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urves and surfa
es play an important and ever in
reasing role in 
om-puter aided geometri
 design, 
omputer vision, and 
omputer aided manufa
turing.Consequently, theoreti
al results need to be adapted to pra
ti
al needs. We needeÆ
ient algorithms for generating, representing, manipulating, analyzing, renderingalgebrai
 
urves and surfa
es. In the last years there has been dramati
 progress inall areas of algebrai
 
omputation. In parti
ular, the appli
ation of 
omputer alge-bra to the design and analysis of algebrai
 
urves and surfa
es has been extremelysu

essful. In this le
ture we report on some of these developments.One interesting subproblem in algebrai
 geometri
 
omputation is the rationalparametrization of 
urves and surfa
es. The ta
node 
urve de�ned by f(x; y) =2x4 � 3x2y + y4 � 2y3 + y2 in the real plane has the rational parametrizationx(t) = t3 � 6t2 + 9t� 22t4 � 16t3 + 40t2 � 32t+ 9 ; y(t) = t2 � 4t+ 42t4 � 16t3 + 40t2 � 32t+ 9over Q . The 
riterion for parametrizability is the genus. Only 
urves of genus0 have a rational parametrization, and only surfa
es of arithmeti
 genus 0 andse
ond plurigenus 0 have a rational parametrization. Conversely, given a parametri
representation of a 
urve or surfa
e, we might ask for the impli
it algebrai
 equationde�ning it.Computing parametrizations essentially requires the full analysis of singularities(either by su

essive blow-ups, or by Puiseux expansion) and the determination ofregular points on the 
urve or surfa
e. We 
an 
ontrol the quality of the resultingparametrization by 
ontrolling the �eld over whi
h we 
hoose this regular point.Thus, �nding a regular 
urve point over a minimal �eld extension on a 
urve ofgenus 0 is one of the 
entral problems in rational parametrization of 
urves, 
ompare[SeWi97℄. Similarly, �nding rational 
urves on surfa
es leads to parametrizations,�The author wants to a
knowledge support from the Austrian Fonds zur F�orderung der wis-sens
haftli
hen Fors
hung (FWF) under proje
t SFB F013/1304.1




ompare [LSWH00℄. The quality of parametrizations 
an be measured by the ne
-essary �eld extension and also by the number of times the variety is tra
ed by theparametrization. We will analyze the relation of the tra
ing index of a 
urve tothe degrees of the impli
it equation and the degree of the parametrization, 
ompare[SeWi01℄.1 Parametrization of Algebrai
 CurvesAlgebrai
 
urves and surfa
es have been studied intensively in algebrai
 geometryfor de
ades and even 
enturies. Thus, there exists a huge amount of theoreti
alknowledge about these geometri
 obje
ts. Re
ently, algebrai
 
urves and surfa
esplay an important and ever in
reasing role in 
omputer aided geometri
 design, 
om-puter vision, and 
omputer aided manufa
turing. Consequently, theoreti
al resultsneed to be adapted to pra
ti
al needs. We need eÆ
ient algorithms for generat-ing, representing, manipulating, analyzing, rendering algebrai
 
urves and surfa
es.Su
h eÆ
ient symboli
 algorithms 
an be 
onstru
ted based on method of 
omputeralgebra as des
ribed, for instan
e, in [Wink96℄.One interesting subproblem is the rational parametrization of 
urves and surfa
es.De�nition 1.1. Let K be an algebrai
ally 
losed �eld of 
hara
teristi
 0. Con-sider an aÆne plane algebrai
 
urve C in A 2(K ) de�ned by the bivariate polynomialf(x; y) 2 K [x; y℄, i.e.C = f(a; b) j (a; b) 2 A 2(K ) and f(a; b) = 0g:Of 
ourse, we 
ould also view this 
urve in the proje
tive plane P2(K ), de�ned byF (x; y; z), the homogenization of f(x; y). We denote the �eld of rational fun
tionover C by K (C).A pair of rational fun
tions P = (x(t); y(t)) 2 K (t) is a rational parametrizationof the 
urve C, if and only if f(x(t); y(t)) = 0 and for almost every point (x0; y0) 2 C(i.e. up to �nitely many ex
eptions) there is a parameter value t0 2 K su
h that(x0; y0) = (x(t0); y(t0)).Only irredu
ible 
urves, i.e. 
urves whose de�ning polynomials are absolutelyirredu
ible, 
an have a rational parametrization. Almost any rational transfor-mation of a rational parametrization is again a rational parametrization, so su
hparametrizations are not unique.Impli
it representations (by de�ning polynomial) and parametri
 representations(by rational parametrization) both have their parti
ular advantages and disadvan-tages. Given an impli
it representation of a 
urve and a point in the plane, it iseasy to 
he
k whether the point is on the 
urve. But it is hard to generate \good"points on the 
urve, i.e. for instan
e points with rational 
oordinates if the de�ning�eld is Q . On the other hand, generating good points is easy for a 
urve givenparametri
ally, but de
iding whether a point is on the 
urve requires the solution ofa system of algebrai
 equations. So it is highly desirable to have eÆ
ient algorithmsfor 
hanging from impli
it to parametri
 representation, and vi
e versa.2



Example 1.1: Let us 
onsider 
urves in the plane (aÆne or proje
tive) over C . The
urve de�ned by f(x; y) = y2 � x3 � x2 (see Fig. 1.1) is rationally parametrizable,and a
tually a parametrization is (t2 � 1; t(t2 � 1)).On the other hand, the ellipti
 
urve de�ned by f(x; y) = y2 � x3 + x (see Fig1.2) does not have a rational parametrization.The ta
node 
urve (see Fig. 1.3) de�ned by f(x; y) = 2x4 � 3x2y + y4� 2y3+ y2has the parametrizationx(t) = t3 � 6t2 + 9t� 22t4 � 16t3 + 40t2 � 32t+ 9 ; y(t) = t2 � 4t + 42t4 � 16t3 + 40t2 � 32t+ 9 :The 
riterion for parametrizability of a 
urve is its genus. Only 
urves of genus0, i.e. 
urves having as many singularities as their degree permits, have a rationalparametrization.Also the 
ardioid 
urve (see Fig. 1.4) 
an be rationally parametrized over Q. 2
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Fig. 1.4In [SeWi91℄ Sendra and Winkler have developed a fully symboli
 algorithm forsolving the parametrization problem of algebrai
 
urves. Computing su
h a parame-3



trization essentially requires the full analysis of singularities (either by su

essiveblow-ups, or by Puiseux expansion) and the determination of a regular point on the
urve. We 
an 
ontrol the quality of the resulting parametrization by 
ontrolling the�eld over whi
h we 
hoose this regular point. Thus, �nding a regular 
urve pointover a minimal �eld extension on a 
urve of genus 0 is one of the 
entral problemsin rational parametrization, 
ompare [SeWi97℄, [SeWi99℄. The determination ofrational points on algebrai
 
urves 
an be an extremely 
ompli
ated problem. Butfor 
urves of genus 0 the situation 
an a
tually be 
ontrolled very well. For a 
urveover Q or R we 
an determine whether the 
urve has a regular point over this �eld,or otherwise �nd a quadrati
 �eld extension whi
h admits su
h a regular point.Example 1.2: Let C be the 
ardioid 
urve in the 
omplex plane de�ned byf(x; y) = (x2 + 4y + y2)2 � 16(x2 + y2) = 0:For a pi
ture of this 
urve in the real aÆne plane see Fig. 1.4.The 
urve C has the following rational parametrization:x(t) = �32 � �1024i+ 128t� 144it2 � 22t3 + it42304� 3072it� 736t2 � 192it3 + 9t4 ;y(t) = �40 � 1024� 256it� 80t2 + 16it3 + t42304� 3072it� 736t2 � 192it3 + 9t4 :As we see in Fig. 1.4, C has in�nitely many real points. But generating any oneof these real points from the above parametrization is not obvious. Does this real
urve C also have a parametrization over R? Indeed it does, let's see how we 
anget one.In the proje
tive plane over C , C has three double points, namely (0 : 0 : 1) and(1 : �i : 0). Let ~H be the linear system of 
oni
s passing through all these doublepoints. The system ~H has dimension 2 and is de�ned byh(x; y; z; s; t) = x2 + sxz + y2 + tyz = 0;i.e., for any parti
ular values of s and t we get a 
oni
 in ~H. Three elements of thislinear system de�ne a birational transformationT = (h(x; y; z; 0; 1) : h(x; y; z; 1; 0) : h(x; y; z; 1; 1))= (x2 + y2 + yz : x2 + xz + y2 : x2 + xz + y2 + yz)whi
h transforms C to the 
oni
 D de�ned by15x2 + 7y2 + 6xy � 38x� 14y + 23 = 0:For a 
oni
 de�ned over Q we 
an de
ide whether it has a point over Q or R. Inparti
ular, we determine the point (1; 8=7) on D, whi
h, by T �1, 
orresponds to theregular point P = (0;�8) on C. Now, by restri
ting ~H to 
oni
s through P andinterse
ting ~H with C (for details see [SeWi97℄), we get the parametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :4



over the reals. 2An alternative approa
h to the problem of parametrization of 
urves 
an be foundin [Hoeij94℄.Now that we have seen some examples of the parametrization problem treatedby symboli
 algebrai
 
omputation, let us just brie
y dis
uss the inverse problem,namely the problem of impli
itization. If we are given, for instan
e, a rationalparametrization in K(t) of a plane 
urve, i.e.x(t) = p(t)=r(t); y(t) = q(t)=r(t);we essentially want to eliminate the parameter t from these relations, and get arelation just between x and y. We also want to make sure that we do not 
onsider
omponents for whi
h the denominator r(t) vanishes. This leads to the system ofalgebrai
 equations x � r(t)� p(t) = 0;y � r(t)� q(t) = 0;r(t) � z � 1 = 0:The impli
it equation of the 
urve must be the generator of the idealI = hx � r(t)� p(t); y � r(t)� q(t); r(t) � z � 1i \ K[x; y℄:Using the elimination property of Gr�obner bases, we 
an 
ompute this generator by aGr�obner basis 
omputation w.r.t. the lexi
ographi
 ordering based on x < y < z < t.Example 1.3: Let us do this for the 
urve of Example 1.2. We start from theparametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :So we have to solve the equationsx � (256t4 + 32t2 + 1) + 1024t3 = 0;y � (256t4 + 32t2 + 1) + 2048t4 � 128t2 = 0;(256t4 + 32t2 + 1) � z � 1 = 0:The Gr�obner basis of this system w.r.t. the lexi
ographi
 ordering based on x <y < z < t is G = f::::::::; x4 + y4 + 8x2y + 2x2y2 + 8y3 � 16x2g:So we have found the impli
it equation of the 
urve. 2
5



2 Parametrization of Algebrai
 Surfa
esMany of these ideas whi
h work for 
urves 
an a
tually be generalized to higherdimensional geometri
 obje
ts. For instan
e, one subproblem in 
omputer aidedgeometri
 design is the manipulation of o�set 
urves, o�set surfa
es, pipe and 
analsurfa
es. These are geometri
 obje
ts keeping 
ertain distan
es from a generatingobje
t. Let us just 
onsider the 
ase of a pipe surfa
e in an example.Example 2.1: We 
onsider the spa
e 
urve C in A 2(R) given parametri
ally by(x(t); y(t); z(t)) = (t; t2; t3). We want to 
onstru
t a parametri
 representation ofthe pipe surfa
e S (at distan
e 1) along C, i.e. the lo
us of points having normaldistan
e 1 from C. This pipe surfa
e S is the envelope of spheres of radius 1 movingalong C, i.e. every point on S lies on a 
ir
le in a hypersurfa
e perpendi
ular to the
urve C. If we 
an �nd a parametri
 representation of a 
urve ~C on S, whi
h meetsevery one of these 
ir
les, then by a pen
il of lines in the 
orresponding hypersurfa
ewe 
an generate a rational representation for all the points on this 
ir
le, and thus�nally a rational parametrization of the pipe surfa
e.Su
h a 
urve 
an by determined by algebrai
 
omputation, giving for instan
ethe parametrization (~
1(t); ~
2(t); ~
3(t)) with0� ~
1(t)~
2(t)~
3(t) 1A = 0BB� t+ 3(36t4�13t2�4p5t�5)t2(1+4t2)(21t2+2p5t+5+27t4)t2 � 3(60t3+14t�p5+4p5t2)t2(1+4t2)(21t2+2p5t+5+27t4)t3 + 21t2+2p5t+521t2+2p5t+5+27t4 1CCA :From this parametri
 representation of ~C we 
an 
ompute a parametri
 representa-tion of the pipe surfa
e. 2For a geometri
 approa
h to parametrization of pipe and 
anal surfa
es see[PePo97℄, an algebrai
 approa
h 
an be found in [LSWH00℄.In [PeSe01℄ P�erez-D��az and Sendra have developed symboli
 algorithms for the
omputation of parametri
 blending surfa
es. There are various spe
ial kinds ofsurfa
es su
h as pipe and 
anal surfa
es or blending surfa
es, whi
h are of parti
-ular importan
e in 
omputer aided geometri
 design. Spe
ial te
hniques for theseimportant types of surfa
es are available.But there is also the general problem of rational parametrization of surfa
es,i.e. of de
iding whether an algebrai
 surfa
e S 
an be rationally parametrized andif so 
omputing a parametrization. This problem is more or less solved, we referto the ex
ellent des
ription by S
hi
ho in [S
hi98℄. The theorem by Enriques andManin states that a rational surfa
e either 
ontains a pen
il of rational 
urves oris equivalent to a Del Pezzo surfa
e. In the �rst 
ase, a rational parametrizationover C or R 
an be 
omputed from the pen
il of rational 
urves. In the se
ond 
ase,parametrization algorithms are known over the ground �eld C , but the problemis still open over R or Q . By the method of adjoints the theorem of Enriques andManin 
an be turned into a 
onstru
tive algorithm. This requires a full resolution ofthe singularities of the surfa
e S. The existen
e of resolution has been demonstrated6



by Walker and Zariski for surfa
es, and by Hironaka for general hypersurfa
es. ButHironaka's proof is in
onstru
tive. A �rst 
onstru
tive proof has been given byVillamayor in [Villa89℄. S
hi
ho has turned this into a re
ursive algorithm andimplemented it in the 
omputer algebra system Maple, see [BoS
00℄.Example 2.2. (From [S
hi98℄) The algebrai
 surfa
e S de�ned byf(x; y; z) = x4 + z4 + (xy + z2)3 = 0
an be parametrized asP(s; t) = 1s5 + s � ��s2t3; t3 + s4t + t; �st3� :On the other hand, if we start from the parametrization P and 
ompute the Gr�obnerbasis forfx � (s5 + s) + s2t3; y � (s5 + s)� t3 � s4t� t; z � (s5 + s) + st3; (s5 + s) �w � 1gw.r.t. the lexi
ographi
 ordering based on x < y < z < w < s < t, we getf:::::::; x4 + z4 + (xy + z2)3g:So we have found the impli
it equation of the surfa
e S.3 Tra
ing Index of Curve ParametrizationsPlane algebrai
 
urves 
an be uniquely represented, up to multipli
ation by 
on-stants, by their de�ning impli
it equations. However, rational 
urves, i.e. algebrai

urves parametrizable by means of rational fun
tions, may be expressed by in�nitelymany di�erent su
h parametrizations. One may introdu
e di�erent 
riteria of opti-mality in order to 
hoose the best parametri
 representation. For instan
e, if one isinterested in the 
oeÆ
ients of the rational fun
tions, one may analyze the small-est possible �eld where the 
urve 
an be parametrized (see [AnRS97℄, [AnRS99℄,[Hoeij97℄, [S
hi92℄, [SeWi97℄). Another possibility is to optimize the degree of therational fun
tions involved in the parametrization. This leads to the notion of properparametrization. Intuitively speaking, proper parametrizations are parametrizationstra
ing the 
urve on
e when giving values to the parameter in the algebrai
 
losure ofthe �eld 
ontaining the 
oeÆ
ients of the parametrization. More rigorously speakingproper parametrizations 
orrespond to bije
tive mappings from the �eld of param-eter values onto the 
urve.Most parametrization algorithms, e.g. [AbBa88℄, [Hoeij94℄, [SeWi91℄, provideproper parametrizations. Furthermore, improperness 
an be dete
ted algorithmi-
ally, and the given parametrization 
an be reparametrized into a proper one [Sede86℄.Proper parametrizations play an important role in many pra
ti
al appli
ations in
omputer aided geometri
 design, su
h as in visualization or rational parametriza-tion of o�sets. 7



For a parametrization P(t) of a 
urve C over K we write its 
omponents asP(t) = (x(t); y(t)) = �x1(t)x2(t) ; y1(t)y2(t)� :We will assume in the sequel that rational parametrizations are given in redu
edform, that is g
d(x1(t); x2(t)) = g
d(y1(t); y2(t)) = 1. Furthermore, for a givenparametrization P(t) we 
onsider the polynomialsG1(s; t) = x1(s)x2(t)� x2(s)x1(t); G2(s; t) = y1(s)y2(t)� y2(s)y1(t);and G(s; t) = g
d(G1; G2); as well as the polynomialsH1(t; x) = xx2(t)� x1(t); H2(t; y) = yy2(t)� y1(t):We start by re
alling some basi
 results on proper parametrizations. A parametriza-tion P(t) of the 
urve C is proper if and only if the mapP : K �! Ct 7�! P(t)is birational, or equivalently, if for almost every point on C and for almost all valuesof the parameter in K the mapping P is rationally bije
tive.The notion of properness 
an also be stated algebrai
ally in terms of �elds ofrational fun
tions. In fa
t, a rational parametrization P(t) is proper if and only ifthe indu
ed monomorphism 'P on the �elds of rational fun
tions'P : K (C) �! K (t)R(x; y) 7�! R(P(t)):is an isomorphism. Therefore, P(t) is proper if and only if the mapping 'P issurje
tive, that is, if and only if 'P(K (C)) = K (P(t)) = K (t). Thus, L�uroth'sTheorem implies that any rational 
urve over K 
an be properly parametrized.An important fa
t on proper parametrizations is that any other rational parame-trization of the same 
urve 
an be obtained from a proper one by a rational 
hangeof parameter.Theorem 3.1 Let P(t) be a proper parametrization of a plane 
urve C, and let Q(t)be any other rational parametrization of C. Then(1) there exists a non{
onstant rational fun
tion R(t) 2 K (t) su
h that Q(t) =P(R(t));(2) Q(t) is proper if and only if there exists a linear rational fun
tion L(t) 2 K (t)su
h that Q(t) = P(L(t)).In [SeWi01a℄ we have investigated 
omputational problems for su
h rational mapsbetween algebrai
 
urves. In [SeWi01b℄ we have introdu
ed the notion of the tra
ingindex of a rational parametrization. Here we summarize the essential fa
ts.Theorem 3.2. Let P(t) = (x(t); y(t)) be a parametrization with non-
onstant
omponents in redu
ed form. Then 8



(1) for � 2 K su
h that x2(�)y2(�) 6= 0, and su
h that G1(�; t), G2(�; t) do nothave multiple roots,Card(P�1(P(�))) = degt(g
d(G1(�; t); G2(�; t)));(2) for all but �nitely many values � of s we havedegt(G(s; t)) = degt(g
d(G1(�; t); G2(�; t)));(3) all but �nitely many points in C are generated, via P(t), by exa
tly m param-eter values, where m = degt(G(s; t)).With these preparations we 
an now introdu
e the notion of tra
ing index of aparametrization.De�nition 3.1. Let C be a rational aÆne plane 
urve, and let P(t) be a rationalparametrization of C. Then, we say that k 2 N is the tra
ing index of P(t), andwe denote it by index(P(t)), if all but �nitely many points on C are generated, viaP(t), by k parameter values; i.e. index(P(t)) represents the number of times thatP(t) tra
es C.Note that by Theorem 3.2(3) index(P(t)) = degt(G(s; t)). Also, the tra
ing index
an be 
omputed by Theorem 3.2(1).If we 
onsider the map P : K ! C indu
ed by the parametrization P(t), thenthe tra
ing index of the parametrization P(t) is the degree of the rational map P.Therefore, index(P(t)) is the degree of the �nite �eld extension 'P(K (C)) � K (t),where 'P is the monomorphism indu
ed by P on the �elds of rational fun
tions; i.e.index(P(t)) = [K (t) : 'P(K (C))℄.Sin
e properness of a parametrization P is de�ned by requiring P to be a bira-tionality, properness is 
hara
terized by a tra
ing index 1.Theorem 3.3. A rational parametrization is proper if and only if its tra
ing indexis 1; i.e. if and only if degt(G(s; t)) = 1.Example 3.1. Let P(t) be the rational parametrizationP(t) = � (t2 � 1) tt4 � t2 + 1 ; (t2 � 1) t2t6 � 3 t4 + 3 t2 � 1� 2 t3� :In this 
ase we haveG1(s; t) = s3t4 � s3t2 + s3 � st4 + st2 � s� t3s4 + s2t3 � t3 + ts4 � ts2 + tG2(s; t) = s4t6 � s4 � 2 t3s4 � s2t6 + s2 + 2 s2t3 � t4s6 + t4 + 2 s3t4 + t2s6�t2 � 2 s3t2;and their g
d is G(s; t) = t� s+ st2� s2t. Thus, index(P(t)) = 2, and therefore theparametrization is not proper.Let P(t) = �x1(t)x2(t) ; y1(t)y2(t)� be a rational parametrization. Then we de�ne the degreeof P(t), denoted by deg(P(t)), asdeg(P(t)) = max�degt�x1(t)x2(t)� ; degt�y1(t)y2(t)�� :9



Note that deg(P(t)), the degree of P(t), is in general di�erent from index(P(t)),the degree of the rational mapping P indu
ed by P(t) (see remark after Def. 3.1).For instan
e, any proper rational parametrization of a 
ir
le has degree 2 but itsindex is 1 be
ause it is proper. In order to avoid possible ambiguities, we will usethe notation deg(P(t)) for the degree w.r.t. the parameter, and index(P(t)) for thedegree of the rational map.The degree of a plane 
urve is de�ned as the total degree of its impli
it equation.Note that the degree of a rational parametrization of a 
urve C does not alwaysagree with the degree of C. For instan
e, the parametrization �t; 1t � has degree 1but it de�nes the hyperbola yx = 1, whose degree is 2.In [SeWi01b℄ the following theorem is proved.Theorem 3.4. Let C be a rational aÆne 
urve de�ned over K by the polynomialf(x; y) 2 K [x; y℄, let P(t) = (x1(t)x2(t) ; y1(t)y2(t)) be a rational parametrization of C, and letn = maxfdegx(f); degy(f)g. Then(1) P(t) is proper if and only if deg(P(t)) = n. Furthermore, if P(t) is proper,then deg(x1x2 ) = degy(f), and deg(y1y2 ) = degx(f);(2) index(P(t)) = deg(P(t))n ;(3) Rest(H1(t; x); H2(t; y)) = 
 � (f(x; y))index(P), for some non-zero 
onstant 
.Example 3.2. We 
onsider the rational quinti
 C de�ned by the polynomialf(x; y) = y5 + x2y3 � 3 x2y2 + 3 x2y � x2. Theorem 3.4(1) ensures that any ra-tional proper parametrization of C must have a �rst 
omponent of degree 5, and ase
ond 
omponent of degree 2. It is easy to 
he
k thatP(t) = � t5t2 + 1 ; t2t2 + 1�properly parametrizes C. Note that f(P(t)) = 0, and that index(P(t)) = 1.On the other hand, we 
onsider the parametrizationP 0(t) =  (t10 + 1)5t20 + 2 t10 + 2 ; (t10 + 1)2t20 + 2 t10 + 2!of the quinti
 C. This new parametrization C 0 of C is obtained by reparametrizingthe proper parametrization P with the rational fun
tion t10+1, i.e. P 0 = P(t10+1).Thus, the index of the parametrization should be 10. In fa
t, G(s; t) = t10 � s10.On the other hand, 
omputing the resultant w.r.t. t of the polynomials H1 and H2one gets Rest(H1(t; x); H2(t; y)) = �y5 + x2y3 � 3 x2y2 + 3 x2y � x2�10 :
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