An Application of the FGLM Techniques to Linear Codes

Mijail Borges Quintanaf Miguel A. Borges Trenard!
Franz Winkler!

t Departamento de Matemdtica, Fac. de Ciencias.
Universidad de Oriente, Santiago de Cuba 90500, Cuba.
mijail@csd.uo.edu.cu, mborges@csd.uo.edu.cu

¥ RISC-Linz, Johannes Kepler University,
Linz, Austria.
winkler@risc.uni-linz.ac.at

March 5, 2001

Abstract

In this paper we emphasize the main results and algorithms presented in [BWBa] and
[BWBD] related with a new approach for decoding linear codes. This approach arrives
from a mixture of the syndrome decoding method and the FGLM techniques. We also
explain the meaning of “FGLM techniques” and the possibilities for new applications
are shown by our concrete situation concerned to linear codes.

Introduction

It is well known how the capabilities of the technology is exponentially growing. Now-
adays one can think reasonable in some applications that were very far away to consider,
even five years ago. We do not think that the proposed method here can be applied to
everyday live of coding theory applications, not even in the future; moreover, when there
have been developed some reasonable good algorithms, mainly for the class of algebraic
geometric codes (Goppa codes), following Duursma’s ideas or Sakata’s approach (see [Du,
FR, HgPe, STH, SITMJH, JLJH]). However, when it is possible to fulfill the challenge of
the requirements of our approach (see Section 3) for a particular application of an specific
linear code, then, one can be sure that the decoding process can be as faster as desired.
Despite it is not discarted a possible particular cases of applications of this approach, we
rather consider our result from the point of view of coding theory mainly with theoretical
interest. From the point of view of the FGLM techniques, it shows extensions of these
techniques and new possible applications.

2 FGLM techniques and linear codes.

The method presented in this paper for decoding linear codes is obtained by connecting
the structure of the linear codes with the FGLM techniques that belongs to the framework
of the Grobner bases theory. This application of the FGLM techniques constitutes a good
example of how to apply these tools in a more general way, and with less requirements
like the admissibility of the term ordering. For the purpose of decoding, one can avoid
the presentation with variables, and to present the algorithms with an approach closer to
the usual one in coding theory. However, we want to show that the algorithms arrive in
a natural way from an FGLM pattern, after making the corresponding connection with
linear codes.

We assume the reader to be familiar with coding theory, particularly with linear codes.
For an understanding of coding theory we recommend to have a look to [vL, CLO, PeWe].
As some notations we have: C' denotes a linear code as a subspace of the vector space F';
¢ is a codeword and y a received word; the corresponding error for y is denoted by e; H
denotes a parity check matrix for C; we used the well known Hamming distance; ¢ is the
error-correcting capability of C; and B(C,t) denotes the set of the balls with center in a
codeword ¢ and radio ¢.

For an understanding of the original FGLM algorithm and its firsts applications it is
recommended to take a look to [FGLM, MMM]. In [BBM] a generalized FGLM pattern is
presented. In this way, FGLM is not anymore just an algorithm, but a model that can be
particularized and applied to many particular structures. For example, as it was shown
in [BBM], the algorithms in [FGLM] and [MMM] are inmerse in the pattern algorithm
presented in [BBM]. We understood as FGLM techniques any specification and its co-
rresponding applications of this pattern to a particular setting. This proccess involves, as
we will show here for the case of linear codes, new theoretical results.

To show the FGLM pattern algorithm would be good in order to see from where
algorithm 1.3 comes, but it would need some deffinitions like Grobner basis and some
more explanations and notations. Authors are pleased to help by personal communication
with interested readers. In this work we gave key comments which could help to readers
for a comprenhensive and oriented reading of the literature related here. Let us suggest
the readers; in advance, to read [BWBb] for more details or [BWBa] for a more complete
analysis.

1 FGLM and linear codes

In connection with the vector space Fj' a set X of variables will be introduced so that we
can relate later the free commutative monoid in these variables with the structure of the
linear code.

Given (y1,...,yn) € F}}, each component y; can be represented as y; = 37, Bijad 1,
Based on this representation, the alphabet X = {x11,..., Zim,..., Tp1s «o o Tpm | 1 €
[1,n] and j € [1,m]} is introduced and the free commutative monoid [X | is associated
with F7' in the following way: let ¢) be the mapping from X to Fj' that sends every w;;

Borges, Borges, Winkler. 3

to the corresponding vector with zero in all its components up to the position ¢ which is
equal to o 1.

As [X] is freely generated by X and ¢ is a mapping of X onto a generating set of
the additive monoid Fj', ¥ can be extended in a natural way to a linear morphism of [X]
iﬂj”
Remark 1.1 Taking into consideration the comments made above, the variables x;; can
also be seen as the set of nm variables xy, where k = (i —1)m+j. This last representation
of variables will be used in the subsequent sections of this paper. This other representation
of variables and the connection between Fj' with the free commutative monoid with nm
generators, is strongly related with the fact that Fj' is isomorphic to FJ™ as a vector space
over Fy. However, we will keep all the time working in F'.

n. n m
onto Fj'; moreover, ¢ maps J[; [[/2; =

into the vector (3724 Bija?~1); modulo p.

It is well known that a linear code defines an equivalence relation R(C) in Fj'. By the
linear morphism v, the congruence modulo C' can be transferred onto [X] in the following
way:

u=cw <= (Y(u), Y(w)) € R(C) <= ¢(u)H = (w)H.

After setting &(u) := (u)H, we can write this relation as: u ¢ w <= £(u) = &(w) 1.

Definition 1.2 (Standard representation) The word w is said to be in standard re-
presentation iff all the exponents of the variables in the representation of w are less than
p. Given y € FJ', we say that w is the standard representation of y iff ¥ (w) =y and w is
in standard representation.

Note that the morphism ¢ is surjective, but it is not injective. By considering just the
standard representations in [X |, then, the correspondence with Fg' is one-to-one. That
is, for every y € F' there exists a unique standard representation in [X |.

As two more notations we have: C'ard(U) denotes the cardinal of the set U, and Ind(w)
denotes the set of ¢ € [1,n] s.t. there exists j € [1,m] for which z;; divides the word w.

There are two important structures in our approach, the set of canonical forms and
the function Matphi.

Properties of a set of canonical forms (N).
(i) 1eNand NC[X]
(ii) Card(N) = ¢"7*.
(iii) Two different words of N determine distinct coset module R(C').

(iv) For all w € N there exists © € X such that w = w'z and v’ € N.
Properties of the function Matphi:
(i) Matphi is a mapping ¢ from N x X onto N 2.

!Note that £(w) is nothing more that the syndrome corresponding to the vector 1 (w) associated to w.
2The image of (w,z) will be denoted by ¢(w,z).

4 FGLM techniques and linear codes.

(ii) For all (w,z) € N x X £(¢(w,n)) = E(wr) 3.

The following algorithm builds such a set N and a function Matphi with the required
properties. As subroutines of the algorithm we have the ones well known from [FGLM]:

InsertNexts|[t, List] inserts properly the products xt (for z € X) in List and sorts it by
increasing ordering with respect to the ordering <.

NextTerm[List] removes the first element from List and returns it.

Member[v', {vy,...,v, }] returns True if v' € {v1,...,v,} and False otherwise. When
the output is True, it also returns an additional output with the position j such that
v = vj.

Algorithm 1.3 (FGLM for linear codes)
Input: p, n, m, H the defining parameters for a given linear code.
Output: N, ¢.

1. List :=={1}; N:=0; r:=0;

2. While List # 0 do

3. w:= NextTerm]|List];

4. v =¢(w);

5. (A, j) := Member[v/, {vy,...,v,}];

6. If A = True

7. then for each k such that w = uxry with u € N do

8 d(u,) == wj;

9. else r:=r+1;

10. vy 1= ';

11. wy = w; N :=NU{w,};

12. List := InsertNexts|w,, List];
13. for each k such that w = uzxy with uw € N do
14. d(u,) 1= w;

15. Return|[N, ¢].

For our porpuse, it is necessary to keep a certain order in List. We defined <., a term
ordering on [X'] called the error vector term ordering (see [BWBa]). This term ordering
is used inside InsertNexts, which take care of keeping the elements in List ordered by <.
The reader can see in [BWBa] the justification of this algorithm.

2 Decoding linear codes

In this section we show the basis of an easy to understand and fast decoding algorithm
which takes as its input the output of Algorithm 1.3. Previously, we have to introduce a

%it means that ¢(w,x) is the representative element in N for the coset determined by &(wz).

Borges, Borges, Winkler. D

canonical form function that will be denoted by C'F. In fact C'F is defined in a recursive
way:

CF: [X] — N

CF(w) = ¢(CF(u), xx),
where w = uxy and u € [Xi] = [x1,..., 2]

Now we will procceed to give the results that show the way of the application to the
decoding process.

Theorem 2.1 (Every element has a canonical form) For every element w in [X],
CF(w) is the unique element in N with the same syndrome as w, that is:

§(w) = ¢(CF (w)).

As a conclusion of this theorem each syndrome ({(w) for the corresponding w € [X]) of
the linear code has a representative element in N (C'F(w)).

Theorem 2.2 (Decoding) Let w be such that ¥(w) € B(C.,t). Then ¢(CF(w)) is the
error vector corresponding to ¥ (w).

Note that from Theorem 2.2 we can already extract a decoding algorithm. It is only
necessary to know the error-correcting capability of the code.

Theorem 2.3 (error-correcting capability) Let List be the list of words in Step 3 of
Algorithm 1.3 and let w be the first element analyzed by NextTerm[List] such that w does
not belong to N and w is in standard representation. Then

t = Card(Ind(w)) — 1.

The algorithm for decoding given below is a direct consequence of the former three
theorems. It consists just in computing for a received vector y the corresponding canonical
form C'F(w), where y = ¢(w). Thus, if the weight of the corresponding vector e to C'F(w)
(e = ¢Y(CF(w))) is at most ¢, then y — e is the codeword; otherwise, we can not decode
properly the received word. We recommend the reader to see the example presented in
in [BWBa, BWBb]. In [BWBa] the example and the section devoted to the complexity
contains a deeper analysis and more details, while in [BWBb] the reader can get faster
the key points. First let us explain some procedures used by the algorithm.

Read: Reads the vector y and returns its standard representation in [X |.
NextVar: Returns the first index k of a variable such that x; € Supp(w) and then
computes w := w/xy. If w =1, NextVar returns 0.

Remember that xz;; corresponds to x(;_1),;,,4; when we use only one index instead of two
(see Remark 1.1).

6 FGLM techniques and linear codes.

Algorithm 2.4 (The algorithm for decoding)

Input: A received vector y.

Output: The codeword corresponding to vy, if y € B(C,t),

and the error message “more than t errors” otherwise.
1. w:=Read(y); we := 1;
2. i := NextVar[w];
3. While i # 0 do
4. We 1= P(we, x;);
5 i := NextVar[w];
6. If weight(y(we)) > t then Return[“more than t errors”]
7. else Returnfy — ¥ (we)/

Steps from 3 to 5 correspond to the computation of C'F(w), the correctness of this
algorithm follows directly from Theorems 2.2 and 2.3.

3 Some comments about complexity

It is necessary to say that we consider operations not only given by computation, but
every kind of simple steps for getting the codeword.

The algorithm 2.4 for decoding computes the corresponding codeword of the received
word in O((p — 1)mn) operations. Notes that if the field Fj, is fixed, the algorithms takes
linear time. Under certain bounds, easy to get, our algorithm is less than O(n?), while
the well known algorithms for the class of Goppa codes, following Duursma’s ideas and
Sakata’s approach take O(n?) operations. In certain situations, it can be possible to
get a complexity less than O(n?) but never less than or equal to O(n?). However, our
approach could not be applied to many Goppa codes for which it is possible to apply the
others algorithms. The reason is the requirements of our method discussed in [BWBal].
Nevertheless, it is theoretical interesting that there exists an algorithm almost linear for
the process of decoding, if one assumes the requirements fulfilled. Also note that in special
situations of application of linear codes, where the technology available provides the needed
condition in order to carry out our method for a particular code, then one can use this
way to obtain a faster decoding process.

The following parragraph clarifies the requirements. In [BWBa] all the formulas given
below are proved and commented.

The memory required for Algorithm 1.3 is ¢"~*(cmn® + ¢in — c1k), the number of ope-
rations performed by Algorithm 1.3 is O(mn2¢"~*) operations. In order to use Algorithm
2.4 for decoding we need to keep the information contained in Matphi, whose size is given
by ¢"*(ne +nme +).

The complexity of Algorithm 1.3 is reasonable if one keeps in mind that this algorithm
computes among all the ¢" vectors in F' the ¢"~F representative vectors for the cosets de-
termined by the code. Moreover, these representative elements are not arbitrarily chosen.

Borges, Borges, Winkler. 7

The algorithm also computes the Matphi, which gives us a way of multiplying cosets. We
only need a computer powerful enough for computing the Matphi for the code. Then, if
the code is really big, at least the same computer that was able to execute Algorithm 1.3
will be able to decode by Algorithm 2.4.

If one considers n and d fixed, it is an interesting problem in Coding Theory to find &
as big as possible such that such a [n,k,d] linear code exists. We know from the bounds
given before that the better the code is (which means, if n and d are fixed, the bigger k is)
the less information one needs to store and the fewer operations are needed in Algorithm
1.3.

References

[BBM] M. Borges-Trenard, M. Borges-Quintana, T. Mora. Computing Grobner Bases by

FGLM Techniques in a Noncommutative Setting. J. Symbolic Computation (to appear
2000).

[BWBa] M. Borges-Quintana, F. Winkler, M. Borges-Trenard. FGLM Techniques Applied
to Linear Codes — An Algorithm for Decoding Linear Codes. Techn. Rep. RISC-Linz,
RISC - 00-14, J. Kepler Univ., Linz, Austria (2000).

[BWBb] M. Borges-Quintana, F. Winkler, M. Borges-Trenard. An FGLM Method for
Decoding Linear Codes. In Proceedings of the Conference EACA-2000. Barcelona,
Spain, pp. 117-128 (2000).

[CCS] A. M. Cohen, H. Cuypers, H. Sterk (Eds). Some Tapas of Computer Algebra.
Springer-Verlag, Berlin (1999).

[CLO] D. Cox, J. Little, D. O’Shea. Using Algebraic Geometry. Springer-Verlag, New York
(1998).

[Du] I. M. Duursma. Majority Coset Decoding. IEEE. Trans. On Inf. Theory, vol. 39/3,
pp. 1067-1070 (1993).

[FR] G.-L. Feng, T.R.N. Rao. Decoding Algebraic-Geometric Codes up to the Designed
Minimum Distance. IEEE Trans. On Inf. Theory, vol. 39/1, pp. 37-45 (1993).

[FGLM] J.C. Faugere, P. Gianni, D. Lazard, T. Mora. Efficient Computation of Zero-
dimensional Grobner Bases by Change of Ordering. J. Symbolic Computation, 16, pp.
329-344 (1993).

[HoPe] T. Hgholdt, R. Pellikaan. On the Decoding of Algebraic-Geometric Codes. IEEE
Trans. On Inf. Theory, vol. 41/6, pp. 1589-1614 (1995).

8 FGLM techniques and linear codes.

[MMM] M. G. Marinari, H. M. Moller, T. Mora. Grobner Bases of Ideals Defined by
Functionals with an Application to Ideals of Projective Points. Applicable Algebra in
Engeneering, Communication and Computing, vol. 4, pp. 103-145 (1993).

[MR1] K. Madlener, B. Reinert. String Rewriting and Grobner bases — A General Ap-
proach to Monoid and Group Rings. In Proceedings of the Workshop on Symbolic
Rewriting Techniques, Monte Verita, Birkhduser, pp 127-180, 1995 (printed 1998).

[MR2] K. Madlener, B. Reinert. Relating Rewriting Techniques on Monoids and Rings:
Congruences on Monoids and Ideals in Monoid Rings. Theoretical Computer Sciences,
208, pp. 3-31 (1998).

[MRM] K. Madlener, B. Reinert, T. Mora. A note on Nielsen Reduction and Coset Enu-
meration. Proc. ISSAC 98, pp. 171-178 (1998).

[PeWe] W. W. Peterson, E. J. Jr. Weldon. Error-Correcting Codes (2nd ed.). MIT Press,
Cambridge, Massachusetts, London. England (1972).

[Pre] O. Pretzel. Codes and Algebraic Curves. Clarendon Press. Oxford (1998).

[STH] S. Sakata, H. E. Jensen, T. Hgholdt. Generalized berlekamp-Massey Decoding of
Algebraic-Geometric Codes up to Half the Feng-Rao Bound. IEEE Trans. On Inf.
Theory, vol. 41/6, pp. 1762-1768 (1995).

[SJMJH] S. Sakata, J. Justesen, Y. Madelung, H. E. Jensen, T. Hgholdt. Fast Decoding
of Algebraic-Geometric Codes up to the designed Minimum Distance. IEEE Trans.
On Inf. Theory, vol 41/5, pp. 1672-1677 (1995).

[Sak] Shojiro Sakata. Grobner Bases and Coding Theory. In Grébner Bases and Appli-
cations (Proc. of the Conference 33 Years of Grébner Bases). B. Buchberger, F.
Winkler (eds.). Cambridge University Press, London Mathematical Society Lecture
Notes Series, vol. 251, pp. 205-220 (1998).

[JLJH] J. Justesen, J. Larsen, H. E. Jensen, T. Hgholdt. Fast Decoding of Codes from
Algebraic Plane Curves. IEEE Trans. On Inf. Theory, vol. 38/1, pp. 111-119 (1992).

[vL] J. H. van Lint. Introduction to Coding Theory (2nd ed.). Springer-Verlag, Berlin
(1992).

