Proc.6th Internat.Symp.on
Mini- and Microcamputers
Budapest 1980

A UNIVERSAL VARIARLE-TOPOLOGY
MULTI-MICROPROCESSOR-SYSTEM

by

B.Buchberger,K.ispetaberger

Johannes-Kepler-Universitit
‘ A-4040 Linz, Austria

ABSTRACT

The logical structure of a multi-microprocessor-
3ystem is described whose essential features are:

1. The system consists of identical microprocessor=
modules,

2. The data exchange between the modules is effected
by a crossbar communication network.

3. A complete system of sensor bits for transmitting
control information betwsen the modules is provided,

4. Ezch module operates autonomously.

5. Arbitrary types of interconnection schemata may be
realized,

6. Typically, identical programs are loaded into the
modules in order to rezlize parallel algorithms of
"eellular™ types, in particular pecursive algo-
rithms.

1. INTRODUCTION

The starting-point of the project described in this
paper has heesn the desire for a hardware-realization
of recursive alszerithas in order to expleit the
paralleiism cthat is naturally inherent in certain
recursive schemata. Actually, the design of a suite
able hardware system resulted in tha cencept of* a
modular multi-microprocesser system that is univer-
sally applieabl: for realizing arbitrary parallel

In a future stage of the project the system will

augmented by a feature that permits the adaptati
and variation (including extension and contractio
of topolery durinz the ex2cution of the algorithm.

The projects deseribed in (5 - 14) have simil:
design objectives as our own one. However, there a
signifjecant differences in the accents con the vario
subgoals as well as in the details of realizatio
The distinective features of our concept are:

1. Extreme modularity of the logical structure of ti
system: for the programmer the system appears as cor
posed of identical modules ("cells") that have %!
full potential of cooperating autonomously with thei
neighbour modules,

2. Clear structure of the hardware: data processing
data transfer and transmission of control informatic
are the three functions that determine a naturzs
decomposition of the hardware structure.

3. Extreme parallelization and flexibility ¢
topology by the use of a new type of ecrossbar

system.

2. ANALYSIS GF A RECURSIVE ALGORITHM

4s a motivation for the approach deseribed in thi
paper considsr the following recursive alzorithm fo
the evaluation of arithmetical expressions:

eval(t,a): =
if  addterm(t)
then eval(opd1(t),a) + eval(opd2(t),a)

algorithms.

In the first stage of the project a hardware module
(mierocomputer + special interface) has been
developed that may be used as a cellular building-
stone for the fermation of networks of arpitrary,but
fixed topology and unlimited size (1,2,3,4).

In the present stage of the project a sysiem is
implemented that consists of modules {mierocompu~
ters) + special eguipment for the formation of net-
werks of arbitrary topclogy. The foonioey may be
adapted to the structure of the algoritam bv S2rtwars
mexns prior Lo the execution of the alzor:tnm,

€132 84 04(e).

For simplicity, only expressions t eonsisting of th
cperator "+" and variables are considered

{for example ti:=z {x, + (x2 + x.))}. The

algorithm should be self—explagatory.

A typical computation according to the above aligoe
rithm is shown in Figure 1.

The graphizal representation of the
suggests a tree-like intarconnection of

modules in order to optinally exploit §49e pirailalis-s
that 1s apparently inherent in such a computatior

computa

tiar
raasggin
orosess




(parallel calls of "eval™ in the procedure body of
fayalt),

3. A UNIVERSAL MODULE

The module shown in Figure 2 ("L-module") is proposed
as a universal building-stone for computaticnal net
works of the above and, in fact, arbitrary topolo-
gles.

MP is a (micro)processor that has read/write access
to its "private memory" PM and to the "shared memcry"
SM. Typically, the private memory contains the
program. The shared memory may also be accessed by
other modules via 11,...,1 ’

however for writing only. Only one of the access
paths to the shared memory may be active at a given
time instant. The “sensor bits” §8.,...,S8

provide a means teo transmit centrol infofmation that
allows the coordination of accesses to the shared
memory SM by software means. S.,...,3

my be set (reset) from outside the ﬁ%dule-and read
only from the MP inside the module. Complementary to
the paths I ,...,Im for access from outside the
module, the paths 0,,...,0 are used to transfer data
from the given module to the shared memory of neigh-
bouring modules., Every path 0, is accompanied by a
sensor-line V., that enables the microprocessor to
transmit control information to the sensor bits of
its neighbours,

The above module is identical to the module described
in (1,2) except that it is restricted to write-
accesses via I.,...,I . This facilitates the hardware
realization o} the variable topoleogy version (see
Section 5), The universality of the module is not
influenced by this restriction. Recently a similar
module has been proposed in (7).

4, A NETWORK FOR THE SAMPLE ALGORITHM

The above sample algorithm can be executed on the
network of L-modules shown in Figure 3.For realizing
the above recursive algorithm, in each of the modules
in the network the follcwing program should be
executed, which results from a straight-ferward
modification of the precedure body of the recursive
algorithm;

if =35, wait;

3
if addterm(t)

then tt:=zopdf(t); at:=a; switeh':=1;
trr=opd2(t); a":za; switch":;z2;

V. iztrué; V_:ztrue;

Eé'ﬂ S1 uaig; V1:=false; if 31 wait;
if — 82 wait; V2:=§31§5; if 52 wait;
V,iztrue; if 83 walts

if switch = 1

V3:=false;
else V,:ztrue; if 83 walt;
ii switeh = 1
then b"':= a,
else oM'es aizggtg;
V3:=false;

In the formulation of the program the following rul
has been used: -

Address Modification Rule:

If the identifier a' is used in module M it addresse
a storage region in the shared memory of the neigh
bour module M. of M, which is interconnectesd with |
via path 0, add sensor-line V,. The neighbour M, ma
access the same storage region by the identifiér a
The analeogous rule applies to a", am',.,.

By the concurrent execution of the above jdentica
programs in the modules a "computational wavem 3,
generated in the modules that exactly corresponds
the computation described by the recursive algorithm
The instructiocn sequences involving the sensor bit:
realize the handshakes necessary for the synchroni.
zation of the processes going on in the modules, 1
particular for the ¢gordination of the accesses e
the shared memories. The value of the variabl
"switch® tells a module whether it is the "left o
right son" of its father. (A detailed explanation o:
the above computational process and various further
examples may be found in (1) and (4). The reader i
advised to carry out the computation with paper an
pencil,)

5. REALTZATION OF VARIABLE TOPOLOGY

The interconnection topologiea for the modules thal
optimally exploit the parallelism of algorithum:
display a great variety (trees of various shapes
pipe-lines, rectangular nets, hexagonal nets,
double-trees, etc., see {8) for a gysterwatic treat.
ment. In (15) various typical parallel algorithms
have been formulated for networks of L-modules.)

Our objective, therefore, i3 to conatruct z hardware
system, which permits to compose Le-ncdules ir
networks of arbitrary togology by simply loading sco«
special sterage cells  prier to execution of the
algorithm, For the programmer the appearance of the
system should not be altered by thiz additional
feature. (In particular the autonomous character ot
the L-modules should be preserved). Alse, during
execution of the algorithms, the parformance of the
networks shouid be the same as if the L-modules wers
connected by rixed data-paths and sensor-lines, i.e,
the additional hardware-feature should not act as :
"hidden sequentializer"., (For instance, a common bus
would sequentialize parallel procssses).

These severe design constraints lead to the seiutior
shown in Figure Y whose feasibility, using present-
day hardware-components, is demonstratad in the
companion paper (16). The system consists of thre:
nain parts: 2 pool of L-modules Mi, 2 croasbar systes



for data transfer and a nefwork for the transmission
of contrel information to and from sensor bits.

Logically, the L-modules in the pool with physiecal
numbers 1,...,k are identical to the L-modules of
Section 3. As a part of the above system, however,
they have the structure ghown in Figure 5. The module
has only one data path I and one data path 0. In
compensation, it has a special memory for the address
mapping AM. The address "a" of a store instruction
"STORE a"™ is decomposed in two parts a = (n,r), where
n is the logical number of the neighbour and r is the
relative address of the storage cell in the shared
memory of the n-th nejighbour. By means of the address
wapping AM the logical number n is translated into a
physical number n. n and r {(together with the data to
be transfered} are transmitted via 0 to the crossbar
system,

Using the physical number n the c¢rossbar system
conducts the data to the destination module, where it
is stored at address r (note that this realizes the
address modification rule of Section 4), In the most
extreme case all modules in the system may transfer
data via the crossbar system simultanecusly. The
crossbar system is not responsible for the solution
of access conflicts to the shared memories of the
modules. Instead, the programmer is exclusively
responsible for avoiding access conflicts by an
appropriate use of the sensor instructions (see the
sample program).

The unidirectional character of data tranafer, the
fact that the crossbar system does not have to take
care of access conflicts, and the idea (16) of a
special serial realization of data transfer seem to
make the above crossbar system an interesting solu-
tion also for large numbers of modules (k Z 100).

Logically, the sensor-bit array must provide a sensor
bit for every module in every module with the inter-
connection pattern shown in Figure 6 (for k = 3). The
sensor instructions V :strue, V :=false, if S then
sy where n is the logical number of a neig%bour,
have also to be relativized by means of the address
mapping AM. If module M is connected to module M' by
connecting O, of M with I, of M' and module M' should
also be connécted with moaule M, then 0, of M' should
be connected with I, of M. By followfng this rule
only one address ma%ping is needed in each of the
modules. In (16) an elegant method for practically
realizing the above array without connecting every
module with every module is given.

A3 an example for the use of the address mappings
consider the network in Section 4. Suppose that it
should be realized by using the modules with physical
numbers 2, 7, 5, 1, 3 in the feollowing positions:

: 2
7/ \5
:/ \ 1/ \3

Then the address mappings of these modules must
contain the following values respectively:

e s LN -

In this example one also sees that the variation ¢
network topology Aduring the execution of the algs
rithm is a design objective of extreme importance: 1
one wants to execute the sample program for arbitrar
terms (of a maximal "depth" d) then one has to prc
vide a binary tree of depth 4. For a concrete inpt
term t, however, only a small part of this networ
will be used. On the other hand, a tree t of dept
d'p»d is not mana§eable any more though it ma
contain less than 2° "nodes",

The variation of network topology during execution ¢
the algorithms may be achieved in the proposed syste
simply by adding a control processor to the syste
that may change the address mappings of the module
during execution., Simultaneous calls of the contrc
processor by different modules must, of course, t
sequentialized and thereby will destroy the extrern
parallel character of the present system. Thi
feature will be added to the system in the next stag
of the project.

For this final system the sample program could hav
the following form:

if =15, wait;
if addfern(t)
then generate(1,3); t':=
generate(2,3); th:= ..,
tz true; ... V_:= false;
delete 3
else ...

'y

Generate(1,3) calls the control processor fo
starting a new module whose address mapping must b
loaded such that, logiczlly, it is the "left son" o
the calling module. Delete returns the c¢alling modul
to the pool of "free" modules,

6. A FURTHER EXAMPLE

The conjunctive normal form C(t) of a boolean expres
sion t may be generated by the following recursiv
rules:

C{1) =1 (if 1 is a literal)
C{=—t) =.C(t), '
C(‘T(t.IA tz)) = O~ t1Vﬂt2)
C(— (t19t2)) = Clnt amty)
C(t1A tz) = C(t1)A.C(t2) (®)
. C(t1\/t2) = Multiply( C(t1), C(ta) )

Multiply is a procedure that "multiplies" two c¢on

junctions of clauses by applying the distribubiv

law. The structure of the algorithm ¢ is essantiail

the same as that of the algorithm in Sectien 2.
tree-like network of L-modules will exploit th



parallslism contained in line {*), One can achieve a
further parallelization ir this example by adding a
"pmultiplication network™ to the tree (shown for depth
3 and a "oalanced" tree in Figure 7).

lHere, C. are (modules containing) clauses ( = dis-
Juncticns of literals} and DJ are the results of the
"muitiplication’

,MMCQV(%A%)

in the form
D, =C,wvC D, =C,vC
15 i3 2 T Yy
D3-%v%, %-c?ww

Note that a very "dense" petwork is necessary to
optimally exploit this parallelism. It is essential
in such examples that a huge number of data transfers
between the different modules may be carried out
simultaneously without the interference of a central
wanagement, This is a strong motivation for reconsi-
dering crossbar systems as it is done in our project.

The parallelization of recursive algorithms normally
leads to asynchronous computations. The multi-miero-
processor-systen considered in this paper, however,
is well suited for synchronous computations as well,
for instance computations of the array-type and of
the pipeline-type see (15).

T._CONCLUSIGN

A multi-microprocassor-system has been described
that may realize arbitrary interconnection topolo-
gles between L-modules in order to optimally fit the
system to the computational structure of parallel
algorithms, For the programmer the system appears as
a network of autonomous modules, It should be ¢lear
from the discussion that, in particular, also data-
driven (7,12) and result-driven (11) language-
constructs may be implamented on the system in a
natural way, The variation of topology during
execution of the algorithms appears to be the next
natural step in the project. It may be realized
simply by making the address mappings accessible to a
eontrol processor.

REFERENCES

(1) B. Buchberger.
Computer-Trees and Their Programming, Proc. 3rd
Coll. "Les arbres en algebre et en program-
mation", Lille (1973), 1-18.

(2) B, Buchberger, J. Fegerl.
A Universal Module for the Hardware-Implemen-
tation of Recursion. T. Report Nr. 106, Univ.
Linz, Inst. f, Mathematik (1978).
(3) B. Buchberger, J. Fegerl, F. Lichtenberger.
Computer Trees: A Concept for Parallel
Processing. Microprocessing and Microsystems,
3/6 (1979), 244 - 248,

(4

F. Lichtenberger.
Speeding up Algorithms on Graphs by Us:
Computer Trees. Graphs, Data Structures, Al
rithms (M. Nagl ed), Hanser Verlag, Minect
(1979), 65 - 79.

(5) R. Kober, C. Kuznia.
SMS 201 - A Powerful Parallel Processor w:
128 Microprocessors, Euromicro Jourt
5(1979), 48 - s52.

(6) W. Hindler, F. Hofmann, H. Schneider.
A General Purpose Array with a Broad Spect:
of  Applications. Workshep GI "Comput
Architecture®, Erlangen (1975).

(7) H. Schreiber, V. Sigmund.
Functually Structured Computer Architect.
Using Plug-in Micro-Processing Modules. Pr¢
IMMM79, Geneva (1979}, 204 - 212,

(8) H. T. Kung.
The Structure of Parallel Algorithms.
Report, Carnegie-Mellcn Univ., Dptmt.Con
Seie. (1979).

(9) 8, Fuller, J. Custerhout, L. Raskin,
P. Rubinfeld, J. Pradeep, R. Swan.
Multi-Microprocessers: An Qverview and Worki
Example. Proc, IEEE 56/2 (1978), 216 - 2z8.

(10) J. Syre, et al.
Pipelining, Parallelism and Asynchronism
the LAU System. Proe. Int.Conf. "Parall
Processing" (i977), 87 - ¢2.

(11) P. Treleaven, G. Mole.
A Multi-Processor Reduction Machine for Use
Defined Reduction Languages. T. Report, Unl
Newcastle, Comp.Lab. (1980).

(12) J. Dennis, D. Misunas.
A Preliminary Architecture for a Basic Dat
Flow Processer. Proc. 2nd Ann.Symp. "Comput
Architecture", MIT (1975).

(13) B. Sullivan, T. Bashkov.
A Large Scale Homogeneous, Fully Distribut
Parallel - Machine I,II, Pree. Uth Ann,Sym
"Computer Architecture”, CACM-SIGARCH, 35
(1977), 105 - 117, 118 - 124,

(14) R. Albrecht
Konzept eines Mehr-Processor-Parallal-Reche
werks. T. Repert, Univ. Innsbruck, Inst.
Informatik (1980).

(15) K. Aspetsberger.
Algorithmentypen fir Multi-Mikroccmpute
Systeme. Diplomarbeit, Univ., Linz, Inst.
Mathematik (1980).

(16} B. Quatember.

: A Hardware-Realization of a Variabie-Topolo

Multi-Microprocessor-System, These procesdin

Acknowledgement: The project is supportsd by ¢

Austrian Research Fund (Project {r.3896). e al

gratefully acknowledge valuable discussions with
Dr, F. Lichtenberger.



t:E(x1+(x2+x3))
a:=(2,5,1)

resylt 8

bit
array

Y

Sensor j:‘“
2]

Crossbar
System

— \f
0
M :
: Figure 5
- r} <
I £ L
— ;JJ
| ! ! -
— :_.| >
1 S )
% Yo [ — >
) ‘H'."+' ‘ o-d
w 0, On ‘
Figure 6
Figure 2
r“[‘,.
123
123 : /
Ju
i '
123 123
12 3 |23 C/// \Eé&1
IR, Pa ol el [es] [e
1( i
123 123 .
Iy . - N 1
I“ L

Figure 3 | Figure 7



