
Advanes in Algebrai Geometri ComputationFranz Winkler �RISC-Linz, J. Kepler University Linz, A-4040 AustriaFranz.Winkler�ris.uni-linz.a.atKeywords: omputer algebra, algebrai urves and surfaes, omputer aided geo-metri designMathematis Subjet Classi�ation: 14H25, 14J20, 14J26, 68Q40AbstratAlgebrai urves and surfaes play an important and ever inreasing role in om-puter aided geometri design, omputer vision, and omputer aided manufaturing.Consequently, theoretial results need to be adapted to pratial needs. We needeÆient algorithms for generating, representing, manipulating, analyzing, renderingalgebrai urves and surfaes. In the last years there has been dramati progress inall areas of algebrai omputation. In partiular, the appliation of omputer alge-bra to the design and analysis of algebrai urves and surfaes has been extremelysuessful. In this leture we report on some of these developments.One interesting subproblem in algebrai geometri omputation is the rationalparametrization of urves and surfaes. The tanode urve de�ned by f(x; y) =2x4 � 3x2y + y4 � 2y3 + y2 in the real plane has the rational parametrizationx(t) = t3 � 6t2 + 9t� 22t4 � 16t3 + 40t2 � 32t+ 9 ; y(t) = t2 � 4t+ 42t4 � 16t3 + 40t2 � 32t+ 9over Q . The riterion for parametrizability is the genus. Only urves of genus0 have a rational parametrization, and only surfaes of arithmeti genus 0 andseond plurigenus 0 have a rational parametrization. Conversely, given a parametrirepresentation of a urve or surfae, we might ask for the impliit algebrai equationde�ning it.Computing parametrizations essentially requires the full analysis of singularities(either by suessive blow-ups, or by Puiseux expansion) and the determination ofregular points on the urve or surfae. We an ontrol the quality of the resultingparametrization by ontrolling the �eld over whih we hoose this regular point.Thus, �nding a regular urve point over a minimal �eld extension on a urve ofgenus 0 is one of the entral problems in rational parametrization of urves, ompare[SeWi97℄. Similarly, �nding rational urves on surfaes leads to parametrizations,�The author wants to aknowledge support from the Austrian Fonds zur F�orderung der wis-senshaftlihen Forshung (FWF) under projet SFB F013/1304.1



ompare [LSWH00℄. The quality of parametrizations an be measured by the ne-essary �eld extension and also by the number of times the variety is traed by theparametrization. We will analyze the relation of the traing index of a urve tothe degrees of the impliit equation and the degree of the parametrization, ompare[SeWi01℄.1 Parametrization of Algebrai CurvesAlgebrai urves and surfaes have been studied intensively in algebrai geometryfor deades and even enturies. Thus, there exists a huge amount of theoretialknowledge about these geometri objets. Reently, algebrai urves and surfaesplay an important and ever inreasing role in omputer aided geometri design, om-puter vision, and omputer aided manufaturing. Consequently, theoretial resultsneed to be adapted to pratial needs. We need eÆient algorithms for generat-ing, representing, manipulating, analyzing, rendering algebrai urves and surfaes.Suh eÆient symboli algorithms an be onstruted based on method of omputeralgebra as desribed, for instane, in [Wink96℄.One interesting subproblem is the rational parametrization of urves and surfaes.De�nition 1.1. Let K be an algebraially losed �eld of harateristi 0. Con-sider an aÆne plane algebrai urve C in A 2(K ) de�ned by the bivariate polynomialf(x; y) 2 K [x; y℄, i.e.C = f(a; b) j (a; b) 2 A 2(K ) and f(a; b) = 0g:Of ourse, we ould also view this urve in the projetive plane P2(K ), de�ned byF (x; y; z), the homogenization of f(x; y). We denote the �eld of rational funtionover C by K (C).A pair of rational funtions P = (x(t); y(t)) 2 K (t) is a rational parametrizationof the urve C, if and only if f(x(t); y(t)) = 0 and for almost every point (x0; y0) 2 C(i.e. up to �nitely many exeptions) there is a parameter value t0 2 K suh that(x0; y0) = (x(t0); y(t0)).Only irreduible urves, i.e. urves whose de�ning polynomials are absolutelyirreduible, an have a rational parametrization. Almost any rational transfor-mation of a rational parametrization is again a rational parametrization, so suhparametrizations are not unique.Impliit representations (by de�ning polynomial) and parametri representations(by rational parametrization) both have their partiular advantages and disadvan-tages. Given an impliit representation of a urve and a point in the plane, it iseasy to hek whether the point is on the urve. But it is hard to generate \good"points on the urve, i.e. for instane points with rational oordinates if the de�ning�eld is Q . On the other hand, generating good points is easy for a urve givenparametrially, but deiding whether a point is on the urve requires the solution ofa system of algebrai equations. So it is highly desirable to have eÆient algorithmsfor hanging from impliit to parametri representation, and vie versa.2



Example 1.1: Let us onsider urves in the plane (aÆne or projetive) over C . Theurve de�ned by f(x; y) = y2 � x3 � x2 (see Fig. 1.1) is rationally parametrizable,and atually a parametrization is (t2 � 1; t(t2 � 1)).On the other hand, the ellipti urve de�ned by f(x; y) = y2 � x3 + x (see Fig1.2) does not have a rational parametrization.The tanode urve (see Fig. 1.3) de�ned by f(x; y) = 2x4 � 3x2y + y4� 2y3+ y2has the parametrizationx(t) = t3 � 6t2 + 9t� 22t4 � 16t3 + 40t2 � 32t+ 9 ; y(t) = t2 � 4t + 42t4 � 16t3 + 40t2 � 32t+ 9 :The riterion for parametrizability of a urve is its genus. Only urves of genus0, i.e. urves having as many singularities as their degree permits, have a rationalparametrization.Also the ardioid urve (see Fig. 1.4) an be rationally parametrized over Q. 2

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5x

Fig. 1.1 –1

–0.5

0

0.5

1

y

–1–0.8 –0.4 0.2 0.4 0.6 0.8 1 1.2 1.4x

Fig. 1.2

–0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

y

–1 1xFig. 1.3 –8

–6

–4

–2

0

y

x

Fig. 1.4In [SeWi91℄ Sendra and Winkler have developed a fully symboli algorithm forsolving the parametrization problem of algebrai urves. Computing suh a parame-3



trization essentially requires the full analysis of singularities (either by suessiveblow-ups, or by Puiseux expansion) and the determination of a regular point on theurve. We an ontrol the quality of the resulting parametrization by ontrolling the�eld over whih we hoose this regular point. Thus, �nding a regular urve pointover a minimal �eld extension on a urve of genus 0 is one of the entral problemsin rational parametrization, ompare [SeWi97℄, [SeWi99℄. The determination ofrational points on algebrai urves an be an extremely ompliated problem. Butfor urves of genus 0 the situation an atually be ontrolled very well. For a urveover Q or R we an determine whether the urve has a regular point over this �eld,or otherwise �nd a quadrati �eld extension whih admits suh a regular point.Example 1.2: Let C be the ardioid urve in the omplex plane de�ned byf(x; y) = (x2 + 4y + y2)2 � 16(x2 + y2) = 0:For a piture of this urve in the real aÆne plane see Fig. 1.4.The urve C has the following rational parametrization:x(t) = �32 � �1024i+ 128t� 144it2 � 22t3 + it42304� 3072it� 736t2 � 192it3 + 9t4 ;y(t) = �40 � 1024� 256it� 80t2 + 16it3 + t42304� 3072it� 736t2 � 192it3 + 9t4 :As we see in Fig. 1.4, C has in�nitely many real points. But generating any oneof these real points from the above parametrization is not obvious. Does this realurve C also have a parametrization over R? Indeed it does, let's see how we anget one.In the projetive plane over C , C has three double points, namely (0 : 0 : 1) and(1 : �i : 0). Let ~H be the linear system of onis passing through all these doublepoints. The system ~H has dimension 2 and is de�ned byh(x; y; z; s; t) = x2 + sxz + y2 + tyz = 0;i.e., for any partiular values of s and t we get a oni in ~H. Three elements of thislinear system de�ne a birational transformationT = (h(x; y; z; 0; 1) : h(x; y; z; 1; 0) : h(x; y; z; 1; 1))= (x2 + y2 + yz : x2 + xz + y2 : x2 + xz + y2 + yz)whih transforms C to the oni D de�ned by15x2 + 7y2 + 6xy � 38x� 14y + 23 = 0:For a oni de�ned over Q we an deide whether it has a point over Q or R. Inpartiular, we determine the point (1; 8=7) on D, whih, by T �1, orresponds to theregular point P = (0;�8) on C. Now, by restriting ~H to onis through P andinterseting ~H with C (for details see [SeWi97℄), we get the parametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :4



over the reals. 2An alternative approah to the problem of parametrization of urves an be foundin [Hoeij94℄.Now that we have seen some examples of the parametrization problem treatedby symboli algebrai omputation, let us just briey disuss the inverse problem,namely the problem of impliitization. If we are given, for instane, a rationalparametrization in K(t) of a plane urve, i.e.x(t) = p(t)=r(t); y(t) = q(t)=r(t);we essentially want to eliminate the parameter t from these relations, and get arelation just between x and y. We also want to make sure that we do not onsideromponents for whih the denominator r(t) vanishes. This leads to the system ofalgebrai equations x � r(t)� p(t) = 0;y � r(t)� q(t) = 0;r(t) � z � 1 = 0:The impliit equation of the urve must be the generator of the idealI = hx � r(t)� p(t); y � r(t)� q(t); r(t) � z � 1i \ K[x; y℄:Using the elimination property of Gr�obner bases, we an ompute this generator by aGr�obner basis omputation w.r.t. the lexiographi ordering based on x < y < z < t.Example 1.3: Let us do this for the urve of Example 1.2. We start from theparametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :So we have to solve the equationsx � (256t4 + 32t2 + 1) + 1024t3 = 0;y � (256t4 + 32t2 + 1) + 2048t4 � 128t2 = 0;(256t4 + 32t2 + 1) � z � 1 = 0:The Gr�obner basis of this system w.r.t. the lexiographi ordering based on x <y < z < t is G = f::::::::; x4 + y4 + 8x2y + 2x2y2 + 8y3 � 16x2g:So we have found the impliit equation of the urve. 2
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2 Parametrization of Algebrai SurfaesMany of these ideas whih work for urves an atually be generalized to higherdimensional geometri objets. For instane, one subproblem in omputer aidedgeometri design is the manipulation of o�set urves, o�set surfaes, pipe and analsurfaes. These are geometri objets keeping ertain distanes from a generatingobjet. Let us just onsider the ase of a pipe surfae in an example.Example 2.1: We onsider the spae urve C in A 2(R) given parametrially by(x(t); y(t); z(t)) = (t; t2; t3). We want to onstrut a parametri representation ofthe pipe surfae S (at distane 1) along C, i.e. the lous of points having normaldistane 1 from C. This pipe surfae S is the envelope of spheres of radius 1 movingalong C, i.e. every point on S lies on a irle in a hypersurfae perpendiular to theurve C. If we an �nd a parametri representation of a urve ~C on S, whih meetsevery one of these irles, then by a penil of lines in the orresponding hypersurfaewe an generate a rational representation for all the points on this irle, and thus�nally a rational parametrization of the pipe surfae.Suh a urve an by determined by algebrai omputation, giving for instanethe parametrization (~1(t); ~2(t); ~3(t)) with0� ~1(t)~2(t)~3(t) 1A = 0BB� t+ 3(36t4�13t2�4p5t�5)t2(1+4t2)(21t2+2p5t+5+27t4)t2 � 3(60t3+14t�p5+4p5t2)t2(1+4t2)(21t2+2p5t+5+27t4)t3 + 21t2+2p5t+521t2+2p5t+5+27t4 1CCA :From this parametri representation of ~C we an ompute a parametri representa-tion of the pipe surfae. 2For a geometri approah to parametrization of pipe and anal surfaes see[PePo97℄, an algebrai approah an be found in [LSWH00℄.In [PeSe01℄ P�erez-D��az and Sendra have developed symboli algorithms for theomputation of parametri blending surfaes. There are various speial kinds ofsurfaes suh as pipe and anal surfaes or blending surfaes, whih are of parti-ular importane in omputer aided geometri design. Speial tehniques for theseimportant types of surfaes are available.But there is also the general problem of rational parametrization of surfaes,i.e. of deiding whether an algebrai surfae S an be rationally parametrized andif so omputing a parametrization. This problem is more or less solved, we referto the exellent desription by Shiho in [Shi98℄. The theorem by Enriques andManin states that a rational surfae either ontains a penil of rational urves oris equivalent to a Del Pezzo surfae. In the �rst ase, a rational parametrizationover C or R an be omputed from the penil of rational urves. In the seond ase,parametrization algorithms are known over the ground �eld C , but the problemis still open over R or Q . By the method of adjoints the theorem of Enriques andManin an be turned into a onstrutive algorithm. This requires a full resolution ofthe singularities of the surfae S. The existene of resolution has been demonstrated6



by Walker and Zariski for surfaes, and by Hironaka for general hypersurfaes. ButHironaka's proof is inonstrutive. A �rst onstrutive proof has been given byVillamayor in [Villa89℄. Shiho has turned this into a reursive algorithm andimplemented it in the omputer algebra system Maple, see [BoS00℄.Example 2.2. (From [Shi98℄) The algebrai surfae S de�ned byf(x; y; z) = x4 + z4 + (xy + z2)3 = 0an be parametrized asP(s; t) = 1s5 + s � ��s2t3; t3 + s4t + t; �st3� :On the other hand, if we start from the parametrization P and ompute the Gr�obnerbasis forfx � (s5 + s) + s2t3; y � (s5 + s)� t3 � s4t� t; z � (s5 + s) + st3; (s5 + s) �w � 1gw.r.t. the lexiographi ordering based on x < y < z < w < s < t, we getf:::::::; x4 + z4 + (xy + z2)3g:So we have found the impliit equation of the surfae S.3 Traing Index of Curve ParametrizationsPlane algebrai urves an be uniquely represented, up to multipliation by on-stants, by their de�ning impliit equations. However, rational urves, i.e. algebraiurves parametrizable by means of rational funtions, may be expressed by in�nitelymany di�erent suh parametrizations. One may introdue di�erent riteria of opti-mality in order to hoose the best parametri representation. For instane, if one isinterested in the oeÆients of the rational funtions, one may analyze the small-est possible �eld where the urve an be parametrized (see [AnRS97℄, [AnRS99℄,[Hoeij97℄, [Shi92℄, [SeWi97℄). Another possibility is to optimize the degree of therational funtions involved in the parametrization. This leads to the notion of properparametrization. Intuitively speaking, proper parametrizations are parametrizationstraing the urve one when giving values to the parameter in the algebrai losure ofthe �eld ontaining the oeÆients of the parametrization. More rigorously speakingproper parametrizations orrespond to bijetive mappings from the �eld of param-eter values onto the urve.Most parametrization algorithms, e.g. [AbBa88℄, [Hoeij94℄, [SeWi91℄, provideproper parametrizations. Furthermore, improperness an be deteted algorithmi-ally, and the given parametrization an be reparametrized into a proper one [Sede86℄.Proper parametrizations play an important role in many pratial appliations inomputer aided geometri design, suh as in visualization or rational parametriza-tion of o�sets. 7



For a parametrization P(t) of a urve C over K we write its omponents asP(t) = (x(t); y(t)) = �x1(t)x2(t) ; y1(t)y2(t)� :We will assume in the sequel that rational parametrizations are given in reduedform, that is gd(x1(t); x2(t)) = gd(y1(t); y2(t)) = 1. Furthermore, for a givenparametrization P(t) we onsider the polynomialsG1(s; t) = x1(s)x2(t)� x2(s)x1(t); G2(s; t) = y1(s)y2(t)� y2(s)y1(t);and G(s; t) = gd(G1; G2); as well as the polynomialsH1(t; x) = xx2(t)� x1(t); H2(t; y) = yy2(t)� y1(t):We start by realling some basi results on proper parametrizations. A parametriza-tion P(t) of the urve C is proper if and only if the mapP : K �! Ct 7�! P(t)is birational, or equivalently, if for almost every point on C and for almost all valuesof the parameter in K the mapping P is rationally bijetive.The notion of properness an also be stated algebraially in terms of �elds ofrational funtions. In fat, a rational parametrization P(t) is proper if and only ifthe indued monomorphism 'P on the �elds of rational funtions'P : K (C) �! K (t)R(x; y) 7�! R(P(t)):is an isomorphism. Therefore, P(t) is proper if and only if the mapping 'P issurjetive, that is, if and only if 'P(K (C)) = K (P(t)) = K (t). Thus, L�uroth'sTheorem implies that any rational urve over K an be properly parametrized.An important fat on proper parametrizations is that any other rational parame-trization of the same urve an be obtained from a proper one by a rational hangeof parameter.Theorem 3.1 Let P(t) be a proper parametrization of a plane urve C, and let Q(t)be any other rational parametrization of C. Then(1) there exists a non{onstant rational funtion R(t) 2 K (t) suh that Q(t) =P(R(t));(2) Q(t) is proper if and only if there exists a linear rational funtion L(t) 2 K (t)suh that Q(t) = P(L(t)).In [SeWi01a℄ we have investigated omputational problems for suh rational mapsbetween algebrai urves. In [SeWi01b℄ we have introdued the notion of the traingindex of a rational parametrization. Here we summarize the essential fats.Theorem 3.2. Let P(t) = (x(t); y(t)) be a parametrization with non-onstantomponents in redued form. Then 8



(1) for � 2 K suh that x2(�)y2(�) 6= 0, and suh that G1(�; t), G2(�; t) do nothave multiple roots,Card(P�1(P(�))) = degt(gd(G1(�; t); G2(�; t)));(2) for all but �nitely many values � of s we havedegt(G(s; t)) = degt(gd(G1(�; t); G2(�; t)));(3) all but �nitely many points in C are generated, via P(t), by exatly m param-eter values, where m = degt(G(s; t)).With these preparations we an now introdue the notion of traing index of aparametrization.De�nition 3.1. Let C be a rational aÆne plane urve, and let P(t) be a rationalparametrization of C. Then, we say that k 2 N is the traing index of P(t), andwe denote it by index(P(t)), if all but �nitely many points on C are generated, viaP(t), by k parameter values; i.e. index(P(t)) represents the number of times thatP(t) traes C.Note that by Theorem 3.2(3) index(P(t)) = degt(G(s; t)). Also, the traing indexan be omputed by Theorem 3.2(1).If we onsider the map P : K ! C indued by the parametrization P(t), thenthe traing index of the parametrization P(t) is the degree of the rational map P.Therefore, index(P(t)) is the degree of the �nite �eld extension 'P(K (C)) � K (t),where 'P is the monomorphism indued by P on the �elds of rational funtions; i.e.index(P(t)) = [K (t) : 'P(K (C))℄.Sine properness of a parametrization P is de�ned by requiring P to be a bira-tionality, properness is haraterized by a traing index 1.Theorem 3.3. A rational parametrization is proper if and only if its traing indexis 1; i.e. if and only if degt(G(s; t)) = 1.Example 3.1. Let P(t) be the rational parametrizationP(t) = � (t2 � 1) tt4 � t2 + 1 ; (t2 � 1) t2t6 � 3 t4 + 3 t2 � 1� 2 t3� :In this ase we haveG1(s; t) = s3t4 � s3t2 + s3 � st4 + st2 � s� t3s4 + s2t3 � t3 + ts4 � ts2 + tG2(s; t) = s4t6 � s4 � 2 t3s4 � s2t6 + s2 + 2 s2t3 � t4s6 + t4 + 2 s3t4 + t2s6�t2 � 2 s3t2;and their gd is G(s; t) = t� s+ st2� s2t. Thus, index(P(t)) = 2, and therefore theparametrization is not proper.Let P(t) = �x1(t)x2(t) ; y1(t)y2(t)� be a rational parametrization. Then we de�ne the degreeof P(t), denoted by deg(P(t)), asdeg(P(t)) = max�degt�x1(t)x2(t)� ; degt�y1(t)y2(t)�� :9



Note that deg(P(t)), the degree of P(t), is in general di�erent from index(P(t)),the degree of the rational mapping P indued by P(t) (see remark after Def. 3.1).For instane, any proper rational parametrization of a irle has degree 2 but itsindex is 1 beause it is proper. In order to avoid possible ambiguities, we will usethe notation deg(P(t)) for the degree w.r.t. the parameter, and index(P(t)) for thedegree of the rational map.The degree of a plane urve is de�ned as the total degree of its impliit equation.Note that the degree of a rational parametrization of a urve C does not alwaysagree with the degree of C. For instane, the parametrization �t; 1t � has degree 1but it de�nes the hyperbola yx = 1, whose degree is 2.In [SeWi01b℄ the following theorem is proved.Theorem 3.4. Let C be a rational aÆne urve de�ned over K by the polynomialf(x; y) 2 K [x; y℄, let P(t) = (x1(t)x2(t) ; y1(t)y2(t)) be a rational parametrization of C, and letn = maxfdegx(f); degy(f)g. Then(1) P(t) is proper if and only if deg(P(t)) = n. Furthermore, if P(t) is proper,then deg(x1x2 ) = degy(f), and deg(y1y2 ) = degx(f);(2) index(P(t)) = deg(P(t))n ;(3) Rest(H1(t; x); H2(t; y)) =  � (f(x; y))index(P), for some non-zero onstant .Example 3.2. We onsider the rational quinti C de�ned by the polynomialf(x; y) = y5 + x2y3 � 3 x2y2 + 3 x2y � x2. Theorem 3.4(1) ensures that any ra-tional proper parametrization of C must have a �rst omponent of degree 5, and aseond omponent of degree 2. It is easy to hek thatP(t) = � t5t2 + 1 ; t2t2 + 1�properly parametrizes C. Note that f(P(t)) = 0, and that index(P(t)) = 1.On the other hand, we onsider the parametrizationP 0(t) =  (t10 + 1)5t20 + 2 t10 + 2 ; (t10 + 1)2t20 + 2 t10 + 2!of the quinti C. This new parametrization C 0 of C is obtained by reparametrizingthe proper parametrization P with the rational funtion t10+1, i.e. P 0 = P(t10+1).Thus, the index of the parametrization should be 10. In fat, G(s; t) = t10 � s10.On the other hand, omputing the resultant w.r.t. t of the polynomials H1 and H2one gets Rest(H1(t; x); H2(t; y)) = �y5 + x2y3 � 3 x2y2 + 3 x2y � x2�10 :
10



ConlusionIn this paper we have onsidered the problem of rational parametrization of al-gebrai urves and surfaes over an algebraially losed �eld of harateristi 0, andalso the inverse problem of impliitizing a rational parametrization. We have seenthat in the last deade many eÆient algorithms have been developed for treatingthese problems in a symboli algebrai way. Suh rational parametrizations areof importane in omputer aided geometri design, e.g. for determining surfae-to-surfae intersetions or o�sets and blendings, but also for solving diophantineproblems and determining rational points on urves and surfaes, see [PoVo00℄. For�elds of positive harateristi the situation is muh less satisfatory, and eÆientalgorithms need to be developed.Referenes[AbBa88℄ S.S. Abhyankar, C.L. Bajaj, \Automati Parametrization of RationalCurves and Surfaes III: Algebrai Plane Curves", Computer Aided Ge-ometri Design 5, 309-321 (1988).[AnRS97℄ C. Andradas, T. Reio, J.R. Sendra, \A Relatively OptimalReparametrization Algorithm", in Pro. ISSAC'97, W.W. K�uhlin (ed.),349-356, ACM Press (1997).[AnRS99℄ C. Andradas, T. Reio, J.R. Sendra, \Base Field Restrition Tehniquesfor Parametri Curves", in Pro. ISSAC'99, S. Dooley (ed.), 17-22, ACMPress (1999).[BoS00℄ G. Bodn�ar, J. Shiho, \A Computer Program for the Resolution ofSingularities", Progress in Math. 181, 231{238 (2000).[Hoeij94℄ M. van Hoeij, \Computing Parametrizations of Rational AlgebraiCurves", in Pro. ISSAC'94, J. von zur Gathen and M. Giesbreht (eds.),ACM Press, 187{190 (1994).[Hoeij97℄ M. van Hoeij M., \Rational Parametrizations of Curves Using CanonialDivisors", J. of Symboli Computation 23, 209-227 (1997).[LSWH00℄ G. Landsmann, J. Shiho, F. Winkler, E. Hillgarter, \SymboliParametrization of Pipe and Canal Surfaes", Pro. ISSAC'00, 202{208,C. Traverso (ed.), ACM Press (2000).[LaSW01℄ G. Landsmann, J. Shiho, F. Winkler, \The Parametrization of CanalSurfaes and the Deomposition of Polynomials into a Sum of TwoSquares", J. Symboli Computation 32/1&2, 119{132 (2001).[PeSe01℄ S. P�erez-D��az, R. Sendra, \Parametri G1{Blending of Several Surfaes",Computer Algebra in Sienti� Computing { CASC'2001, V.G. Ganzha,E.W. Mayr, E.V. Vorozhtsov (eds.), 445{459, Springer-Verlag (2001).11
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