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tIn this paper we emphasize the main results and algorithms presented in [BWBa℄ and[BWBb℄ related with a new approa
h for de
oding linear 
odes. This approa
h arrivesfrom a mixture of the syndrome de
oding method and the FGLM te
hniques. We alsoexplain the meaning of \FGLM te
hniques" and the possibilities for new appli
ationsare shown by our 
on
rete situation 
on
erned to linear 
odes.Introdu
tionIt is well known how the 
apabilities of the te
hnology is exponentially growing. Now-adays one 
an think reasonable in some appli
ations that were very far away to 
onsider,even �ve years ago. We do not think that the proposed method here 
an be applied toeveryday live of 
oding theory appli
ations, not even in the future; moreover, when therehave been developed some reasonable good algorithms, mainly for the 
lass of algebrai
geometri
 
odes (Goppa 
odes), following Duursma's ideas or Sakata's approa
h (see [Du,FR, H�Pe, SJH, SJMJH, JLJH℄). However, when it is possible to ful�ll the 
hallenge ofthe requirements of our approa
h (see Se
tion 3) for a parti
ular appli
ation of an spe
i�
linear 
ode, then, one 
an be sure that the de
oding pro
ess 
an be as faster as desired.Despite it is not dis
arted a possible parti
ular 
ases of appli
ations of this approa
h, werather 
onsider our result from the point of view of 
oding theory mainly with theoreti
alinterest. From the point of view of the FGLM te
hniques, it shows extensions of thesete
hniques and new possible appli
ations. 1



2 FGLM te
hniques and linear 
odes.The method presented in this paper for de
oding linear 
odes is obtained by 
onne
tingthe stru
ture of the linear 
odes with the FGLM te
hniques that belongs to the frameworkof the Gr�obner bases theory. This appli
ation of the FGLM te
hniques 
onstitutes a goodexample of how to apply these tools in a more general way, and with less requirementslike the admissibility of the term ordering. For the purpose of de
oding, one 
an avoidthe presentation with variables, and to present the algorithms with an approa
h 
loser tothe usual one in 
oding theory. However, we want to show that the algorithms arrive ina natural way from an FGLM pattern, after making the 
orresponding 
onne
tion withlinear 
odes.We assume the reader to be familiar with 
oding theory, parti
ularly with linear 
odes.For an understanding of 
oding theory we re
ommend to have a look to [vL, CLO, PeWe℄.As some notations we have: C denotes a linear 
ode as a subspa
e of the ve
tor spa
e F nq ;
 is a 
odeword and y a re
eived word; the 
orresponding error for y is denoted by e; Hdenotes a parity 
he
k matrix for C; we used the well known Hamming distan
e; t is theerror-
orre
ting 
apability of C; and B(C; t) denotes the set of the balls with 
enter in a
odeword 
 and radio t.For an understanding of the original FGLM algorithm and its �rsts appli
ations it isre
ommended to take a look to [FGLM, MMM℄. In [BBM℄ a generalized FGLM pattern ispresented. In this way, FGLM is not anymore just an algorithm, but a model that 
an beparti
ularized and applied to many parti
ular stru
tures. For example, as it was shownin [BBM℄, the algorithms in [FGLM℄ and [MMM℄ are inmerse in the pattern algorithmpresented in [BBM℄. We understood as FGLM te
hniques any spe
i�
ation and its 
o-rresponding appli
ations of this pattern to a parti
ular setting. This pro

ess involves, aswe will show here for the 
ase of linear 
odes, new theoreti
al results.To show the FGLM pattern algorithm would be good in order to see from wherealgorithm 1.3 
omes, but it would need some deÆnitions like Gr�obner basis and somemore explanations and notations. Authors are pleased to help by personal 
ommuni
ationwith interested readers. In this work we gave key 
omments whi
h 
ould help to readersfor a 
omprenhensive and oriented reading of the literature related here. Let us suggestthe readers; in advan
e, to read [BWBb℄ for more details or [BWBa℄ for a more 
ompleteanalysis.1 FGLM and linear 
odesIn 
onne
tion with the ve
tor spa
e F nq a set X of variables will be introdu
ed so that we
an relate later the free 
ommutative monoid in these variables with the stru
ture of thelinear 
ode.Given (y1; : : : ; yn) 2 F nq , ea
h 
omponent yi 
an be represented as yi =Pmj=1 �ij�j�1.Based on this representation, the alphabet X = fx11; : : : ; x1m; : : : ; xn1; : : : ; xnm j i 2[1; n℄ and j 2 [1;m℄g is introdu
ed and the free 
ommutative monoid [X ℄ is asso
iatedwith F nq in the following way: let  be the mapping from X to F nq that sends every xij
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orresponding ve
tor with zero in all its 
omponents up to the position i whi
h isequal to �j�1.As [X ℄ is freely generated by X and  is a mapping of X onto a generating set ofthe additive monoid F nq ,  
an be extended in a natural way to a linear morphism of [X ℄onto F nq ; moreover,  maps Qni=1Qmj=1 x�ijij into the ve
tor (Pmj=1 �ij�j�1)i modulo p.Remark 1.1 Taking into 
onsideration the 
omments made above, the variables xij 
analso be seen as the set of nm variables xk, where k = (i�1)m+j. This last representationof variables will be used in the subsequent se
tions of this paper. This other representationof variables and the 
onne
tion between F nq with the free 
ommutative monoid with nmgenerators, is strongly related with the fa
t that F nq is isomorphi
 to Fmnp as a ve
tor spa
eover Fp. However, we will keep all the time working in F nq .It is well known that a linear 
ode de�nes an equivalen
e relation R(C) in F nq . By thelinear morphism  , the 
ongruen
e modulo C 
an be transferred onto [X ℄ in the followingway: u �=C w () ( (u);  (w)) 2 R(C)()  (u)H =  (w)H:After setting �(u) :=  (u)H, we 
an write this relation as: u �=C w () �(u) = �(w) 1.De�nition 1.2 (Standard representation) The word w is said to be in standard re-presentation i� all the exponents of the variables in the representation of w are less thanp. Given y 2 F nq , we say that w is the standard representation of y i�  (w) = y and w isin standard representation.Note that the morphism  is surje
tive, but it is not inje
tive. By 
onsidering just thestandard representations in [X ℄, then, the 
orresponden
e with F nq is one-to-one. Thatis, for every y 2 F nq there exists a unique standard representation in [X ℄.As two more notations we have: Card(U) denotes the 
ardinal of the set U , and Ind(w)denotes the set of i 2 [1; n℄ s.t. there exists j 2 [1;m℄ for whi
h xij divides the word w.There are two important stru
tures in our approa
h, the set of 
anoni
al forms andthe fun
tion Matphi.Properties of a set of 
anoni
al forms (N).(i) 1 2 N and N � [X ℄.(ii) Card(N) = qn�k.(iii) Two di�erent words of N determine distin
t 
oset module R(C).(iv) For all w 2 N there exists x 2 X su
h that w = w0x and w0 2 N .Properties of the fun
tion Matphi:(i) Matphi is a mapping � from N �X onto N 2.1Note that �(w) is nothing more that the syndrome 
orresponding to the ve
tor  (w) asso
iated to w.2The image of (w; x) will be denoted by �(w;x).



4 FGLM te
hniques and linear 
odes.(ii) For all (w; x) 2 N �X �(�(w; x)) = �(wx) 3.The following algorithm builds su
h a set N and a fun
tion Matphi with the requiredproperties. As subroutines of the algorithm we have the ones well known from [FGLM℄:InsertNexts[t; List℄ inserts properly the produ
ts xt (for x 2 X) in List and sorts it byin
reasing ordering with respe
t to the ordering <.NextTerm[List℄ removes the �rst element from List and returns it.Member[v0; fv1; : : : ; vrg℄ returns True if v0 2 fv1; : : : ; vrg and False otherwise. Whenthe output is True, it also returns an additional output with the position j su
h thatv0 = vj .Algorithm 1.3 (FGLM for linear 
odes)Input: p, n, m, H the de�ning parameters for a given linear 
ode.Output: N , �.1. List := f1g; N := ;; r := 0;2. While List 6= ; do3. w := NextTerm[List℄;4. v0 := �(w);5. (�; j) :=Member[v0; fv1; : : : ; vrg℄;6. If � = True7. then for ea
h k su
h that w = uxk with u 2 N do8. �(u; xk) := wj;9. else r := r + 1;10. vr := v0;11. wr := w; N := N [ fwrg;12. List := InsertNexts[wr; List℄;13. for ea
h k su
h that w = uxk with u 2 N do14. �(u; xk) := w;15. Return[N; �℄.For our porpuse, it is ne
essary to keep a 
ertain order in List. We de�ned <e, a termordering on [X ℄ 
alled the error ve
tor term ordering (see [BWBa℄). This term orderingis used inside InsertNexts, whi
h take 
are of keeping the elements in List ordered by <e.The reader 
an see in [BWBa℄ the justi�
ation of this algorithm.2 De
oding linear 
odesIn this se
tion we show the basis of an easy to understand and fast de
oding algorithmwhi
h takes as its input the output of Algorithm 1.3. Previously, we have to introdu
e a3it means that �(w;x) is the representative element in N for the 
oset determined by �(wx).
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anoni
al form fun
tion that will be denoted by CF . In fa
t CF is de�ned in a re
ursiveway: CF : [X ℄ �! NCF (1) := 1;CF (w) := �(CF (u); xk);where w = uxk and u 2 [Xk ℄ = [x1; : : : ; xk ℄. (1)Now we will pro

eed to give the results that show the way of the appli
ation to thede
oding pro
ess.Theorem 2.1 (Every element has a 
anoni
al form) For every element w in [X ℄,CF (w) is the unique element in N with the same syndrome as w, that is:�(w) = �(CF (w)):As a 
on
lusion of this theorem ea
h syndrome (�(w) for the 
orresponding w 2 [X ℄) ofthe linear 
ode has a representative element in N (CF (w)).Theorem 2.2 (De
oding) Let w be su
h that  (w) 2 B(C; t). Then  (CF (w)) is theerror ve
tor 
orresponding to  (w).Note that from Theorem 2.2 we 
an already extra
t a de
oding algorithm. It is onlyne
essary to know the error-
orre
ting 
apability of the 
ode.Theorem 2.3 (error-
orre
ting 
apability) Let List be the list of words in Step 3 ofAlgorithm 1.3 and let w be the �rst element analyzed by NextTerm[List℄ su
h that w doesnot belong to N and w is in standard representation. Thent = Card(Ind(w)) � 1:The algorithm for de
oding given below is a dire
t 
onsequen
e of the former threetheorems. It 
onsists just in 
omputing for a re
eived ve
tor y the 
orresponding 
anoni
alform CF (w), where y =  (w). Thus, if the weight of the 
orresponding ve
tor e to CF (w)(e =  (CF (w))) is at most t, then y � e is the 
odeword; otherwise, we 
an not de
odeproperly the re
eived word. We re
ommend the reader to see the example presented inin [BWBa, BWBb℄. In [BWBa℄ the example and the se
tion devoted to the 
omplexity
ontains a deeper analysis and more details, while in [BWBb℄ the reader 
an get fasterthe key points. First let us explain some pro
edures used by the algorithm.Read: Reads the ve
tor y and returns its standard representation in [X ℄.NextVar: Returns the �rst index k of a variable su
h that xk 2 Supp(w) and then
omputes w := w=xk. If w = 1, NextV ar returns 0.Remember that xij 
orresponds to x(i�1)m+j when we use only one index instead of two(see Remark 1.1).



6 FGLM te
hniques and linear 
odes.Algorithm 2.4 (The algorithm for de
oding)Input: A re
eived ve
tor y.Output: The 
odeword 
orresponding to y, if y 2 B(C; t),and the error message \more than t errors" otherwise.1. w := Read(y); we := 1;2. i := NextVar[w℄;3. While i 6= 0 do4. we := �(we; xi);5. i := NextVar[w℄;6. If weight( (we)) > t then Return[\more than t errors"℄7. else Return[y �  (we)℄Steps from 3 to 5 
orrespond to the 
omputation of CF (w), the 
orre
tness of thisalgorithm follows dire
tly from Theorems 2.2 and 2.3.3 Some 
omments about 
omplexityIt is ne
essary to say that we 
onsider operations not only given by 
omputation, butevery kind of simple steps for getting the 
odeword.The algorithm 2.4 for de
oding 
omputes the 
orresponding 
odeword of the re
eivedword in O((p� 1)mn) operations. Notes that if the �eld Fq is �xed, the algorithms takeslinear time. Under 
ertain bounds, easy to get, our algorithm is less than O(n2), whilethe well known algorithms for the 
lass of Goppa 
odes, following Duursma's ideas andSakata's approa
h take O(n3) operations. In 
ertain situations, it 
an be possible toget a 
omplexity less than O(n3) but never less than or equal to O(n2). However, ourapproa
h 
ould not be applied to many Goppa 
odes for whi
h it is possible to apply theothers algorithms. The reason is the requirements of our method dis
ussed in [BWBa℄.Nevertheless, it is theoreti
al interesting that there exists an algorithm almost linear forthe pro
ess of de
oding, if one assumes the requirements ful�lled. Also note that in spe
ialsituations of appli
ation of linear 
odes, where the te
hnology available provides the needed
ondition in order to 
arry out our method for a parti
ular 
ode, then one 
an use thisway to obtain a faster de
oding pro
ess.The following parragraph 
lari�es the requirements. In [BWBa℄ all the formulas givenbelow are proved and 
ommented.The memory required for Algorithm 1.3 is qn�k(
mn2+ 
1n� 
1k), the number of ope-rations performed by Algorithm 1.3 is O(mn2qn�k) operations. In order to use Algorithm2.4 for de
oding we need to keep the information 
ontained in Matphi, whose size is givenby qn�k(n
+ nm
0 + 
00).The 
omplexity of Algorithm 1.3 is reasonable if one keeps in mind that this algorithm
omputes among all the qn ve
tors in F nq the qn�k representative ve
tors for the 
osets de-termined by the 
ode. Moreover, these representative elements are not arbitrarily 
hosen.
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omputes the Matphi, whi
h gives us a way of multiplying 
osets. Weonly need a 
omputer powerful enough for 
omputing the Matphi for the 
ode. Then, ifthe 
ode is really big, at least the same 
omputer that was able to exe
ute Algorithm 1.3will be able to de
ode by Algorithm 2.4.If one 
onsiders n and d �xed, it is an interesting problem in Coding Theory to �nd kas big as possible su
h that su
h a [n; k; d℄ linear 
ode exists. We know from the boundsgiven before that the better the 
ode is (whi
h means, if n and d are �xed, the bigger k is)the less information one needs to store and the fewer operations are needed in Algorithm1.3.Referen
es[BBM℄ M. Borges-Trenard, M. Borges-Quintana, T. Mora. Computing Gr�obner Bases byFGLM Te
hniques in a Non
ommutative Setting. J. Symboli
 Computation (to appear2000).[BWBa℄ M. Borges-Quintana, F. Winkler, M. Borges-Trenard. FGLM Te
hniques Appliedto Linear Codes { An Algorithm for De
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oding Linear Codes. In Pro
eedings of the Conferen
e EACA-2000. Bar
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e. IEEE Trans. On Inf. Theory, vol. 39/1, pp. 37-45 (1993).[FGLM℄ J.C. Faugere, P. Gianni, D. Lazard, T. Mora. EÆ
ient Computation of Zero-dimensional Gr�obner Bases by Change of Ordering. J. Symboli
 Computation, 16, pp.329-344 (1993).[H�Pe℄ T. H�holdt, R. Pellikaan. On the De
oding of Algebrai
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 Codes. IEEETrans. On Inf. Theory, vol. 41/6, pp. 1589-1614 (1995).
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