well as invertebrates, lateral inhibition through
the Delta-Notch signaling pathway leads to cells, starting initially in uniform
distribution, to differentiate into “salt-and-pepper” regular-spaced patterns. In
a communication mechanism employing lateral inhibition, two adjacent cells
interact by having one cell adopt a particular fate, which in turn inhibits its
immediate neighbors from doing likewise. In flies, worms and vertebrates, the
transmembrane proteins Notch and Delta (or homologs) mediate the reaction,
with Notch playing a receptor with its ligand being a Delta protein on a neigh-
boring cell.

Thus, imagine that one has a description of this system in terms of a state-
space, its dynamics (i.e. rules for flows and state transitions), and the subregion
of its state space corresponding to a desired property (e.g., fine-grained pattern-
ing of cells in a neighborhood). The first interesting question would be whether
the model adequately predicts that, when started in a biologically reasonable
initial state with all the model parameters assuming some known values, this
system actually evolves into the subregion encoding the desired properties. If
it does, the second question to ask would be whether one can completely and
succinctly characterize all possible regions (“backward-reachable region”) from
which the system also evolves into the desired subregion. The volume of such
a region, its symmetry and other invariants may tell us quite a lot about those
properties of the underlying biological system, which may have attributed to its
selective advantages. Furthermore, the model is now amenable to verification
by wet-lab experimentation involving the creation and analysis of mutants (in
the genes/proteins of relevance), some of which may “live” inside the reachable
region and others outside. To answer the first question, a good numerical simu-
lation tool suffices. However, it is less clear how best the second problem should
be solved computationally.



In a simplified continuous time model, the changes to the normalized levels
of Notch nP,X and Delta dP,X activity in a cell X can be expressed as the ODEs

ṅP,X = µ[f(d̄P,X) − nP,X ] and ḋP,X = ρ[g(nP,X) − dP,X ], where

d̄P,X =
1

#N (X)

∑

X′∈N (X)

dP,X′ , f(x) =
xk

a + xk
, g(x) =

b

b + xh
,

with N (X) being the set of neighboring cells of the cell X and µ, ρ, a, b > 0,
k, h ≥ 1. Note that f monotonically increases from 0 to 1 and g monotonically
decreases from 1 to 0 as x takes increasing value from 0 to ∞ (see Collier et al. [9]
for details of the model). Collier et al. concluded that the feedback loop was
adequate for generating spatial patterns from random stochastic fluctuations in
a population of initially equivalent cells, provided that feedback is strong enough.
Though they also observed that the model does not account for the longer-range
patterns.

In a related computational analysis, Ghosh et al. [11] proposed a piecewise
linear approximation to the continuous time model to generate a hybrid au-
tomaton. On this automaton, they conducted a symbolic reachability analysis
using SAL - a heuristic symbolic decision procedure, to characterize the reach-
able region by numerical constraints, further sharpening the observations of [9].
Our model described below, shows that the reachable set computed by Ghosh
et al. lacks a completeness in description.

2 Technical Preliminaries

2.1 Semi-Algebraic Hybrid Automata: Syntax

The notion of hybrid automata was first introduced as a model and specifica-
tion language for systems with both continuous and discrete dynamics, i.e., for
systems consisting of a discrete program within a continuously changing en-
vironment. A useful restriction is through the notion of semi-algebraic hybrid
automata whose defining conditions are built out of polynomials over the reals,
and reflect the algebraic nature of the DAEs (differential algebraic equations) ap-
pearing in kinetic mass-action models of regulatory, metabolic and signal trans-
duction processes.

Definition 1. Semi-Algebraic Hybrid Automata. A k-dimensional hy-
brid automaton is a 7-tuple, H = (Z, V , E, Init , Inv, Flow, Jump), consisting
of the following components:

– Z = {Z1, . . . , Zk} a finite set of variables ranging over the reals R; Ż =
{Ż1, . . . , Żk} denotes the first derivatives with respect to the time t ∈ R

during continuous change; Z ′ = {Z ′
1, . . . , Z

′
k} denotes the set of values at

the end of a discrete change;
– (V, E) is a directed graph; the vertices of V are called control modes, the

edges of E are called control switches;



– Each vertex v ∈ V is labeled by “initial”, “invariant” and “flow” labels:
Init(v), Inv(v), and Flow (v); the labels Init(v) and Inv(v) are constraints
whose free variables are in Z; the label Flow (v) is a constraint whose free
variables are in Z ∪ Ż;

– Each edge e ∈ E is labeled by “jump” conditions: Jump(e), which is a con-
straint whose free variables are in Z ∪ Z ′.

We say that H is semi-algebraic if the constraints in Init, Inv, Flow, and Jump
are unquantified first-order formulæ over the reals (i.e., over (R, +,×, =, <)).

We say that H is in explicit form if each Flow (v) is of the form
∧k

i=1 Żi =
fi(Z1, . . . , Zk). �

In this paper we consider only semi-algebraic hybrid automata in explicit form.
Notice that although, as defined, semi-algebraic hybrid automata in explicit form
apply only to the cases where the fi’s of the flow conditions are all polynomi-
als, the definitions can be immediately extended to deal with rational functions
instead without significant changes to the basic approach.

Example 1. Consider the following semi-algebraic automaton in explicit form.

Inv: 1 ≤ Z ≤ 3

Flow: Ż = 1

Init: Z = 1

Flow: Ż = −1

Init: Z = 3

Inv: 1 ≤ Z ≤ 3

Jump: Z = Z
′ = 3

Jump: Z = Z
′ = 1

The initial mode of this hybrid automaton is shown on the left, where from
the starting value of Z = 1, Z grows with a constant rate of 1. At time t = 2,
when the automaton reaches a value of Z = 3, it jumps to the other mode on
the right. In this second mode, Z wanes with a constant rate of −1 and upon
reaching the value of Z = 1, it jumps back to the initial mode. �

2.2 Hybrid Automata: Semantics

Let H be a hybrid automaton of dimension k. For any given control mode v ∈ V ,
we denote with Φ(v) the set of functions from R+ to Rk satisfying the constraints
in Flow (v). In addition, for any given r ∈ R

k, we use Init(v)(r) (Inv(v)(r) and
Flow (v)(r)) to denote the Boolean value obtained by pairwise substitution of r
with Z in Init(v) (Inv (v) and Flow(v), respectively). Similarly, for any given r,
s ∈ Rk, we use Jump(e)(r, s) to denote the boolean value obtained by pairwise
substitution of r with Z and s with Z ′ in Jump(e). The semantics of hybrid
automata can now be given in terms of execution traces as in the definition
below.

Definition 2. Semantics of Hybrid Automata. Let H = (Z, V , E, Init,
Inv, Flow, Jump) be a hybrid automaton of dimension k.

A location ℓ of H is a pair 〈v, r〉, where v ∈ V is a state and r ∈ Rk is
an assignment of values to the variables of Z. A location 〈v, r〉 is said to be
admissible if Inv(v)(r) is satisfied.



The continuous reachability transition relation, →C , between admissible lo-
cations is defined as follows:

〈v, r〉 →C 〈v, s〉

iff ∃t > 0, f ∈ Φ(v)

(

f(0) = r ∧ f(t) = s ∧ ∀t′ ∈ [0, t](Inv(v)(f(t′)))

)

.

The discrete reachability transition relation, →D, between admissible loca-
tions is defined as follows:

〈v, r〉 →D 〈u, s〉 iff 〈v, u〉 ∈ E ∧ Jump(〈v, u〉)(r, s)

A trace of H is a sequence ℓ0,ℓ1, . . ., ℓn, . . . of admissible locations such that

∀i ≥ 0 ℓi →C ℓi+1 ∨ ℓi →D ℓi+1. �

2.3 The Bounded Reachability Problem

Let H be a semi-algebraic k-dimensional hybrid automaton in explicit form,
S ⊆ Rk be a set of “start states”, characterized by the first order formula S(Z),
and B ⊆ Rk be a set of “bad states”, characterized by the first order formula
B(Z). We wish to check that there exists no trace of H starting from a location of
the form 〈v, s〉 with s ∈ S and reaching a location of the form 〈u, b〉 with b ∈ B
within a specified time interval [0, end]. If such traces exist we are interested in
a characterization of the points of S which reach B in the time interval [0, end].

Note that for our applications of interest, it suffices to place an upper-bound
on the time interval.

3 Our Approach

In this paper, we explore solutions to the bounded-reachability problem through
symbolic computation methods, applied to the descriptions of the traces of the
hybrid automaton. Because the description of the automaton is through semi-
algebraic sets, the evolution of the automaton can be described even in cases
where system parameters and initial conditions are unspecified. Nonetheless,
semialgebraic decision procedures provide a succinct description of algebraic
constraints over the initial values and parameters for which proper behavior
of the system can be expected. In addition, by keeping track of conservation
principles (e.g., of mass and energy) in terms of constraint or invariant mani-
folds on which the system must evolve, we avoid many of the obvious pitfalls of
numerical approaches.

Note also that the “algorithmic algebraic model checking approach” that we
propose here naturally generalizes many of the basic ideas inherent to BDD-
based symbolic model checking or even the more recent SAT-based approaches.

Nonetheless, our method has an inherent incompleteness: we proceed on the
traces using a time step δ which implies that our answer is relative to a lim-
ited time interval. Furthermore, when the solutions of the differential equations



cannot be computed we approximate them using the first few terms of the cor-
responding Taylor polynomials, hence the error we accumulate depends on δ.

We start by presenting how our method applies to the case of a system of
differential equations, i.e., a hybrid automaton with only just one mode and no
Init , Inv , and Jump conditions.

3.1 The Basic Case

Consider a system of differential equations of the form Ż = f(Z), where Ż and
Z are vectors of length k and f is a function that operates on them.

Let S, B ⊆ Rk be characterized by the formulæ S(Z) and B(Z), respectively.
As before, let [0, end] be a time interval and 0 < δ ≤ end be a time step.

We use pj(Z0, δ) to denote the Taylor polynomial of degree j relative to the
solution Z(t) centered in Z0 with a step size of δ. For instance, p1(Z0, δ) is the
vector expression Z0 + f(Z0) · δ.

Consider the following first-order formula over the reals

Fδ(Z0, Z) ≡ S(Z0) ∧ ∃δ′
(

Z = pj(Z0, δ′) ∧ 0 ≤ δ′ ≤ δ

)

.

The points reachable from S in the time interval [0, δ] can be approximated with
the set of points satisfying the formula ∃Z0(Fδ(Z0, Z)). Hence, the points in B
and reachable from S in [0, δ] can be approximated by the formula

∃Z0(Fδ(Z0, Z)) ∧ B(Z).

Symbolic algebraic techniques can be applied in order to both simplify (e.g.,
eliminate quantifiers) and decide the satisfiability of this formula. If the formula
is satisfiable, then the values of Z for which the formula is true represent the
portion of B that can be reached in time δ′ ≤ δ. Similarly, the points in S which
reach any point in B within the time interval [0, δ] can be characterized by the
formula ∃Z(Fδ(Z0, Z) ∧ B(Z)). If these formulæ are not satisfiable then we can
proceed with a second step, getting the formula

F2δ(Z0, Z) ≡ S(Z0) ∧ ∃Z1, δ′(Z1 = pj(Z0, δ) ∧ Z = pj(Z1, δ′) ∧ 0 ≤ δ′ ≤ δ).

The above reasoning can now be applied to F2δ(Z0, Z), i.e., use F2δ(Z0, Z)
instead of Fδ(Z0, Z), to check if S reaches B within the time interval [0, 2δ], etc.
Notice that the new variable Z1 which occurs in F2δ(Z0, Z) can be eliminated
by applying substitutions. If after time end all the formulæ we generate are
unsatisfiable, then S cannot reach B within the time interval [0, end].

It is important to notice that: (1) The only approximation we have introduced
is due to the use of the Taylor polynomials; (2) We have only used existential
quantified formulæ; (3) The degree of the Taylor polynomial together with the
degrees of the fi’s influence the complexity of the first-order formulæ we create
and the number of steps needed to get a sufficient precision. As far as the approx-
imation issues are concerned, when the derivative of order j + 1 of f is bounded



we can use the Lagrange Remainder Theorem to both under and over approxi-
mate the set of points reachable within the time interval [0, end] and to estimate
the error. It is easy to see that our method can be generalized to the case in
which the fi’s are rational functions, i.e., ratios of polynomial functions. In fact,
in this case we only have to preprocess the formulæ by computing the LCMs of
the denominators and using them to get formulæ over polynomial functions.

When we terminate, we are left with deciding the satisfiability of a semial-
gebraic formula involving n = 2 + k · ⌈end/δ⌉+ N(S) + N(B) variables in degree
d = max[j + deg(f), deg(S), deg(B)], where N and deg denote the number of
variables and total degree, respectively used in the semialgebraic description of
S and B. In addition, if we assume that the coefficients of the polynomials can be
stored with at most L bits, then the total time complexity (bit-complexity) [17,
20, 24] of the decision procedure is (L logL log log L)dO(n). We note that even
with low degree polynomials, this exponential complexity in the number of vari-
ables makes it impractical to test for bounded-reachability even when the spec-
ified time interval is relatively short. Here we focus on rather simple examples
where the complexity is rather manageable, and is achieved by approximating
polynomial and rational functions by piecewise linear functions.

Example 2. Next, examine the following toy example. The following system of
differential equations describes the dynamics Ż = 2Z2 + Z, with S and B char-
acterized by S ≡ Z > 4 and B ≡ Z2 < 4. Now, consider the time interval
[0, 0.5] and time step 0.5. After time 0.5, using an approximation with Taylor
polynomial of degree 2, we derive the formula

∃Z0, δ′
(

Z0 > 4 ∧ Z = Z0 + (2Z02 + Z0) · δ′ + (8Z03 + 6Z02 + Z0) · (δ′)2/2

∧ 0 ≤ δ′ ≤ 0.5 ∧ Z2 < 4

)

.

This formula is unsatisfiable, thus implying that the dynamical system reaches
no bad states in the specified time interval [0, 0.5]. �

The formulæ involved in our method can be easily simplified, if we introduce
further approximations. For instance, we may approximate reachability by first
evaluating the maxima and the minima of the j-th Taylor polynomial pj(Z, δ′)s
over S and [0, δ], and then using them as upper and lower bounds.

Example 3. Next, consider the differential equation Ż = 2Z, with S and B
characterized by S ≡ 2 ≤ Z ≤ 4 and B ≡ 3 < Z < 5.

The Taylor polynomial of degree 1 with δ = 0.5 is Z + 2Z · δ′, i.e., 2Z. Note
that since the maximum and the minimum in S are 8 and 4, respectively, and
since the interval [4, 8] intersects (3, 5), S reaches B in time 0.5. �

3.2 The General Case

We are ready to deal with the general case, where we have a polynomial k-
dimensional hybrid automaton H in explicit form.



Given a mode v of H , we use the notation pjv(Z, δ) to denote the Taylor
polynomial of degree j in the mode v centered in Z. The first-order formula

F[v, S](Z0, Z) ≡ S(Z0) ∧ ∃δ′
(

Z = pjv(Z0, δ′) ∧ 0 ≤ δ′ ≤ δ

∧ ∀δ′′
(

0 ≤ δ′′ ≤ δ′ → Inv(v)(pjv(Z0, δ′′))
)

)

characterizes the points reached within time δ in the mode v, under the approx-
imation implied by the use of the Taylor polynomial. Notice that, if we assume
that the invariant regions are convex and we use the Taylor polynomial of degree
1, we can avoid the universal quantification. As before, the formula

∃Z0(F[v, S](Z0, Z)) ∧ B(Z)

is satisfiable if and only if the set B can be reached from S without leaving
mode v within the time step δ. In this case, the points of S which reach B are
characterized by ∃Z(F[v, S](Z0, Z) ∧ B(Z)). If the preceding formula is not
satisfiable, we have to consider all possible alternative situations: that is, either
we continue to evolve within the mode v or we discretely jump to another mode,
u ∈ V . We define the formula Svu

δ

S
vu
δ (Z) ≡

{

∃Z0(Fv
δ(Z0, Z), if u = v;

∃Z0, Z1(Fv
δ(Z0, Z1) ∧ Jump(〈v, u〉)(Z1, Z)), otherwise.

representing the states reached within time δ in the mode u. In this way, in the
worst case we generate |E| satisfiable formulæ on which we have to iterate the
method, treating them as we treated S(Z) in the first step. In practice, many of
these formulæ would be unsatisfiable, and hence at each iteration, the number of
formulæ we have to consider will remain considerably low. We may also use an
optimized traversal over the graph to reduce the number of generated formulæ.

Let end be the total amount of time during which we examine the hybrid
system’s evolution in terms of at most m = ⌈end/δ⌉ time steps: the number
m ∈ N is such that (m− 1)δ < end ≤ mδ. Since at each iteration the jumps can
occur before δ instants of time have passed, just iterating the method for m steps
does not ensure that we have indeed covered the entire time interval [0, end]. In
particular, if there are Zeno paths starting from S, i.e., paths in which the time
does not pass since only the jumps are used, our method will fail to converge
in a finite number of steps. For these reasons, at each step, we must check the
minimum elapsed time before a jump can be taken. Let M(Z) ≡ Sv,u...,w(Z) be
one of the formulæ obtained after some number of iterations. Suppose now that
we intend to jump from this mode w to the next mode z. We will then need to
check whether the minimum amount of time has passed before the jump can be
taken. Consider the formula:

T(w, z, M)(T ) ≡ ∃Z0, Z1, Z

(

M(Z0) ∧ Z1 = pjw(Z0, T ) ∧ 0 ≤ T ≤ δ

∧∀T ′(0 ≤ T ′ ≤ T → Inv(v)(pjv(Z0, T ′))) ∧ Jump(〈w, z〉)(Z1, Z)

)

.



The minimum amount of time can now be computed as solution of the formula

Min(w, z, M)(T ) ≡ T(w, z, M)(T ) ∧ ∀T ′

(

T ′ < T → ¬T(w, z, M)(T ′)

)

.

To avoid Zeno paths we could eliminate the paths in which the minimum is 0.
Along each generated path we have to iterate until the sum of the minimum
amounts reaches end. If all the paths accumulate a total amount of time greater
than end and B is never reached we can be sure that B cannot be reached from
S in the time interval [0, end]. If B is reached, i.e., one of the formulæ involving
B is satisfiable before m iterations, then we can be sure that B is reachable
from S in the time interval [0, end]. If B is reached after the first m iterations,
then B is reachable from S but we are not sure about the elapsed time, since
we keep together flows of different length. It is possible that some paths do not
accumulate a total time greater than end, e.g., the sequence of the minimum
times converges rapidly to 0. In this case our method could not converge. Notice
that even in this general case, we can extend the method to rational flows.

Notice that if at each step the derivatives of order j + 1 of the involved flows
are bounded on the set of points satisfying the invariant conditions, we can again
exploit the Lagrange Remainder Theorem to both under and over approximate
the set of reachable points and to estimate errors (see [15]).

In order to provide a time-complexity, assume the special situation where
no path accrues more than M discrete jumps (i.e., our method has converged).
When we terminate, we are left with deciding the satisfiability of a quantified
semialgebraic formula with O(M) alternations and involving n = k · [⌈end/δ⌉ +
O(M)] + N(S) + N(B) variables in degree d = max[j + deg(Init , Inv , Jump),
deg(S), deg(B)], where N and deg denote the number of variables and total
degree, respectively as before. Assume that the coefficients of the polynomi-
als can be stored with at most L bits. Then the total time complexity (bit-

complexity) [17, 20, 24] of the decision procedure is (L logL log log L)d2O(n)

, i.e.,
double-exponential in the number of variables.

3.3 Rectangular Regions

When the formulæ Init(v)s, Inv(v)s, Jump(e)s, S, and B identify rectangular
(closed) regions (e.g., product of intervals) we can rely on other approaches from
symbolic computations, while achieving further simplifications along the way.

Given a mode v of H , the region obtained from the intersection of Inv(v)
and S is of the form R(v) ≡ a(v) ≤ Z ≤ b(v). We can symbolically determine
the maximum max(v) and the minimum min(v) of pjv(Z, δ′) over R(v) × [0, δ].
We can use the following formula to over-approximate the points reached within
the time interval [0, δ]:

Ov(Z) ≡ min(v) ≤ Z ≤ max(v) ∧ Inv(v)(Z).

The formulæ Ov(Z) ∧ B(Z) and Ov(Z1) ∧ Jump(〈v, u〉)(Z1, Z), can be used to
check if the set B is reached or if it is possible to jump to another mode. Since
these formulæ identify rectangular regions, we can iterate the method.



4 A Case Study: the Delta-Notch Protein Signaling

Let us now return to the Delta-Notch protein signaling system that we had
introduced earlier. The mathematical model for the Delta-Notch signaling pre-
sented in [9] can be approximated by piecewise linear functions and results in a
rectangular hybrid automaton that can be analyzed symbolically.

For instance, in [11] a rather simple piecewise linear hybrid automaton model
was created, and was extensively studied through the predicate abstraction
method of [22]. The piecewise affine hybrid automaton of [11] is defined by: (1) A
set of global invariant conditions which must be always true; (2) A finite number
of modes; (3) Each mode is characterized by a set of local invariant conditions
and a set of differential equations determining the flow of the variables.

The automaton modeling the evolution of a one-cell system has been de-
scribed using the SAL language [7] in [11]. In this description, all the fluxes have
been reversed in order to determine the set of initial conditions from which a
particular steady-state is reached (by solving a forward reachability problem).
The automata relative to the two and four cell systems have also been similarly
studied. Here we consider the two-cell piecewise affine hybrid automaton and ap-
ply our method to the forward reachability problem. For a complete description
of the automaton we refer the reader to [11].

The system representing the evolution of two cells presented in [11] has the
following set of invariant conditions

0 ≤ d1, d2 ≤ RD/λD ∧ 0 ≤ n1, n2 ≤ RN/λN

∧ − RN/λN ≤ hD ≤ 0 ∧ 0 ≤ hN ≤ RD/λD.

The variables d1 and d2 represent the concentration of the Delta protein in the
first and in the second cell, respectively. The variables n1 and n2 represent the
concentration of the Notch protein in the first and in the second cell, respec-
tively. RD and RN are constants representing the Delta and Notch production
rates, respectively. λD and λN are the Delta and Notch protein decay constants,
respectively. hD is an unknown switching threshold which determines the Delta
protein production. hN , similar to hD, is an unknown switching threshold which
determines the Notch protein production.

A possible equilibrium for the system is given by the point d∗1 = 0, n∗
1 =

RN/λN , d∗2 = RD/λD, n∗
2 = 0, which belongs to the mode v characterized by

the following invariant and flow conditions

0 ≤ d1 ≤ hN ∧ −hD ≤ n1 ≤ RN/λN ∧ hN ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD,

ḋ1 = λDd1 ∧ ṅ1 = −RN + λNn1 ∧ ḋ2 = −RD + λDd2 ∧ ṅ2 = λNn2.

We apply our method to the analysis of the admissible locations reachable from
v. In particular, in this case we can apply the simplifications described in Section
3.3. Even if we limit our attention to one possible evolution with relatively few
iterations, this suffices to compute a somewhat different result from what is
presented in [11].



The formula Ov(〈d1, n1, d2, n2〉) representing the points reached in the time
interval [0, δ] is

0 ≤ d1 ≤ hN + λD · hN · δ ∧ −hD − RN · δ − λN · hD · δ ≤ n1 ≤ RN/λN ∧
hN − RD · δ + λD · hN · δ ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD − λN · hD · δ.

Consider a mode u characterized by the following invariant conditions

hN ≤ d1 ≤ RD/λD∧−hD ≤ n1 ≤ RN/λN ∧hN ≤ d2 ≤ RD/λD∧0 ≤ n2 ≤ −hD.

Since the formula O(v) ∧ Inv(u) is satisfiable we can jump to the mode u. In
particular, assuming that δ is so chosen that hN + λD · hN · δ ≤ RD/λD, in the
interval [0, δ], we can reach the points satisfying

hN ≤ d1 ≤ hN + λD · hN · δ ∧ −hD ≤ n1 ≤ RN/λN

∧ hN ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD.

This formula in conjunction with d1 < d2 is easily seen to be satisfiable. For
instance, one can prove that with RN = RD = λN = λD = 1.0 and −hD =
hN = 0.5 and starting from v with values 〈0.5, 0.89, 0.68, 0.42〉, at time 0.5,
we can reach 〈0.84, 0.81, 0.47, 0.04〉. In [11], it was proven that all the points
satisfying d1 < d2 ∧ n1 > n2 are reachable from the stable equilibrium state
belonging to v. Our observation, which does not contradict this result of [11],
nonetheless proves that our method can be combined with that of [11] to obtain
better approximations of the region reachable from the equilibrium in v.

5 Related Literature, Future Work and Conclusions

To place the results described here in the context of a large existing and contin-
ually growing literature, we mention a few related results.

In [4] symbolic computation over (R, +, <, =) is used to compute precondi-
tions on automata with linear flow conditions. Avoiding multiplication ensures
good performance, but the class of automata on which the result can be applied
is quite restricted, and of limited descriptive power.

In the d/dt tool (see [6]), a method involving several successive time steps
is applied. Since the flow conditions (differential equations) are linear, the exact
solution after a time step dt is used to compute the set of points that can
be reached in that time. In another similar tool CheckMate (see [8]), a more
sophisticated method involving time steps is introduced for the case of regions
defined by polyhedra and solvable flow differential equations.

In a much closer related result of [22], predicate abstraction was introduced to
map a hybrid automaton into a discrete one. The states of the discrete automaton
represent sets of values which are indistinguishable with respect to a fixed set of
predicates over the reals. Symbolic computation is used to determine the edges
of the discrete automaton. In [11], the method was applied on piecewise linear
hybrid automata to study the Delta-Notch signaling process. In a sequel, we will
explain connections and differences between these and our methods.



Recently in [3], predicate abstraction is combined with symbolic computa-
tions over the reals and with the use of time steps. The symbolic computation is
used to determine the transitions between the abstract states, but the differen-
tial equations are kept linear so that the exact solutions are used in the symbolic
computation. In particular, abstract states are forced to evolve at a given time
step and symbolic computation is used to draw transitions by determining if in-
tersections between (abstract) states are non empty. The main differences with
respect to our methods are as follows: (1) We do not use predicate abstraction;
(2) We can apply our method in the case of non-linear differential equations as
well, through the use of Taylor polynomials.

The approach outlined here provides a general framework, but still lacks the
needed degree of applicability, especially in the context of biological questions.
We enumerate these issues: (1) Can one deal with unbounded time interval? (2)
Can one deal with different and adaptively chosen time steps? This is particularly
important if one is dealing with slow reactions as well as reactions that are
relatively fast. (3) Can one conclude about the limiting situations when the time
step sizes approach zero in the limit? (4) Is there a purely differential algebraic
approach (e.g., Ritt algebra) for studying reachability?

In the other directions, one can ask similar questions about how to extend
these constructs for reachability to cases involving various modal operators (e.g.,
next). Beyond these questions, the other remaining problems are of algorithmic
nature dealing with approximability, complexity, and probabilistic computations.

Our plan is to address these problems in a sequence of papers that will form
sequels to the current paper: “Algorithmic Algebraic Model Checking (AAMC)
series.” An incomplete, and evolving list of topics that will be addressed are
as follows: generalization to the dense time logic TCTL [1, 12]; decidability is-
sues in this context and under various reasonable models of computation [16];
state-space discretization and predicate abstractions; “quasi-static simulation,”
combining flux-balanced analysis with slow dynamics; a topological characteri-
zation of bio-chemical processes, etc.

The present status of this project is as described below: There is a prelimi-
nary implementation of the algorithms in C/C++: part of the software system
Tolque, the algebraic model checker for semi-algebraic hybrid automata. As it
gets integrated with our Lisp-based Systems Biology tool Simpathica[5], it will
allow biochemical networks to be easily represented, stored and analyzed. The
resulting technology is hoped to provide a simple framework for biologists to
think about biology and computer scientists to think about how biologists think
about biology.
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