
A Web Registry for Publishing and Discovering Mathematical Services

Rebhi Baraka∗, Olga Caprotti, and Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, Linz, Austria
{rbaraka,ocaprott,schreine}@risc.uni-linz.ac.at

Abstract

This paper describes an extension of the ebXML reg-
istry for publishing and discovering mathematical service
descriptions. The MathBroker registry is able to handle de-
scriptions given in the Mathematical Service Description
Language, a language designed ad-hoc for capturing the
semantics of web services dealing with mathematical prob-
lems. The registry is distributed with a Java API implement-
ing a MathBroker speci£c JAXR provider.

1. Introduction

A web service is a problem solution that is available on
the web and can be accessed by a user or another service or
program via standard web protocols [13]. A mathematical
web service is a service that offers the solution to a mathe-
matical problem (based on e.g. a computer algebra system
or on an automated theorem prover). Among the require-
ments of web services is the need of them to be advertised
by providers and discovered by clients; therefore they need
to be described in a machine-understandable format. In the
case of mathematical web services, these descriptions must
be based on formal mathematics.

Among the approaches for achieving this goal,
MONET [11] and our own MathBroker project [9] have
been pursued simultaneously with mutual in¤uence and
have speci£cally concentrated on handling mathemat-
ical knowledge. As with conventional web services, a
web registry provides a set of functionalities to facili-
tate the sharing and exchange of (mathematical) service
descriptions. For this purpose, we developed the Mathemat-
ical Services Description Language (MSDL) [2] and ex-
tended the ebXML registry reference implementation [6] to
handle the publication and discovery of objects that are pre-
sented in MSDL descriptions [4, 3].

∗ This work was sponsored by the FWF Project P17643-NO4 “Math-
broker II: Brokering of Distributed Mathematical Services”.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces our model for describing mathematical
services; this represents the basis for the design of MSDL
and for an extension of the information model of a widely
used registry framework. Section 3 describes this extension
in greater detail. In Section 4, we present a sample client
for using the extended framework for publishing MSDL de-
scriptions and discovering such descriptions.

2. A Model for Mathematical Service Descrip-
tions

Figure 1 illustrates the MathBroker information model
for the description of mathematical web services. It shows
the kinds of entities that can be associated to a service and
the relationships among them.

is bound to

Implementation

Algorithm Problem Problem
version of
is special

implements

optional

solves

is based on

Realization
is located on

Service
(WSDL)

Machine
Typeservice port(s)

service port 

is located on

Figure 1. The MathBroker Information Model

The information model is implemented as a highly
structured language called Mathematical Services Descrip-
tion Language (MSDL) [2]. MSDL was developed in the
frame of MathBroker project [9] with in¤uences from the
MONET project [11].

The rationale behind the decomposition of descriptions
into multiple interlinked entities is to avoid redundancy be-
tween speci£cations (by sharing description components)
and to provide a quick shortcut for detecting the identity of
speci£cation entities by reference equality. MSDL thus pro-



vides for the development of a reusable library of descrip-
tions.

Now we introduce the entities of the model.

Problem: There exist various kinds of problems. For in-
stance, a computing problem can be speci£ed by input pa-
rameters, an input condition, output parameters, and an out-
put condition. It can be a special version of another prob-
lem. A problem description for the inde£nite integration
may contain the following mathematical knowledge (rep-
resented in XML using OpenMath):

Input: f : R → R
Output: i : R → R
Post-condition: i′ = f

Algorithm: an algorithm is described by (a link to the
description of) the problem it solves, as well as by time
and memory complexity, termination conditions, and bib-
liographical information. Bibliography may be given by
Dublin Core Metadata.

Implementation: an implementation is described by re-
ferring to the algorithm on which it is based (or option-
ally the problem it solves), the software, programming lan-
guage, and numerical libraries that are used, and optionally
time and memory ef£ciency w.r.t. some reference architec-
ture.

Realization: a realization of a service is the description
that brings together the abstract speci£cation of the service
functionality with the actual details of the interface. Hence,
it contains both a reference to either the underlying software
implementation, or to the algorithm or the problem, and to a
WSDL description of the service interface. It may also spec-
ify additional information on the hardware on which the ser-
vice is running.

3. The MathBroker Registry

In web service technology, a registry is a software ap-
plication for publishing and discovering information about
web services. A registry maintains web service metadata as
objects in a repository and provides access to them via a
speci£c protocol. Currently there are two dominating reg-
istry standards: the Universal Description, Discovery, and
Integration (UDDI) registry [12]; and the ebXML registry
and repository standard [7].

We based our development on the ebXML registry refer-
ence implementation [6] because its information model [5]
is much more generic and extensible than UDDI. Further-
more, this model closely follows Sun’s Java API for XML
registries (JAXR) [8] which provides generic access a vari-
ety of XML registries.

3.1. The ebXML Registry

The ebXML registry architecture consists of a registry
service and a registry client. The registry service manages
the objects associated with the registry and the queries for
them. A registry client is an application that accesses the
registry. It utilizes the registry service to submit objects, to
classify them, to associate them to each other, to browse
them, and to query for them.

The registry information model [5] represents a blueprint
for the registry. It provides the information on the classes of
metadata that are stored in the registry as well as the re-
lationships among metadata classes. It de£nes what types
of objects are stored in the registry and how they are orga-
nized. The information model is extensible by new kinds of
objects.

3.2. Extending the ebXML Registry to MSDL De-
scriptions

In order to to capture the MathBroker mathematical ser-
vice description model given in Figure 1, it was necessary
to extend the information model of ebXML. Figure 2 shows
the inheritance view of the MathBroker objects and their re-
lationships inside the ebXML information model.

A generic MathBrokerObject class was introduced
as an extension of the ebXML class ExtrinsicObject.
From this class, all other MathBroker classes are inherited
such that ebXML treats the MathBroker objects as instances
of ExtrinsicObject.

Association: 

Machine Implementation Algorithm Problem

MathbrokerObject

ExtrinsicObject

Mathbroker objects

RegistryObject

Inheritance: 

ebXML objects

Realization

RunsOn IsBasedOn Implements Solves IsSpecVersOf

Figure 2. The MathBroker Inheritance Hierar-
chy

The rationale for using ExtrinsicObject as the ba-
sis of our classes is that it allows to hold metadata about
which the registry has no prior knowledge. In particular, it
may hold an XML document, e.g., the MSDL description
of the entity. The MathBroker subclasses provide additional
methods to extract and to modify this information.



3.3. Association of Entities

An essential characteristic of the MathBroker service de-
scription model is the ability to express relationships among
the various entities that comprise a service. The registry fa-
cilitates this feature by the concept of an Association.
A registry object may be associated with zero or more other
registry objects. The service description model de£nes the
following mathematical associations (see Figure 2):

• IsSpecialVersionOf: Problem P “is special ver-
sion of” Problem P′.

• Solves: Algorithm A “solves” Problem P.

• Implements: Implementation I “implements” Algo-
rithm A.

• IsBasedOn: Realization R “is based on” Implemen-
tation I.

• RunsOn: Implementation I “runs on” Machine M.

Associations are themselves registry objects and corre-
spondingly stored in the registry with links to a source and
a target registry object.

3.4. Classi£cation of Entities

A classi£cation scheme (or taxonomy) is a hierarchical
tree of concepts that structures a particular knowledge area.
The ability to classify an object (i.e., to link it to a con-
cept in a classi£cation scheme) is an important feature of
a registry, because it facilitates the process of discovering
the object. An object in the registry may be classi£ed mul-
tiple times in one or in multiple schemes.

ebXML allows to submit new classi£cation schemes into
the registry such that registry objects may be classi£ed in
these schemes. We used this feature to import as an exam-
ple the GAMS (Guide to Available Mathematical Software)
classi£cation scheme [1]. MSDL entities may be classi£ed
in this and in other mathematical schemes.

3.5. Using the Entities

Since the MathBroker mathematical entities are (ex-
tensions of) ebXML entities, they can be accessed using
the standard ebXML mechanisms. For instance, Figure 3
demonstrates how the ebXML browser displays sample
entities (of type Service, Implementation, Problem, Algo-
rithm, and Machine) with their names drawn in rectangular
boxes and the relations among them illustrated as arrows.

3.6. Implementation Aspects

We implemented the entities of the service description
model such that this implementation captures all the aspects

and features of MSDL. Moreover the MSDL entity classes
inherit all the functionality of the ebXML class “Extrinsi-
cObject” they extend. We also extended the management
functionality of the ebXML registry to allow the registra-
tion, classi£cation, association, and discovery of MSDL de-
scriptions. The result of this implementation is a Java API
for MSDL registries [10].

4. Publishing and Querying Service Descrip-
tions

The use of the registry API is best demonstrated by a
client that performs two tasks: publishing, i.e., registering
service descriptions, and querying, i.e., discovering them.

4.1. Publishing to the Registry

The client publishes a description to the MathBro-
ker registry by performing the following steps: (1) open
a connection to the registry, (2) invoke the publish-
MathBrokerObject method, provided by the Math-
BrokerLifeCycleManager. This method takes a
£le containing an MSDL description of a service and ex-
tracts the information of each entity it contains. For
each entity description, it creates a registry object em-
bedding that description and also creates/updates all
required associations and classi£cations already in the reg-
istry.

4.2. Querying the Registry

The client queries the MathBroker registry by perform-
ing the following steps: (1) open a connection to the registry
and (2) invoke methods provided by the MathBroker-
QueryManager to make queries for mathematical objects
according to ID, name, or classi£cation.

5. Conclusion

We presented £rst results on the development of a reg-
istry where the descriptions of mathematical services are
published and can be discovered by potential clients. Our re-
sults demonstrate that standards and technologies that were
originally developed for facilitating electronic business can
be successfully used in a completely different (and consid-
erably more sophisticated) application area, namely com-
puter mathematics. Thus we pro£t from the work in the web
community, preserve compatibility with its standards, and
build on its software.

This framework serves as the basis for our ultimate goal
of developing a “semantic broker” where services register



Figure 3. Registry browser with MathBroker entities, their classi£cations and associations

their problem solving capabilities, clients submit task de-
scriptions, and a broker then determines the suitable ser-
vices and returns them to the client for invocation. Our next
steps will be the design of a more expressive query model
based on the syntactic and semantic content of the regis-
tered descriptions and of a corresponding query language
that allows clients to discover suitable services.

References

[1] R. F. Boisvert, S.E. Howe, and D. K. Kahaner. GAMS:
A Framework for the Management of Scienti£c Software.
ACM Transactions on Mathematical Software, 11(4): 313–
355, December 1985.

[2] O. Caprotti. Extending MONET to the MathBroker Infor-
mation Model. Project Report, RISC-Linz, Johannes Kepler
University, Linz, Austria, June 2003.

[3] M. Dewar, D. Carlisle, O. Caprotti. Description Schemes For
Mathematical Web Services. Proceedings of EuroWeb 2002
Conference: The Web and the GRID: from e-science to e-
business. St Anne’s College Oxford, UK, December 2002.
British Computer Society Electronic Workshops in Comput-
ing (eWiC).

[4] O. Caprotti and W. Schreiner. Towards a Mathematical
Services Description Language. ICMS2002 , International
Congress of Mathematical Software, Beijing, China, August
17-19, 2002.

[5] ebXML Registry Information Model v2.0. OASIS, De-
cember 2001. http://www.oasis-open.org/
committees/regrep/documents/2.0/specs/
ebrim.pdf

[6] ebXML Registry Reference Implementation Project
(ebxmlrr). OASIS, April 2004. http://ebxmlrr.
sourceforge.net/

[7] ebXML Registry Services Speci£cation v2.0, OA-
SIS, April 2002. http://www.oasis-open.org/
committees/regrep/documents/2.0/specs/
ebrs.pdf

[8] Java API for XML Registries (JAXR). Sun Microsystems,
April 2004. http://java.sun.com/xml/jaxr/

[9] MathBroker: A Framework for Brokering Distributed Math-
ematical Services. Research Institute for Symbolic Com-
putation, December 2001. http://poseidon.risc.
uni-linz.ac.at:8080/mathbroker/index.xml

[10] MathBroker Registry API. Research Institute for Symbolic
Computation, April 2004. http://poseidon.risc.
uni-linz.ac.at:8080/results/registry/
MBregistryAPI

[11] MONET: Mathematics on the Net. The MONET Consor-
tium, April 2004. http://monet.nag.co.uk/

[12] UDDI Version 2.04 API Speci£cation. OASIS, July 2002.
http://uddi.org/pubs/ProgrammersAPI-V2.
04-Published-20020719.pdf

[13] Web Services Activity. World Wide Web Consortium, March
2004. http://www.w3.org/2002/ws.


