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Abstract. We describe an environment that allows the users of the The-
orema system to flexibly control aspects of computer-supported proof
development. The environment supports the display and manipulation
of proof trees and proof situations, logs the user activities (commands
communicated with the system during the proving session), and presents
(also unfinished) proofs in a human-oriented style. In particular, the user
can navigate through the proof object, expand/remove proof branches,
provide witness terms, develop several proofs concurrently, proceed step
by step or automatically and so on. The environment enhances the ef-
fectiveness and flexibility of the reasoners of the Theorema system.

1 Introduction

In general terms, it is agreed that mechanized theorem proving is about us-
ing computers to find a formal proof [I]. A rough classification of theorem
provers divides them in automatic provers, where close to no human assistance
is needed, and interactive provers, which require human assistance in developing
the proof [I8]. An extensive list of both automatic and interactive provers can
be inspected at [3].

The goal of the Theorema project [§] is to provide support to the entire process
of mathematical theory exploration. By default, Theorema tries to solve given
reasoning problems automatically. However, since many mathematical theorems
are hard to prove completely automatically, it is helpful to have an environment
that supports interactive reasoning. This paper describes the current status of an
experimental version of such an environment in Theorema. Although Theorema
has support also for computing and solving, the environment is currently used
only for proof development. It allows a finer grained interaction between a human
user and the system. The environment aims at three groups of users. For the
first one the environment has a didactic value: it can be used to train formal

* Temur Kutsia has been supported by the Austrian Science Foundation (FWF) under
Project SFB F1302 and F1322.

G. Sutcliffe and A. Voronkov (Eds.): LPAR 2005, LNAI 3835, pp. 261-275} 2005.
© Springer-Verlag Berlin Heidelberg 2005



262 F. Piroi and T. Kutsia

proving. In the second group are those users who are already familiar with formal
proving techniques and with the details of Theorema. For them, the environment
enriches the proving power of the system by allowing them to use their creative
ideas and intuition (for example, providing witness terms). The third group of
users is the Theorema developers group, for which the environment is used as a
tool for testing the provers that are still in development.

The first attempts to integrate interactivity into Theorema are described in [9]
and some of those ideas were a starting point for the current interactive envi-
ronment. Prior to this work, in [27] it is shown how interactive proving was to
be integrated in the architecture of Theorema, but no implementation was done.
Another attempt to provide user-system interaction is described in [I7] and [16].

Shortly, our main contribution to the previous implementations are improved
proof tree and proof situation management, a schematic representation of the
proof tree, and multiple interconnected views of the underlying data structures.

This paper is organized as follows: In Section [2] we discuss general require-
ments for an interactive proof development environment. Section [3 gives an
overview of the Theorema system and describes the experimental implemen-
tation of the Theorema interactive environment. In Section Ml an example of
interactive proof development in Theorema is given. We overview some related
work in Section Bl and we end with conclusions and future work in Section

2 Requirements for an Interactive Environment for Proof
Development

Design principles for interfaces to (interactive) provers, as well as the function-
alities such interfaces should offer, have already been formulated by a number of
authors; see [6IT2IT3128]. We do not intend to give yet another set of principles,
but we will just gather user actions that correspond to the already formulated
principles and classify them into logical and abstract interaction actions.

Our classification is based on the levels of abstraction described in [I]: a
logical, an abstract interaction, and a concrete interaction level are considered
to be necessary to characterise the interaction with an automated reasoning
system. In this paper, we do not consider the actions at the concrete interaction
level. We give, however, some considerations in this respect in Section B4l (For
more usage and implementation details see [21].)

At the logical level the user actions are sketched only in terms of logical
concepts [1], like for example the activity of reducing a mathematical expression
to its canonical form. Other actions that are to be included in the class of logical
level activities are providing witness terms, adding and removing formulae from
the list of formulae used during a reasoning session, selecting formulae and/or
proof strategies that are to be used in the next reasoning chain. At this level, a
mathematician using an automated theorem prover must be given the possibility
to save and restore proving sessions, to abandon proof attempts, and to work on
several partial proofs at the same time. Additionally, it is also important that the
user has quick access to information relevant to the development of the proof and
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that she is not burdened with unnecessary information. Proof navigation should
be available and as simple as possible. A bonus for any interactive system is the
presence of a comprehensive help system which gives users hints on how to use
the system’s commands and answers to their actions.

These activities do not assume having a good knowledge about automated
reasoners, but only basic knowledge on doing proofs, which any user with a
background in mathematics is supposed to have.

At the abstract interaction level users manipulate visual objects in order
to communicate with the system. At this level no implementation details are
considered, this is done at the third level, the concrete interaction level (which
will not be discussed in this paper).

To realize the logical actions of the interactive reasoning systems, at the ab-
stract interaction level, we have to provide means for structure manipulation
and we should make use of objects representing logical knowledge. For exam-
ple a directed graph structure can be used for visualising and navigating in
a proof or for representing hierarchically composed theories of mathematical
knowledge. Manipulating such structures requires maintaining connections be-
tween objects as data structures and their displays (tree representation or tex-
tual, user-friendly proof explanation). In order to facilitate users to store and
restore proving sessions, the designer of an interactive proving system will have
to provide mechanisms for script management to record, store, and maintain a
history of user actions. Commands for developing proofs have to offer default
behaviour in case they are incompletely specified. Articulating commands by
various means (mouse clicks, typing, etc.) is also a feature which interactive
proving systems should supply.

Finally, we remark that an action performed at the logical interaction level can
be seen as an explanation and motivation for an action at the abstract level [I].

3 Theorema’s Interactive Environment

3.1 An Overview of the Theorema System

TheoremdY is implemented in the programming language of the Mathematica
system. The development is carried out since mid nineties under the guidance of
Bruno Buchberger. A user exploring theories using Theorema interacts (automat-
ically or semiautomatically) with three blocks of system components: reasoners,
organizational tools, and libraries of mathematical knowledge [§].

Basic building blocks of the system’s reasoners are inference rules that operate
on reasoning situations—goals and knowledge bases. The rules are implemented
as Mathematica functions. They can be grouped into modules and then com-
bined into reasoners by various strategies. The reasoning process is guided by
a common search procedure. The output of this procedure is a global reasoning
object that follows a common structure which allows a homogeneous display of
the output independent of which reasoner was used. The object is an AND-OR

! See www.theorema.org
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tree which, during the search procedure, is expanded top-down, and the root
contains the original reasoning situation. Terminal nodes on successful or failed
branches and non-terminal nodes are labeled by (certain encodings of) the rea-
soning steps performed. Terminal nodes on the other branches are labeled by
reasoning situations

The language of Theorema is an untyped higher order language extended with
sequence variables. Type (or sort) information is in general handled by unary
predicates or sets (if one decides to work in a set theory). However, particular
reasoners may implement rules to deal with such information in a special way.

Theorema advocates efficient reasoning in special theories—like geometry,
analysis, combinatorics—using algebraic algorithms as black box inference rules.
For this purpose several special reasoners have been developed, e.g. the PcCs
prover [7] (standing for ‘Prove Compute Solve’) which implements a heuristics
for elementary analysis and uses Collins’s Cylindrical Algebraic Decomposition
algorithm [I0] as a solver. Another example of a special reasoner is the solver and
simplifier for two-point linear boundary value problems [22]. Theorema currently
contains 19 reasoners and is linked to 11 external reasoning systems and to the
TPTP library; see [8].

During a Theorema session reasoners are accessed by a call of the form

Reason[entity, using — knowledge-base, by — reasoner, options|,

where Reason is Prove, Compute, or Solve; entity is the mathematical entity to
which Reason applies, e.g. a proposition in the case of proving or an expression
in the case of computing; knowledge-base is the knowledge with respect to which
the reasoning should be performed; reasoner is the concrete (internal or exter-
nal) reasoner we want to use. There are two groups of options: those specific to
reasoners, which give means to influence their behaviour, and those that control
the general search mechanism and the eventual post-processing tools (presenta-
tion, simplification, etc.). For convenience default values for each of the options
are available. Information and usages of the available Theorema reasoners and
options can be displayed with the Mathematica ‘?symbol’ command.

In the sequel we concentrate on proof development only, i.e., the concrete rea-
soners are provers. A sample Theorema proving session consists of the following
steps. First, Mathematica must be started and then Theorema loaded. Next, the
knowledge the user wants to use (e.g. formula, knowledge-base) must be made
available to the system. This can be done either by typing it in a Mathematica
notebookd and evaluating it, or by loading a previously stored file. Finally, the
corresponding Reason command should be (typed and) evaluated. The output
is given in a separate notebook in a pretty-printed, textbook-style syntax.

If the proof does not succeed the user may re-start the proof search pro-
cess with different premises (additional knowledge, different options of the used

2 Those who are familiar with the NUPRL proof object may notice that the Theorema
reasoning object and the NUPRL proof object are quite similar.

3 Notebooks are part of the Mathematica front end. They are complete interactive
documents combining text, tables, graphics, calculations, and other elements.
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prover, different prover of Theorema). However, we would like to have the possi-
bility to guide the proof search routines during the proof search. For example, we
would like to hint to the prover that it should use certain instances for specific
quantified variables at various points in the proof. In the following sections we
will describe the tools that support such a user-system interaction.

The components of the Theorema interactive interface are working files, win-
dows for displaying messages and logs, and menu-palette windows (toolbars).

The working files are usual Mathematica notebooks in which the users write
and store the mathematical knowledge employed in a reasoning session (inter-
active or not). Special notebooks are The Proof Window, presenting proofs in a
user-friendly style, and The Proof Tree Window which shows the tree structure
of the proof. These two windows are maintained and updated by the system. By
combining selections of cells in The Proof Window, in the working files, selec-
tions in The Proof Tree Window, and button clicks on the toolbars users can
navigate within the proof, introduce new proof variants, give witness terms, etc.

Whenever an action could not be accomplished, the Theorema interactive
interface makes use of notification dialogs with short explanation messages on
why the action could not be performed. Also, a log window is present, where
environment and proof information, actions performed by the user, etc. are dis-
played. The content of this window can be saved but, at the moment, to restore
a proving session the users have to do the actions themselves, as recorded in the
stored log, one by one.

The commands that realize the various actions for the interactive proof de-
velopment can be articulated either with the help of the toolbars or by typing
the commands in the working notebooks and sending them to the Mathematica
kernel for evaluation.

3.2 Managing the Proof Tree

In the non-interactive mode, the Theorema provers apply the inference rules au-
tomatically. The inferences are repeatedly applied until either a proof is obtained
or no further inferences can be applied. The users only see the final output of this
process. In contrast, when searching for proofs in the interactive environment,
the system is compelled to stop after each application of an inference rule, to
present the proof produced so far, and to wait for a decision from the user.

In the interactive mode, the proofs are gradually developed starting from an
initial proof tree: the root node that contains the proof problem as given by the
user (goal formula and assumption formulae, if any) and, additionally, internal
information specific to the provers and to the proof search routines of Theorema.
Initially, the root is an unexplored node, or in Theorema terminology: a pending
node. The information stored in an unexplored node is called a “proof situation”.

The node expansion is done by calling a prover to apply one of its inferences
to the node’s proof situation. An inference rule application will produce none,
one, or more proof situations that are inserted into the proof tree as unexplored
children of the now expanded node. The proof search mechanism will add to the
information stored in the expanded node a trace of the inference rule application.
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When a proof under development has more than one unexplored node the user
can select which one to expand next. If an expansion action is performed but no
prior explicit selection of an unexplored node is made, the system will choose the
leftmost unexplored one. Currently we are working on giving users the possibility
to see a list of inference rules and proof methods that are applicable to a proof
situation, as well as means to choose an inference rule and to select the formulae
the rule should be applied on. The proof tree can be displayed in two variants,
shown in Fig. [} an english textual explanation produced from the traces of the
inference rule applications, with pretty-printed formulae (in The Proof Window),
or a schematic tree representation (in The Proof Tree Window). In both views,
users can select nodes in the proof. If the selected node is expanded, the user
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Fig. 1. The Theorema interactive environment: the working notebook, the most used
menu-palettes, the two proof view windows, and the log window

can choose whether to start a new proof variant by adding a branch to the proof
tree at the selection point, or to abandon the reasoning chain below the selection
point by removing it. Removing a reasoning chain in the proof and continuing
with a different one at the removal point can be seen as an undo operation. Users
can also work on different proofs at the same time. The way this can be done
in the interactive environment of Theorema is the following: For a newly added
branch in the proof tree, the user has the possibility to state a different goal
that is not necessarily derived from the originally given one. The assumptions
available in the prove session when stating the new goal may be used in its proof,
but new assumptions can also be added.
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At the end of the proof development the proof tree will contain the traces of
the user’s actions during interactive development of proofs. However, this data
structure does not record the order these actions were performed.

3.3 Managing the Proof Situation

In the previous sections we have mentioned that Theorema provers’ inference
rules take as input proof situations, i.e., a goal formula, a list of assumption
formulae, and some local context storing facts and additional proof strategy
information used by the provers of the system. For example, one such fact is
keeping track of which formulae in the list of assumptions were matched against
the goal formula. Another example is the storage of the names of the metavari-
ables introduced by certain inference rules and their dependencies.

One of the specific difficulties in algorithmic proof generation is finding appro-
priate instances (at appropriate moments) for quantified variables. Within the
interactive environment of Theorema it is possible to give the system witness
terms which should be used for certain variables. If the variable is existentially
quantified, a user-given instance will be taken into consideration only if the for-
mula in which it occurs is the current goal and the quantifier that binds the
variable is the outermost one. For universally quantified variables, a user-given
instance is accepted only if the formula occurs in the list of current assumptions
and if the quantifier binding the variables is the outermost one.

When we prove a theorem with pen and paper we use, for a start, only few
definitions, properties, etc. of the notions occurring in the theorem we try to
prove. As we proceed with the proof we usually recall other lemmata, properties,
etc. which we use in the attempt to complete the proof. At the same time we
may discard some formulae. Theorema’s interactive interface does allow users to
add and remove formulae from the assumption list of an unexpanded node.

The natural language representation of the proof displays, for each proof
step, the result of inference rule applications, namely, which formulae were used,
which were generated, the used instantiations (if any), etc. Obviously, this does
not reflect all the content of the nodes in the proof. One reason for this is that
part of the information stored in the nodes is not relevant for the user, but only
for the provers of the system. However, it is often the case that we are interested
in the whole content of the proof node. We may want to know, for example,
which are the formulae that are or were available when an inference rule was
applied. The developers of the Theorema system may want to check the prover
specific information to help them to develop and improve their provers. For this
reasons, the interactive interface to Theorema provides access to the additional
information stored in a node.

3.4 Comments on Implementation

Until recently, Theorema was used mainly in an automated mode and no inter-
action with the system during the proof search was possible. The first solution
chosen to provide interaction was to suspend the execution of the proof search
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routine after one inference rule application. This was done by starting a Math-
ematica subprocess that collected the user actions [16].

In the current implementation we have opted for a different, simpler solution.
We have introduced a system-global boolean variable which keeps track of the
current proving mode (interactive or non-interactive), and a step-counter that
controls the number of proof steps to be performed by the proof search routine.

In the non-interactive proving mode, the step-counter variable is ignored and
the proof search routine proceeds until either a successful proof is obtained or no
inference rule can be applied anymore. In the interactive mode, every time the
proof search routine is invoked the step-counter is, first, set to a predefined value.
With each inference rule application this value is decreased by one. As soon as the
step-counter reaches zero, the proof search routine stops, and returns the proof
developed sofar which is, then, presented to the user, in The Proof Window,
The Proof Tree Window being also updated. When the user chooses to further
expand the proof, the search routine will continue with expanding the left-most
unexplored situation in the proof tree, unless otherwise indicated. The default
value of the step-counter in the current implementation is set to 1, which means
that the proof search stops after one inference rule application.

We mention here two important advantages of this solution. One is that only
few modifications of the main proof search routines of the system were nec-
essary: First, a check of the step-counter value was added to the termination
conditions of the proof search routine and, second, certain Theorema specific
variable initialization are by-passed when the proof search is invoked in the in-
teractive mode. (For example, we do not want the proof-tree to be re-initialized,
as in the non-interactive mode, but we want to expand it further). The second
important advantage of the solution chosen by us is that no alteration of the
existing provers of the Theorema system had to be done in order to use them
for proving in the interactive mode.

Until version 5.1, Mathematica did not have facilities for developing user inter-
faces. Therefore, with the exception of buttons, the elements of the interactive
environment interface do not include drop-down lists, dynamic menus, check
boxes, context-sensitive menus, etc. Also, to our knowledge, in Mathematica, we
cannot track the mouse actions. In other words, we cannot determine user inputs
by tracking the mouse clicks and movements. The solution we have chosen to
overcome this difficulty is to (require users to) make selections in notebooks and,
on button clicks, manipulate the notebooks in the Mathematica kernel.

Within any open notebook, the front end always maintains a current selec-
tion (see [30], Section 2.11.3). Selections can be done by user clicks or by issuing
commands from the kernel. Mathematica also provides commands for extracting
the content of a selections in a notebook. So we are able to retrieve user input
when the user makes selections in notebooks. The retrieved input is passed to
the routines implementing the tools of the interactive environment. The rou-
tines process the input correspondingly to the tool they implement, e.g. add
an assumption to the current proof situation, delete a branch in the proof-tree,
provide witness terms, etc.
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4 An Example

Assume now that we, as Theorema users, want to prove that the limit of the sum
of two sequences is the sum of their limits. First, we formalize the proposition
and the corresponding definitions in a Theorema notebook:

Proposition[“Limit of sum”,
; v \ ((limit[f, a] A limit[g, b]) = limit[f ® g, a + b]) ].
a9,
Definition[“Limit”,
vV (limit[f,a] < (V 3 V |[fln] —a| <¢))
fia e N n ]
e>0  n>N

Definition[“Sum of sequences”,

v ((f®g)lel = flz] +glz]) ],
1.9z
This is exactly how it would look in the notebook: Theorema has a human-
oriented, two-dimensional syntax. Next, we activate the interactive proving mode
by evaluating the command StartInteractive[] which will open the necessary
menu-palettes (see Fig. [[). We want to prove the proposition by one of the
Theorema provers (PredicateProver), using the given definitions. For this we
type, in a working notebook, the corresponding Prove command, as below, select
it, and press the Start button on the Theorema Interactive palette (see Fig. [II).

Prove[Proposition[“Limit of sum”],
using—{Definition[“Limit”], Definition[“Sum of sequences”|},
by—PredicateProver]

The system will show the user The Proof Window with the following content,
where ‘Pending proof of (formula_label)’ represents an unexpanded node:

Prove:
(Proposition(Limit of sum))
vV ((limit[f, a] A limit[g, b]) = limit[f & g,a + b])

f.a,g,b

under the assumptions:

(Definition(Limit)) ¥V (limit[f,a] < ( V ]% Vo |fln] —a| < ¢)),

f,a

(Definition(Sum of sequences)) V ((f @ g)[z] = flx] + g[z]).

1.9z
Pending proof of (Proposition(Limit of sum)).
Here we can simply proceed by clicking the Next button. The prover applies the

first rule applicable to the current proof situation (V-Right rule). In The Proof
Window the last line (pending proof) is replaced by the following output:
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For proving (Proposition(Limit of sum)) we take all variables arbitrary
but fixed and prove:

(1) limit [fo, ao] A limit [go, bo] = limit [fo D go,a0 + bo]
Pending proof of (1).

After several default steps this proof attempt will fail. The reason the proof fails
is manifold. The main one, however is that the knowledge we started with is
not sufficient for proving the goal formula. Secondly, the prover we have used is
not strong enough and we would like to use a different one that, implicitly, uses
some special knowledge on real numbers and, in addition, applies a particular
strategy for handling formulae with alternating quantifiers. Therefore, we undo
the proof, with the help of the -Branch button, and start again by using the
Pcs prover. (We could also have started an alternative proof by adding a branch
at a properly chosen point in the proof tree, using the +Branch button, and by
selecting another prover to continue with, e.g., Pcs. In this way the previous
failed attempt would still be present in the proof tree, giving us the possibility
to see how different provers act on the same proof problem.)

From the previous failed proof attempt we, as humans, conclude that addi-
tional knowledge about absolute values and distances between points may help:

Lemma[“Distance of sum”,
v (|(w+z)—(y+t)|<(5+s))©(|w—y|<(5/\|z—t|<a)].

z,y,2,t,0,€
After several proving steps the content of The Proof Window is:
Prove: ... (The initial proof problem is omitted for space reasons.)
We assume
(1) limit [fo, ao] N llmlt[go, bo]
and show
(2) limit[fo &b go,ap + bo]
Formula (1.1), by (Definition(Limit)), implies:
(3) VvV 3V [foln]—ao <e.
e N n
e>0  n>N
By (3), we can take an appropriate Skolem function such that
(4) Y Vo |foln] —ao] <e.
e>0 n>Ni[e]
Formula (1.2), by (Definition(Limit)), implies:
(5) ¥V 3V |go[n] —bo| <e.
e N n
e>0  n>N

By (5), we can take an appropriate Skolem function such that
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(6) ¥V Y goln] —bo| <e.
g n
e>0 n>Nse]
Formula (2), using (Definition(Limit)), is implied by:
(V3 Y (o ®o)ln] — an +bo)| <=
>0  n>N

We assume

(8) €0 >0
and show
(9) 3 Z’ |(fo @ go)[n] — (a0 + bo)| < 0.
n>N

At this point we, as users, decide to influence the proof by providing an ap-
propriate witness term for N. Selecting the formula (9) and clicking the button
J Inst, a dialog window opens where the witness term can be specified. We type
in max[Ni[eq/2], Na[eg/2]], and the proof proceeds:

Instantiation: N — max[N[5], Nao[%2]].

The current goal is

(10) ¥ ((n = max[N1[Z], No[F]]) = [(fo@go)[n] — (a0 +bo)l < o).

We assume
(11)  no > max[N1[F], Na[F]]

and show
(12)  |(fo ® go)lno] = (a0 + bo)| < 0.

Formula (12), using (Definition(Sum of sequences)), is implied by:
(13)  |(folno] + go[no]) — (a0 + bo)| < o.

Formula (13), using (Lemma(Distance of sum)), is implied by:
(14) gs (Ifolno] — aol < & Algo[no] — bol <e).

§+e=eo
Here we interact again by instantiating § and e with ¢/2.

Instantiation: § — 5, ¢ — 5.

The current goal is

(15) 3+ F =¢o0 Alfo[no] — aol < F Algo[no] —bo| <
Formula (15) is implied by

(16) | fo[no] — ao| < 5 A lgolno] — bol <
Formula (16), by (4) is implied by
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(17) 570 >0/\n02N1[%°]/\|go[n0]—b0| < 870,
which by (6) is implied by
Formula (18), by (8), is implied by

(19) no ZNl[%O]/\nO ZNQ[%J]

Here we notice that another assumption is needed that we add immediately to
the knowledge base used by the proof search routine. To add the assumption we
use the +Assm button. The proof proceeds then as follows:

The user added the assumption:

(Lemma(Max))

v (m > max[My, Ms] = (m > My Am > My)).
m, My, Mz

Formula (19), by (Lemma(Max)), is implied by
(20) no > max[N{[F], N2[F]].

Formula (20) is proved because it is identical to (11).

To summarize, this example demonstrates various ways of interaction with the
system: cutting a branch and backtracking, changing the prover, adding assump-
tions, and providing witness terms.

5 Related Work

A concise historical overview of interactive systems is given in [19]. Though in
most of the cases the design principles listed in [6UT2JT3] or [28] were not specifi-
cally followed, many interfaces have common functionalities. We briefly describe
some of these systems (mathematical assistants), insisting on those features sim-
ilar to the ones present in Theorema. For more details on the described systems
we direct the reader to the literature (e.g. [29], or the forthcoming issue on
Mathematics Assistance Systems of the Journal of Applied Logic [4]).

One of the interactive systems with the largest pool of users is the HOL sys-
tem [14], now at version 4. It is an environment for interactive theorem proving
in higher-order logic and has a wide variety of uses from formalizing mathematics
(see for example [I5]) to verification of industrial hardware. It has high degree of
programmability through the meta language ML which allows extending the sys-
tem to provide more functionality. Thus, packages for proof tree administration,
goal tracking, script save and replay, etc. are available within HOL. As a the-
orem proving system, HOL has a command-line interface. As in Theorema, the
system permits adding assumptions to a proof in development, but no removing
of formulae is possible. The proofs are done in a goal directed style but tacticals
that do forward inferencing are also present in the system. If users decide that
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wrong proof steps were done, they can undo to the previous proof state. There is
also a restart possibility by backtracking to the root. Switching between goals is
possible both in HOL and in Theorema. Several graphical interfaces were imple-
mented for the system, like Tk-HOL [26], xhol [23], and Emacs modes are widely
used. The interfaces provide theory browsing and searching, graphical views of
the proof state (similar to the schematic proof tree representation in Theorema’s
interactive environment), etc.

The Isabelle system [20] is a generic proof assistant which allows defining
different logical calculi and using them for proving. It is closely integrated with
the Proof General [2] for editing and developing proofs and, similar to the HoL
system, allows proof storage and replay, undo and revert operations, proof states
display, etc. (Proof General [2] is a generic tool for proof development that
provides a uniform interface and interaction mechanism not only for Isabelle
but for other proof assistants as well, like Coq, LEGO, and, experimentally, with
HoL, AcL2 and AClam.) However, the system does not maintain a proof object
and only one view of the proof is available (the one shown in the Proof General
window). In its latest version, Isabelle provides a tool for searching theorems in
the system’s library of theories by simple patterns.

Coq [5], another logical framework system, is a proof assistant for the Calcu-
lus of Inductive Constructions. It allows the interactive construction of formal
proofs, and also the manipulation of functional programs. A variety of user inter-
faces are provided for it. For example Coqlde is a graphical user interface based
on gtk which allows proof tree navigation, structural editing of formulae and
commands, and has an autocomplete facility for command articulation. Pcoq,
CtCoq, and Proof General are other interfaces for Coq. Lately, an integration of
Coq into TeXmacs is also available.

Nmega [24] is an interactive proof development system. The system has two
main components: a proof planner, and an integrated collection of tools for
formulating problems, proving subproblems, and proof presentation. L{2ui is an
interface for f2mega which combines features for graphical display of proofs as a
graph, hypertext facilities for term browsing, proof and proof plan presentation in
natural language. It also has an editor for adding and maintaining the knowledge
base, and a command suggestion mechanism; see [25].

NUPRL [I1] supports the interactive creation of proofs, formulas, and terms.
Based on Martin-Lof type theory, it is a system for implementing mathematics.
NUPRL has a multi-window graphical environment and a keyboard-based proof
navigation tools.

6 Future Work and Conclusions

The current status of the Theorema interactive environment allows users to select
a proof situation in the proof; inspect the content of a selected proof situation;
add or remove assumptions in a selected proof situation; suggest witness terms;
add or remove branches in the proof tree; model concurrent proof development;
select one from several provers to continue the proof, eventually change its op-
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tions; make the system expand the proof by one inference rule application; ask
the system to automatically complete the proof.

In future versions of the environment we plan to include a tool for inference
rule selection. Namely, for a selected proof situation, the tool should present,
on request, a list of applicable inference rules. The user can select one or more
inferences to be applied in the next step. Selecting more than one inference from
the list means that the user intends to investigate several proof alternatives
for the given proof situation, one alternative for each inference rule selected.
However, to implement such a inference selection tool, important modifications
of the Theorema system are necessary. For example, inference rules need to be
uniquely identifiable among all the inferences of the system. We also plan to
include facilities for specifying tactics.

Other tools we plan to include in the environment are possibilities to store and
load proof sessions, extracting proof strategies from a proof session. A variant
of the latter tool can be used to help the developers of the Theorema provers
compose new provers based on the sequence of inferences used in an interactive
proof session. To achieve this, we will have to analyze the proofs obtained in the
interactive mode, in order to extract the relevant proof steps and inference rules.
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