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Abstract

Algebraic curves and surfaces play an important and ever increasing role in com-
puter aided geometric design, computer vision, and computer aided manufacturing.
Consequently, theoretical results need to be adapted to practical needs. We need
efficient algorithms for generating, representing, manipulating, analyzing, rendering
algebraic curves and surfaces. In the last years there has been dramatic progress in
all areas of algebraic computation. In particular, the application of computer alge-
bra to the design and analysis of algebraic curves and surfaces has been extremely
successful. In this lecture we report on some of these developments.

One interesting subproblem in algebraic geometric computation is the rational
parametrization of curves and surfaces. The tacnode curve defined by f(x,y) =
22 — 322y + y* — 293 + 9% in the real plane has the rational parametrization

t? — 6t* + 9t — 2 (t) = 2 — 4t +4
2 — 1663+ 4012 — 32t +9° IV T 2 Z 1663 + 4012 — 321 + 9

over Q. The criterion for parametrizability is the genus. Only curves of genus
0 have a rational parametrization, and only surfaces of arithmetic genus 0 and
second plurigenus 0 have a rational parametrization. Conversely, given a parametric
representation of a curve or surface, we might ask for the implicit algebraic equation
defining it.

Computing parametrizations essentially requires the full analysis of singularities
(either by successive blow-ups, or by Puiseux expansion) and the determination of
regular points on the curve or surface. We can control the quality of the resulting
parametrization by controlling the field over which we choose this regular point.
Thus, finding a regular curve point over a minimal field extension on a curve of
genus 0 is one of the central problems in rational parametrization of curves, compare
[SeWi97]|. Similarly, finding rational curves on surfaces leads to parametrizations,

x(t) =
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compare [LSWHO0O0|. The quality of parametrizations can be measured by the nec-
essary field extension and also by the number of times the variety is traced by the
parametrization. We will analyze the relation of the tracing index of a curve to
the degrees of the implicit equation and the degree of the parametrization, compare
[SeWi01].

1 Parametrization of Algebraic Curves

Algebraic curves and surfaces have been studied intensively in algebraic geometry
for decades and even centuries. Thus, there exists a huge amount of theoretical
knowledge about these geometric objects. Recently, algebraic curves and surfaces
play an important and ever increasing role in computer aided geometric design, com-
puter vision, and computer aided manufacturing. Consequently, theoretical results
need to be adapted to practical needs. We need efficient algorithms for generat-
ing, representing, manipulating, analyzing, rendering algebraic curves and surfaces.
Such efficient symbolic algorithms can be constructed based on method of computer
algebra as described, for instance, in [Wink96].

One interesting subproblem is the rational parametrization of curves and surfaces.

Definition 1.1. Let K be an algebraically closed field of characteristic 0. Con-
sider an affine plane algebraic curve C in A%(K) defined by the bivariate polynomial

f(z,y) € Kz, y], i.e.
C ={(a,b) | (a,b) € A*(K) and f(a,b) = 0}.

Of course, we could also view this curve in the projective plane P*(KK), defined by
F(z,y,z), the homogenization of f(z,y). We denote the field of rational function
over C by K(C).

A pair of rational functions P = (x(t),y(t)) € K(t) is a rational parametrization
of the curve C, if and only if f(x(t),y(t)) = 0 and for almost every point (g, yo) € C

(i.e. up to finitely many exceptions) there is a parameter value ¢, € K such that
(0, y0) = (x(to). y(to))-

Only irreducible curves, i.e. curves whose defining polynomials are absolutely
irreducible, can have a rational parametrization. Almost any rational transfor-
mation of a rational parametrization is again a rational parametrization, so such
parametrizations are not unique.

Implicit representations (by defining polynomial) and parametric representations
(by rational parametrization) both have their particular advantages and disadvan-
tages. Given an implicit representation of a curve and a point in the plane, it is
easy to check whether the point is on the curve. But it is hard to generate “good”
points on the curve, i.e. for instance points with rational coordinates if the defining
field is Q. On the other hand, generating good points is easy for a curve given
parametrically, but deciding whether a point is on the curve requires the solution of
a system of algebraic equations. So it is highly desirable to have efficient algorithms
for changing from implicit to parametric representation, and vice versa.



Example 1.1: Let us consider curves in the plane (affine or projective) over C. The
curve defined by f(x,y) = y* — 2® — 2% (see Fig. 1.1) is rationally parametrizable,
and actually a parametrization is (t* — 1,#(t*> — 1)).

On the other hand, the elliptic curve defined by f(z,y) = y*> — 2® + x (see Fig
1.2) does not have a rational parametrization.

The tacnode curve (see Fig. 1.3) defined by f(x,y) = 2z* — 322y + y* — 2¢° + ¢*
has the parametrization

t° — 6t + 9t — 2 (t) = 2 — 4t +4
2 — 168 + 402 — 320+ 9" N T 0l T 1615 + 402 — 32t + 9

The criterion for parametrizability of a curve is its genus. Only curves of genus
0, i.e. curves having as many singularities as their degree permits, have a rational
parametrization.

Also the cardioid curve (see Fig. 1.4) can be rationally parametrized over Q. O

x(t) =

108 04 0] 02040608 | 1214

Fig. 1.3 Fig. 1.4

In [SeWi91] Sendra and Winkler have developed a fully symbolic algorithm for
solving the parametrization problem of algebraic curves. Computing such a parame-
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trization essentially requires the full analysis of singularities (either by successive
blow-ups, or by Puiseux expansion) and the determination of a regular point on the
curve. We can control the quality of the resulting parametrization by controlling the
field over which we choose this regular point. Thus, finding a regular curve point
over a minimal field extension on a curve of genus 0 is one of the central problems
in rational parametrization, compare [SeWi97|, [SeWi99]. The determination of
rational points on algebraic curves can be an extremely complicated problem. But
for curves of genus 0 the situation can actually be controlled very well. For a curve
over Q or R we can determine whether the curve has a regular point over this field,
or otherwise find a quadratic field extension which admits such a regular point.

Example 1.2: Let C be the cardioid curve in the complex plane defined by
fla,y) = (2% + 4y +y*)° = 16(2” + y°) = 0.

For a picture of this curve in the real affine plane see Fig. 1.4.
The curve C has the following rational parametrization:

—1024i + 128t — 144it?> — 22t% + it?
2304 — 30724t — 73612 — 192it3 + 9’
1024 — 2563t — 80t% + 16it> + t*
2304 — 3072it — 7362 — 192it3 + 9t

x(t) = —32

y(t) = —40

As we see in Fig. 1.4, C has infinitely many real points. But generating any one
of these real points from the above parametrization is not obvious. Does this real
curve C also have a parametrization over R? Indeed it does, let’s see how we can
get one.

In the projective plane over C, C has three double points, namely (0:0: 1) and
(1:+i:0). Let H be the linear system of conics passing through all these double
points. The system A has dimension 2 and is defined by

h<xaya2757t) = 2 +S$Z—|—y2 +tyz =0,

i.e., for any particular values of s and t we get a conic in . Three elements of this
linear system define a birational transformation

T = (h(z,y,2,0,1): h(x,y,2,1,0) : h(z,y,2,1,1))
= @4+ 4yz: 2 Faz+ytiat oz 4yt 4+ y2)
which transforms C to the conic D defined by
152% 4+ 7y? + 62y — 38z — 14y + 23 = 0.

For a conic defined over Q we can decide whether it has a point over Q or R. In
particular, we determine the point (1,8/7) on D, which, by 7!, corresponds to the
regular point P = (0, —8) on C. Now, by restricting H to conics through P and
intersecting H with C (for details see [SeWi97]), we get the parametrization

—1024¢3 —2048t* 4 128¢?
x(t) = 1 . yt) = 1 -
25614 4+ 32t2 + 1 25614 4+ 32t2 + 1




over the reals. O

An alternative approach to the problem of parametrization of curves can be found
in [Hoeijo4].

Now that we have seen some examples of the parametrization problem treated
by symbolic algebraic computation, let us just briefly discuss the inverse problem,
namely the problem of implicitization. If we are given, for instance, a rational
parametrization in K (¢) of a plane curve, i.e.

w(t) =p(t)/r(t), y(t) =q(t)/r(t),

we essentially want to eliminate the parameter ¢ from these relations, and get a
relation just between z and y. We also want to make sure that we do not consider
components for which the denominator r(¢) vanishes. This leads to the system of
algebraic equations

vor(t)—p(t) = 0,
y-r(t)—qlt) = 0,
r(t)-z—1

The implicit equation of the curve must be the generator of the ideal

I=(z-r(t)=pt)y-rt)—q(t),r(t) z=1) N Klz,y.
Using the elimination property of Grobner bases, we can compute this generator by a
Grobner basis computation w.r.t. the lexicographic ordering based on x < y < z < t.
Example 1.3: Let us do this for the curve of Example 1.2. We start from the

parametrization

o —10244 (1) = —2048t" 4 1287
T oseti 3o+l N T st a3z 11

()

So we have to solve the equations

x - (25611 + 32¢% + 1) + 102443 0,
y - (256" + 32* + 1) + 2048" — 128¢> = 0,
(256t" + 32t +1) -2 —1 =

The Grobner basis of this system w.r.t. the lexicographic ordering based on = <
y<z<tis
G={.... ot 4yt 8oty 4+ 227y + 8y — 1627},

So we have found the implicit equation of the curve. O



2 Parametrization of Algebraic Surfaces

Many of these ideas which work for curves can actually be generalized to higher
dimensional geometric objects. For instance, one subproblem in computer aided
geometric design is the manipulation of offset curves, offset surfaces, pipe and canal
surfaces. These are geometric objects keeping certain distances from a generating
object. Let us just consider the case of a pipe surface in an example.

Example 2.1: We consider the space curve C in A*(R) given parametrically by
(z(t),y(t),2(t)) = (¢,t*,¢*). We want to construct a parametric representation of
the pipe surface S (at distance 1) along C, i.e. the locus of points having normal
distance 1 from C. This pipe surface S is the envelope of spheres of radius 1 moving
along C, i.e. every point on S lies on a circle in a hypersurface perpendicular to the
curve C. If we can find a parametric representation of a curve C on S, which meets
every one of these circles, then by a pencil of lines in the corresponding hypersurface
we can generate a rational representation for all the points on this circle, and thus
finally a rational parametrization of the pipe surface.

Such a curve can by determined by algebraic computation, giving for instance
the parametrization (¢(t), éo(t), é3(t)) with

3(36t4 —13t2—4+/5t—5)12
- o 1! 13 4
c1(t) (14+422) (2122 +2\/51+5+271%)
G(t) | = 2- 3(6013 + 141 —/54+41/512)12
=~ (1442) (212 4-21/514+-542714)
C3<t) t3 + 21t2+2\/gt+5
2142 4+2v/51+5+2714

From this parametric representation of C we can compute a parametric representa-
tion of the pipe surface. O

For a geometric approach to parametrization of pipe and canal surfaces see
[PeP097], an algebraic approach can be found in [LSWHO00].

In [PeSe01] Pérez-Diaz and Sendra have developed symbolic algorithms for the
computation of parametric blending surfaces. There are various special kinds of
surfaces such as pipe and canal surfaces or blending surfaces, which are of partic-
ular importance in computer aided geometric design. Special techniques for these
important types of surfaces are available.

But there is also the general problem of rational parametrization of surfaces,
i.e. of deciding whether an algebraic surface S can be rationally parametrized and
if so computing a parametrization. This problem is more or less solved, we refer
to the excellent description by Schicho in [Schi98]. The theorem by Enriques and
Manin states that a rational surface either contains a pencil of rational curves or
is equivalent to a Del Pezzo surface. In the first case, a rational parametrization
over C or R can be computed from the pencil of rational curves. In the second case,
parametrization algorithms are known over the ground field C, but the problem
is still open over R or Q. By the method of adjoints the theorem of Enriques and
Manin can be turned into a constructive algorithm. This requires a full resolution of
the singularities of the surface §. The existence of resolution has been demonstrated



by Walker and Zariski for surfaces, and by Hironaka for general hypersurfaces. But
Hironaka’s proof is inconstructive. A first constructive proof has been given by
Villamayor in [Villa89]. Schicho has turned this into a recursive algorithm and
implemented it in the computer algebra system Maple, see [BoSc00].

Example 2.2. (From [Schi98]) The algebraic surface S defined by
fxy,2) =2+ 2 + (zy +22)* =0

can be parametrized as

P(s,t) =

— (=, P s+t —st?).
5+ s
On the other hand, if we start from the parametrization P and compute the Grobner
basis for

{2 (8" +58)+ 2 y-(s"+s)—t>—s't—t, 2-(s"+5)+st, (5°+5) - w—1}
w.r.t. the lexicographic ordering based on r < y < z < w < s < t, we get
{in. , ot 2t (g + 22T

So we have found the implicit equation of the surface S.

3 Tracing Index of Curve Parametrizations

Plane algebraic curves can be uniquely represented, up to multiplication by con-
stants, by their defining implicit equations. However, rational curves, i.e. algebraic
curves parametrizable by means of rational functions, may be expressed by infinitely
many different such parametrizations. One may introduce different criteria of opti-
mality in order to choose the best parametric representation. For instance, if one is
interested in the coefficients of the rational functions, one may analyze the small-
est possible field where the curve can be parametrized (see [AnRS97], [AnRS99],
[Hoeijo7], [Schi92], [SeWi97]). Another possibility is to optimize the degree of the
rational functions involved in the parametrization. This leads to the notion of proper
parametrization. Intuitively speaking, proper parametrizations are parametrizations
tracing the curve once when giving values to the parameter in the algebraic closure of
the field containing the coefficients of the parametrization. More rigorously speaking
proper parametrizations correspond to bijective mappings from the field of param-
eter values onto the curve.

Most parametrization algorithms, e.g. [AbBa88|, [Hoeij94], [SeWi91], provide
proper parametrizations. Furthermore, improperness can be detected algorithmi-
cally, and the given parametrization can be reparametrized into a proper one [Sede86].
Proper parametrizations play an important role in many practical applications in
computer aided geometric design, such as in visualization or rational parametriza-
tion of offsets.



For a parametrization P(t) of a curve C over K we write its components as
z1(t) v (t>>
Pt) = (z(t), y(t)) = ( , .
()= i) t) = (2 2
We will assume in the sequel that rational parametrizations are given in reduced

form, that is ged(xq(t), xo(t)) = ged(yi(t), y2(t)) = 1. Furthermore, for a given
parametrization P(t) we consider the polynomials

Gi(s,t) = zi(s)a2(t) — za(s)za(t),  Gals,t) = yi(s)y2(t) — y2(s)yi (1),
and G(s,t) = ged(Gq, Gy), as well as the polynomials
Hy(t, x) = zxy(t) — 21(t),  Halt,y) = yya(t) — yi(t).

We start by recalling some basic results on proper parametrizations. A parametriza-
tion P(t) of the curve C is proper if and only if the map

P: K — C
t — P(t)

is birational, or equivalently, if for almost every point on C and for almost all values
of the parameter in K the mapping P is rationally bijective.

The notion of properness can also be stated algebraically in terms of fields of
rational functions. In fact, a rational parametrization P(t) is proper if and only if
the induced monomorphism ¢p on the fields of rational functions

pr: K(C) — K(7)
R(x,y) — R(P(t)).

is an isomorphism. Therefore, P(t) is proper if and only if the mapping pp is
surjective, that is, if and only if ¢p(K(C)) = K(P(t)) = K(t). Thus, Liiroth’s
Theorem implies that any rational curve over K can be properly parametrized.

An important fact on proper parametrizations is that any other rational parame-
trization of the same curve can be obtained from a proper one by a rational change
of parameter.

Theorem 3.1 Let P(t) be a proper parametrization of a plane curve C, and let Q(t)
be any other rational parametrization of C. Then

(1) there exists a non—constant rational function R(t) € K(t) such that Q(t) =
P(R(1));

(2) Q(t) is proper if and only if there exists a linear rational function L(t) € K(t)
such that Q(t) = P(L(t)).

In [SeWi01la] we have investigated computational problems for such rational maps
between algebraic curves. In [SeWi01b] we have introduced the notion of the tracing
index of a rational parametrization. Here we summarize the essential facts.

Theorem 3.2. Let P(t) = (x(t),y(t)) be a parametrization with non-constant
components in reduced form. Then



(1) for a € K such that xo(a)ys(a) # 0, and such that Gy(a,t), Ga(a,t) do not
have multiple roots,
Card(P~Y(P(a))) = deg,(gcd(Gy(a, t), Ga(a, t)));

(2) for all but finitely many values o of s we have
deg;(G(s.1)) = deg(ged(Gr (e, t). Ga(a, 1)));

(3) all but finitely many points in C are generated, via P(t), by exactly m param-
eter values, where m = deg,(G(s,1)).

With these preparations we can now introduce the notion of tracing index of a
parametrization.

Definition 3.1. Let C be a rational affine plane curve, and let P(¢) be a rational
parametrization of C. Then, we say that & € N is the tracing index of P(t), and
we denote it by index(P(t)), if all but finitely many points on C are generated, via
P(t), by k parameter values; i.e. index(P(t)) represents the number of times that
P(t) traces C.

Note that by Theorem 3.2(3) index(P(t)) = deg,(G(s,t)). Also, the tracing index
can be computed by Theorem 3.2(1).

If we consider the map P : K — C induced by the parametrization P(¢), then
the tracing index of the parametrization P(t) is the degree of the rational map P.
Therefore, index(P(t)) is the degree of the finite field extension ¢p(K(C)) C K(¢),
where pp is the monomorphism induced by P on the fields of rational functions; i.e.
index(P(t)) = [K(t) : p»(K(C))].

Since properness of a parametrization P is defined by requiring P to be a bira-
tionality, properness is characterized by a tracing index 1.
Theorem 3.3. A rational parametrization is proper if and only if its tracing index
is 1; i.e. if and only if deg,(G(s,t)) = 1.
Example 3.1. Let P(¢) be the rational parametrization

(t2—1)t (12 —1) ¢ >

t) =
) <t4—t2+1’t6—3t4+3t2—1—2t3

In this case we have

Gi(s,t) = =312+ % —st' + st — s — 135" + 52> — 13 + st — ts* + t
Ga(s,t) = '8 —s" —283s" — %10 + 52 + 2573 — 1150 + 1 + 253" + 1250
—12 — 2532,

and their ged is G(s,t) =t — s+ st? — s*t. Thus, index(P(t)) = 2, and therefore the
parametrization is not proper.

Let P(t) = (i;gg, 328) be a rational parametrization. Then we define the degree

of P(t), denoted by deg(P(t)), as

o= o 21 o (50
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Note that deg(P(t)), the degree of P(t), is in general different from index(P(t)),
the degree of the rational mapping P induced by P(t) (see remark after Def. 3.1).
For instance, any proper rational parametrization of a circle has degree 2 but its
index is 1 because it is proper. In order to avoid possible ambiguities, we will use
the notation deg(P(t)) for the degree w.r.t. the parameter, and index(P(¢)) for the
degree of the rational map.

The degree of a plane curve is defined as the total degree of its implicit equation.
Note that the degree of a rational parametrization of a curve C does not always
agree with the degree of C. For instance, the parametrization (t, %) has degree 1
but it defines the hyperbola yx = 1, whose degree is 2.

In [SeWi01b] the following theorem is proved.

Theorem 3.4. Let C be a rational affine curve defined over K by the polynomial

f(x,y) € Klz,y], let P(t) = @;8’ Z;Eg) be a rational parametrization of C, and let

n = max{deg,(f),deg,(f)}. Then

(1) P(t) is proper if and only if deg(P(t)) = n. Furthermore, if P(t) is proper,
then deg(3t) = deg, (f), and deg(’L) = deg,(f);

(2) index(P(t)) = de&PO).

n

(3) Resy(H,(t,x), Hy(t,y)) = c- (f(x,y))P) for some non-zero constant c.

Example 3.2. We consider the rational quintic C defined by the polynomial
flx,y) = y° + 2%y® — 32%y* + 32y — 2%, Theorem 3.4(1) ensures that any ra-
tional proper parametrization of C must have a first component of degree 5, and a
second component of degree 2. It is easy to check that

9 2
H={(o—,——
) <t2+1’t2+1>
properly parametrizes C. Note that f(P(¢)) = 0, and that index(P(t)) = 1.
On the other hand, we consider the parametrization

mt):( 0+’ (" +1) )

20 4 2410 427 ¢20 4 2410 4 2

of the quintic C. This new parametrization C' of C is obtained by reparametrizing
the proper parametrization P with the rational function t1°+1, i.e. P’ = P(t19+1).
Thus, the index of the parametrization should be 10. In fact, G(s,t) = t' — s'0.
On the other hand, computing the resultant w.r.t. ¢ of the polynomials H; and H,
one gets

Resy(H(t,x), Hao(t.y)) = (v° +2°y° — 32%y* + 327y — m2)10 :
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Conclusion

In this paper we have considered the problem of rational parametrization of al-
gebraic curves and surfaces over an algebraically closed field of characteristic 0, and
also the inverse problem of implicitizing a rational parametrization. We have seen
that in the last decade many efficient algorithms have been developed for treating
these problems in a symbolic algebraic way. Such rational parametrizations are
of importance in computer aided geometric design, e.g. for determining surface-
to-surface intersections or offsets and blendings, but also for solving diophantine
problems and determining rational points on curves and surfaces, see [PoVo00]. For
fields of positive characteristic the situation is much less satisfactory, and efficient
algorithms need to be developed.
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