
An Appliation of the FGLM Tehniques to Linear CodesMijail Borges Quintanay Miguel A. Borges TrenardyFranz Winklerzy Departamento de Matem�atia, Fa. de Cienias.Universidad de Oriente, Santiago de Cuba 90500, Cuba.mijail�sd.uo.edu.u, mborges�sd.uo.edu.uz RISC-Linz, Johannes Kepler University,Linz, Austria.winkler�ris.uni-linz.a.atMarh 5, 2001AbstratIn this paper we emphasize the main results and algorithms presented in [BWBa℄ and[BWBb℄ related with a new approah for deoding linear odes. This approah arrivesfrom a mixture of the syndrome deoding method and the FGLM tehniques. We alsoexplain the meaning of \FGLM tehniques" and the possibilities for new appliationsare shown by our onrete situation onerned to linear odes.IntrodutionIt is well known how the apabilities of the tehnology is exponentially growing. Now-adays one an think reasonable in some appliations that were very far away to onsider,even �ve years ago. We do not think that the proposed method here an be applied toeveryday live of oding theory appliations, not even in the future; moreover, when therehave been developed some reasonable good algorithms, mainly for the lass of algebraigeometri odes (Goppa odes), following Duursma's ideas or Sakata's approah (see [Du,FR, H�Pe, SJH, SJMJH, JLJH℄). However, when it is possible to ful�ll the hallenge ofthe requirements of our approah (see Setion 3) for a partiular appliation of an spei�linear ode, then, one an be sure that the deoding proess an be as faster as desired.Despite it is not disarted a possible partiular ases of appliations of this approah, werather onsider our result from the point of view of oding theory mainly with theoretialinterest. From the point of view of the FGLM tehniques, it shows extensions of thesetehniques and new possible appliations. 1



2 FGLM tehniques and linear odes.The method presented in this paper for deoding linear odes is obtained by onnetingthe struture of the linear odes with the FGLM tehniques that belongs to the frameworkof the Gr�obner bases theory. This appliation of the FGLM tehniques onstitutes a goodexample of how to apply these tools in a more general way, and with less requirementslike the admissibility of the term ordering. For the purpose of deoding, one an avoidthe presentation with variables, and to present the algorithms with an approah loser tothe usual one in oding theory. However, we want to show that the algorithms arrive ina natural way from an FGLM pattern, after making the orresponding onnetion withlinear odes.We assume the reader to be familiar with oding theory, partiularly with linear odes.For an understanding of oding theory we reommend to have a look to [vL, CLO, PeWe℄.As some notations we have: C denotes a linear ode as a subspae of the vetor spae F nq ; is a odeword and y a reeived word; the orresponding error for y is denoted by e; Hdenotes a parity hek matrix for C; we used the well known Hamming distane; t is theerror-orreting apability of C; and B(C; t) denotes the set of the balls with enter in aodeword  and radio t.For an understanding of the original FGLM algorithm and its �rsts appliations it isreommended to take a look to [FGLM, MMM℄. In [BBM℄ a generalized FGLM pattern ispresented. In this way, FGLM is not anymore just an algorithm, but a model that an bepartiularized and applied to many partiular strutures. For example, as it was shownin [BBM℄, the algorithms in [FGLM℄ and [MMM℄ are inmerse in the pattern algorithmpresented in [BBM℄. We understood as FGLM tehniques any spei�ation and its o-rresponding appliations of this pattern to a partiular setting. This proess involves, aswe will show here for the ase of linear odes, new theoretial results.To show the FGLM pattern algorithm would be good in order to see from wherealgorithm 1.3 omes, but it would need some deÆnitions like Gr�obner basis and somemore explanations and notations. Authors are pleased to help by personal ommuniationwith interested readers. In this work we gave key omments whih ould help to readersfor a omprenhensive and oriented reading of the literature related here. Let us suggestthe readers; in advane, to read [BWBb℄ for more details or [BWBa℄ for a more ompleteanalysis.1 FGLM and linear odesIn onnetion with the vetor spae F nq a set X of variables will be introdued so that wean relate later the free ommutative monoid in these variables with the struture of thelinear ode.Given (y1; : : : ; yn) 2 F nq , eah omponent yi an be represented as yi =Pmj=1 �ij�j�1.Based on this representation, the alphabet X = fx11; : : : ; x1m; : : : ; xn1; : : : ; xnm j i 2[1; n℄ and j 2 [1;m℄g is introdued and the free ommutative monoid [X ℄ is assoiatedwith F nq in the following way: let  be the mapping from X to F nq that sends every xij



Borges, Borges, Winkler. 3to the orresponding vetor with zero in all its omponents up to the position i whih isequal to �j�1.As [X ℄ is freely generated by X and  is a mapping of X onto a generating set ofthe additive monoid F nq ,  an be extended in a natural way to a linear morphism of [X ℄onto F nq ; moreover,  maps Qni=1Qmj=1 x�ijij into the vetor (Pmj=1 �ij�j�1)i modulo p.Remark 1.1 Taking into onsideration the omments made above, the variables xij analso be seen as the set of nm variables xk, where k = (i�1)m+j. This last representationof variables will be used in the subsequent setions of this paper. This other representationof variables and the onnetion between F nq with the free ommutative monoid with nmgenerators, is strongly related with the fat that F nq is isomorphi to Fmnp as a vetor spaeover Fp. However, we will keep all the time working in F nq .It is well known that a linear ode de�nes an equivalene relation R(C) in F nq . By thelinear morphism  , the ongruene modulo C an be transferred onto [X ℄ in the followingway: u �=C w () ( (u);  (w)) 2 R(C)()  (u)H =  (w)H:After setting �(u) :=  (u)H, we an write this relation as: u �=C w () �(u) = �(w) 1.De�nition 1.2 (Standard representation) The word w is said to be in standard re-presentation i� all the exponents of the variables in the representation of w are less thanp. Given y 2 F nq , we say that w is the standard representation of y i�  (w) = y and w isin standard representation.Note that the morphism  is surjetive, but it is not injetive. By onsidering just thestandard representations in [X ℄, then, the orrespondene with F nq is one-to-one. Thatis, for every y 2 F nq there exists a unique standard representation in [X ℄.As two more notations we have: Card(U) denotes the ardinal of the set U , and Ind(w)denotes the set of i 2 [1; n℄ s.t. there exists j 2 [1;m℄ for whih xij divides the word w.There are two important strutures in our approah, the set of anonial forms andthe funtion Matphi.Properties of a set of anonial forms (N).(i) 1 2 N and N � [X ℄.(ii) Card(N) = qn�k.(iii) Two di�erent words of N determine distint oset module R(C).(iv) For all w 2 N there exists x 2 X suh that w = w0x and w0 2 N .Properties of the funtion Matphi:(i) Matphi is a mapping � from N �X onto N 2.1Note that �(w) is nothing more that the syndrome orresponding to the vetor  (w) assoiated to w.2The image of (w; x) will be denoted by �(w;x).



4 FGLM tehniques and linear odes.(ii) For all (w; x) 2 N �X �(�(w; x)) = �(wx) 3.The following algorithm builds suh a set N and a funtion Matphi with the requiredproperties. As subroutines of the algorithm we have the ones well known from [FGLM℄:InsertNexts[t; List℄ inserts properly the produts xt (for x 2 X) in List and sorts it byinreasing ordering with respet to the ordering <.NextTerm[List℄ removes the �rst element from List and returns it.Member[v0; fv1; : : : ; vrg℄ returns True if v0 2 fv1; : : : ; vrg and False otherwise. Whenthe output is True, it also returns an additional output with the position j suh thatv0 = vj .Algorithm 1.3 (FGLM for linear odes)Input: p, n, m, H the de�ning parameters for a given linear ode.Output: N , �.1. List := f1g; N := ;; r := 0;2. While List 6= ; do3. w := NextTerm[List℄;4. v0 := �(w);5. (�; j) :=Member[v0; fv1; : : : ; vrg℄;6. If � = True7. then for eah k suh that w = uxk with u 2 N do8. �(u; xk) := wj;9. else r := r + 1;10. vr := v0;11. wr := w; N := N [ fwrg;12. List := InsertNexts[wr; List℄;13. for eah k suh that w = uxk with u 2 N do14. �(u; xk) := w;15. Return[N; �℄.For our porpuse, it is neessary to keep a ertain order in List. We de�ned <e, a termordering on [X ℄ alled the error vetor term ordering (see [BWBa℄). This term orderingis used inside InsertNexts, whih take are of keeping the elements in List ordered by <e.The reader an see in [BWBa℄ the justi�ation of this algorithm.2 Deoding linear odesIn this setion we show the basis of an easy to understand and fast deoding algorithmwhih takes as its input the output of Algorithm 1.3. Previously, we have to introdue a3it means that �(w;x) is the representative element in N for the oset determined by �(wx).



Borges, Borges, Winkler. 5anonial form funtion that will be denoted by CF . In fat CF is de�ned in a reursiveway: CF : [X ℄ �! NCF (1) := 1;CF (w) := �(CF (u); xk);where w = uxk and u 2 [Xk ℄ = [x1; : : : ; xk ℄. (1)Now we will proeed to give the results that show the way of the appliation to thedeoding proess.Theorem 2.1 (Every element has a anonial form) For every element w in [X ℄,CF (w) is the unique element in N with the same syndrome as w, that is:�(w) = �(CF (w)):As a onlusion of this theorem eah syndrome (�(w) for the orresponding w 2 [X ℄) ofthe linear ode has a representative element in N (CF (w)).Theorem 2.2 (Deoding) Let w be suh that  (w) 2 B(C; t). Then  (CF (w)) is theerror vetor orresponding to  (w).Note that from Theorem 2.2 we an already extrat a deoding algorithm. It is onlyneessary to know the error-orreting apability of the ode.Theorem 2.3 (error-orreting apability) Let List be the list of words in Step 3 ofAlgorithm 1.3 and let w be the �rst element analyzed by NextTerm[List℄ suh that w doesnot belong to N and w is in standard representation. Thent = Card(Ind(w)) � 1:The algorithm for deoding given below is a diret onsequene of the former threetheorems. It onsists just in omputing for a reeived vetor y the orresponding anonialform CF (w), where y =  (w). Thus, if the weight of the orresponding vetor e to CF (w)(e =  (CF (w))) is at most t, then y � e is the odeword; otherwise, we an not deodeproperly the reeived word. We reommend the reader to see the example presented inin [BWBa, BWBb℄. In [BWBa℄ the example and the setion devoted to the omplexityontains a deeper analysis and more details, while in [BWBb℄ the reader an get fasterthe key points. First let us explain some proedures used by the algorithm.Read: Reads the vetor y and returns its standard representation in [X ℄.NextVar: Returns the �rst index k of a variable suh that xk 2 Supp(w) and thenomputes w := w=xk. If w = 1, NextV ar returns 0.Remember that xij orresponds to x(i�1)m+j when we use only one index instead of two(see Remark 1.1).



6 FGLM tehniques and linear odes.Algorithm 2.4 (The algorithm for deoding)Input: A reeived vetor y.Output: The odeword orresponding to y, if y 2 B(C; t),and the error message \more than t errors" otherwise.1. w := Read(y); we := 1;2. i := NextVar[w℄;3. While i 6= 0 do4. we := �(we; xi);5. i := NextVar[w℄;6. If weight( (we)) > t then Return[\more than t errors"℄7. else Return[y �  (we)℄Steps from 3 to 5 orrespond to the omputation of CF (w), the orretness of thisalgorithm follows diretly from Theorems 2.2 and 2.3.3 Some omments about omplexityIt is neessary to say that we onsider operations not only given by omputation, butevery kind of simple steps for getting the odeword.The algorithm 2.4 for deoding omputes the orresponding odeword of the reeivedword in O((p� 1)mn) operations. Notes that if the �eld Fq is �xed, the algorithms takeslinear time. Under ertain bounds, easy to get, our algorithm is less than O(n2), whilethe well known algorithms for the lass of Goppa odes, following Duursma's ideas andSakata's approah take O(n3) operations. In ertain situations, it an be possible toget a omplexity less than O(n3) but never less than or equal to O(n2). However, ourapproah ould not be applied to many Goppa odes for whih it is possible to apply theothers algorithms. The reason is the requirements of our method disussed in [BWBa℄.Nevertheless, it is theoretial interesting that there exists an algorithm almost linear forthe proess of deoding, if one assumes the requirements ful�lled. Also note that in speialsituations of appliation of linear odes, where the tehnology available provides the neededondition in order to arry out our method for a partiular ode, then one an use thisway to obtain a faster deoding proess.The following parragraph lari�es the requirements. In [BWBa℄ all the formulas givenbelow are proved and ommented.The memory required for Algorithm 1.3 is qn�k(mn2+ 1n� 1k), the number of ope-rations performed by Algorithm 1.3 is O(mn2qn�k) operations. In order to use Algorithm2.4 for deoding we need to keep the information ontained in Matphi, whose size is givenby qn�k(n+ nm0 + 00).The omplexity of Algorithm 1.3 is reasonable if one keeps in mind that this algorithmomputes among all the qn vetors in F nq the qn�k representative vetors for the osets de-termined by the ode. Moreover, these representative elements are not arbitrarily hosen.



Borges, Borges, Winkler. 7The algorithm also omputes the Matphi, whih gives us a way of multiplying osets. Weonly need a omputer powerful enough for omputing the Matphi for the ode. Then, ifthe ode is really big, at least the same omputer that was able to exeute Algorithm 1.3will be able to deode by Algorithm 2.4.If one onsiders n and d �xed, it is an interesting problem in Coding Theory to �nd kas big as possible suh that suh a [n; k; d℄ linear ode exists. We know from the boundsgiven before that the better the ode is (whih means, if n and d are �xed, the bigger k is)the less information one needs to store and the fewer operations are needed in Algorithm1.3.Referenes[BBM℄ M. Borges-Trenard, M. Borges-Quintana, T. Mora. Computing Gr�obner Bases byFGLM Tehniques in a Nonommutative Setting. J. Symboli Computation (to appear2000).[BWBa℄ M. Borges-Quintana, F. Winkler, M. Borges-Trenard. FGLM Tehniques Appliedto Linear Codes { An Algorithm for Deoding Linear Codes. Tehn. Rep. RISC-Linz,RISC - 00-14, J. Kepler Univ., Linz, Austria (2000).[BWBb℄ M. Borges-Quintana, F. Winkler, M. Borges-Trenard. An FGLM Method forDeoding Linear Codes. In Proeedings of the Conferene EACA-2000. Barelona,Spain, pp. 117-128 (2000).[CCS℄ A. M. Cohen, H. Cuypers, H. Sterk (Eds). Some Tapas of Computer Algebra.Springer-Verlag, Berlin (1999).[CLO℄ D. Cox, J. Little, D. O'Shea. Using Algebrai Geometry. Springer-Verlag, New York(1998).[Du℄ I. M. Duursma. Majority Coset Deoding. IEEE. Trans. On Inf. Theory, vol. 39/3,pp. 1067-1070 (1993).[FR℄ G.-L. Feng, T.R.N. Rao. Deoding Algebrai-Geometri Codes up to the DesignedMinimum Distane. IEEE Trans. On Inf. Theory, vol. 39/1, pp. 37-45 (1993).[FGLM℄ J.C. Faugere, P. Gianni, D. Lazard, T. Mora. EÆient Computation of Zero-dimensional Gr�obner Bases by Change of Ordering. J. Symboli Computation, 16, pp.329-344 (1993).[H�Pe℄ T. H�holdt, R. Pellikaan. On the Deoding of Algebrai-Geometri Codes. IEEETrans. On Inf. Theory, vol. 41/6, pp. 1589-1614 (1995).
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