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Jordan algebras

Jordan algebras were introduced by Jordan, von Neumann and Wigner
(in a paper published in Annals of Mathematics in 1934) with the aim
that this new algebraic system would give a better interpretation of
quantum mechanics. This aim was not achieved, but Jordan algebras
became an interesting topic.

An algebra J is a Jordan algebra if xy = yx and (x2y)x = x2(yx),
for all x, y ∈ J . Any Jordan algebra is power-associative.

Let A be an associative or an alternative algebra. If we replace the
multiplication xy in A by the Jordan product x ◦ y = 1

2(xy + yx) (cf.

Section C.24), we obtain a Jordan algebra denoted by A(+).
Let V be a vector space over F , f : V × V → F a symmetric bilinear

form, and J(V, f) = F ⊕ V . With the multiplication (α + x)(β + y) =
(αβ + f(x, y))+ (βx+ αy), the vector space J(V, f) is a Jordan algebra.

Let A be an algebra with involution − : a ∈ A → a ∈ A. Let
H(A, −) = { a ∈ A | a = a }. If A is associative or alternative, then
H(A, −) is a subalgebra of A(+), hence a Jordan algebra. For the matrix

algebra Matn×n(A), we consider the involution given by (aij)
t

= (aji)
and the algebra H(Matn×n(A), −t) that is not necessarily a Jordan al-
gebra. In particular, if C is a Cayley-Dickson algebra and − denotes its
involution, then H(C, −), H(Mat2×2(C), −t) and H(Mat3×3(C), −t) are
Jordan algebras.

The Jordan algebra J is special if J is a subalgebra of B(+) for some
associative algebra B. Otherwise, J is exceptional . The Jordan alge-
bras A(+), J(V, f), H(C, −), and H(Mat2×2(C), −t) are special. Also
in 1934, Albert proved that H(Mat3×3(C), −t) is exceptional. In 1956,
Shirshov proved that any Jordan algebra with two generators is special,
and since H(Mat3×3(C), −t) has three generators, this result cannot be
improved.

C.53.2 Theorem (Albert) Let J be a finite-dimensional Jordan alge-
bra. Then Nil(J) is nilpotent, and J/Nil(J) is isomorphic to a finite
direct sum of simple algebras. Over an algebraically closed field F , each
one of these simple algebras is isomorphic to one of the following alge-
bras: F ; J(V, f), where f is nondegenerate; H(Matn×n(A), −t), n ≥ 3,
where A is a composition algebra that is associative for n > 3.

An Albert algebra is a Jordan algebra J over F such that (for some
extension K of F ) J ⊗F K ∼= H(Mat3×3(C), −t). An Albert algebra is
exceptional, simple, and has dimension 27 over its center.
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C.53.3 Theorem (Zelmanov) A simple Jordan algebra is isomorphic
to one of the following algebras: J(V, f), where f is nondegenerate; A(+),
where A is a simple associative algebra; H(A, −), where A is a simple
associative algebra with involution −; an Albert algebra.

As in the case of alternative algebras, we can define the quasi-regular
radical Rad(J) of a Jordan algebra J . A subspace K of J is a quadratic
ideal if 2(ka)k − k2a ∈ K for all k ∈ K and a ∈ J .

C.53.4 Theorem Let J be a Jordan algebra. Suppose that J satisfies
the minimal condition for quadratic ideals. Then we have:

(1) (Slinko-Zelmanov) The radical Rad(J) is nilpotent and has finite
dimension.

(2) (Jacobson-Osborn) The quotient algebra J/Rad(J) is isomorphic to
a finite direct sum of simple Jordan algebras of one of the following
forms: a division Jordan algebra; H(A,− ), where A is an associa-
tive Artinian algebra with involution −, and A is −-simple (i.e., A
does not contain proper ideals I such that I ⊂ I); J(V, f) for f
nondegenerate; an Albert algebra.

For more information, see (Jacobson 1968, Kuzmin and Shestakov
1994, Zhevlakov, Slinko, Shestakov, and Shirshov 1982, Schafer 1995,
Lyubich 1992).

C.54 Computational Ring Theory

by Franz Winkler in Linz, Austria

Whenever R is a ring, then by R∗ we denote R \ { 0 }.

C.54.1 Definition A Euclidean domain D is a commutative inte-
gral domain together with a degree function deg : D∗ → N0, such that

(1) deg(a · b) ≥ deg(a) for all a, b ∈ D∗,
(2) (division property) for all a, b ∈ D, b 6= 0, there exists a quotient q

and a remainder r in D such that a = q · b + r and (r = 0 or
deg(r) < deg(b)).

Any Euclidean domain is a unique factorization domain.

C.54.2 Theorem Any two non-zero elements a, b of a Euclidean do-
main D have a greatest common divisor g which can be written as a
linear combination g = s · a + t · b for some s, t ∈ D.
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The elements s, t in the previous theorem are called the Bézout co-
factors of a and b.

A Euclidean domain in which quotient and remainder are computable
by algorithms QUOT and REM admits an algorithm for computing the
greatest common divisor g of any two elements a, b. This algorithm has
originally been stated by Euclid for the domain of the integers. In fact, it
can be easily extended to compute not only the gcd but also the Bézout
cofactors.

Algorithm 1 Extended Euclidean algorithm

Require: a, b are elements of the Euclidean domain D;
Ensure: g is the greatest common divisor of a, b and g = s · a + t · b ;

1: (r0, r1, s0, s1, t0, t1) := (a, b, 1, 0, 0, 1) ;

2: i := 1;
3: while ri 6= 0 do

4: qi := QUOT(ri−1, ri);
5: (ri+1, si+1, ti+1) := (ri−1, si−1, ti−1) − qi · (ri, si, ti);
6: i := i + 1;
7: end while

8: (g, s, t) := (ri−1, si−1, ti−1);

In a Euclidean domain we can solve the Chinese remainder prob-
lem (CRP):
given: r1, . . . , rn ∈ D (remainders)

m1, . . . ,mn ∈ D∗ (moduli), pairwise relatively prime
find: r ∈ D, such that r ≡ ri mod mi for 1 ≤ i ≤ n.

There are basically two solution methods for the CRP. The first one
is usually associated with the name of J. L. Lagrange. The second one
is associated with I. Newton and is a recursive solution.

In the Lagrangian solution one first determines ukj such that 1 =
ukj · mk + ujk · mj, for 1 ≤ j, k ≤ n, j 6= k. This can obviously be
achieved by the extended Euclidean algorithm. Next one considers the
elements lk :=

∏n
j=1,j 6=k ujkmj, for 1 ≤ k ≤ n. Clearly lk ≡ 0 mod mj

for all j 6= k. On the other hand lk =
∏n

j=1,j 6=k(1−ukjmk) ≡ 1 mod mk.
So r =

∑n
k=1 rk · lk solves CRP.

The disadvantage of the Lagrangian approach is that it yields a static
algorithm, i.e., it is virtually impossible to increase the size of the prob-
lem by one more pair rn+1,mn+1 without having to recompute every-
thing from the start.
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The Newton approach is recursive in the sense that one first solves the
problem with 2 remainders and 2 moduli, yielding the solution r1,2, and
then has to solve the problem with remainders r1,2, r3, . . . , rn and moduli
m1 · m2,m3, . . . ,mn. So for given remainders r1, r2 and moduli m1,m2

we want to find an r ∈ D such that r ≡ ri mod mi for i = 1, 2. The
solution of this CRP of size 2 is computed by the Chinese remainder
algorithm CRA.

Algorithm 2 Chinese remainder algorithm(Newtonian solution of the
CRP)

Require: r1, r2,m1,m2 are elements of the Euclidean domain D,
m1,m2 are non-zero and relatively prime;

Ensure: r ≡ r1 mod m1 and r ≡ r2 mod m2 ;

1: c := m−1
1 mod m2;

2: r′1 := r1 mod m1;

3: σ := (r2 − r′1)c mod m2;

4: r := r′1 + σm1;

A special case of the CRP in the polynomial ring K[x], K a field, is
the interpolation problem . All the moduli mi are linear polynomials
of the form x − βi.
given: α1, . . . , αn ∈ K,

β1, . . . , βn ∈ K, such that βi 6= βj for i 6= j,
find: u(x) ∈ K[x], such that u(βi) = αi for 1 ≤ i ≤ n.

Since p(x) mod (x−β) = p(β) for β ∈ K, the interpolation problem is
a special case of the CRP. The inverse of p(x) in K[x]/〈x−β〉 is p(β)−1. So
CRA yields a solution algorithm for the interpolation problem, namely
the Newton interpolation algorithm. Similarly, the Lagrangian solution
to the CRP leads to a Lagrangian solution of the interpolation problem.

The Chinese remainder problem can, in fact, be described in greater
generality. Let R be a commutative ring with unity. The abstract Chi-
nese remainder problem is the following:

given r1, . . . , rn ∈ R (remainders),
I1, . . . , In ideals in R (moduli), such that Ii + Ij = R for all
i 6= j;

find r ∈ R, such that r ≡ ri mod Ii, for 1 ≤ i ≤ n.

The abstract Chinese remainder problem can be treated basically in the
same way as the CRP over Euclidean domains. Again there is a La-
grangian and a Newtonian approach and one can show that the problem
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always has a solution and if r is a solution then the set of all solutions
is given by r + I1 ∩ · · · ∩ In. i.e., the map ϕ : r 7→ (r + I1, . . . , r + In)
is a homomorphism from R onto

∏n
j=1 R/Ij

with kernel I1 ∩ · · · ∩ In.
However, in the absence of the Euclidean algorithm it is not possible to
compute a solution of the abstract CRP. See (Lauer, 1983).

Instead of solving a problem in several homomorphic images and then
combining these modular solutions to a solution of the original problem
by the Chinese remainder algorithm, one can also attempt to solve a
problem in one homomorphic image, say modulo an ideal I, and then
lift this solution to a solution modulo It, for high enough t. The basis
for such an approach is the Lifting Theorem.

C.54.3 Theorem (Lifting Theorem) Let I be the ideal generated
by p1, . . . , pl in the commutative ring with unity R, f1, . . . , fn ∈
R[x1, . . . , xr], r ≥ 1, and a1, . . . , ar ∈ R such that fi(a1, . . . , ar) ≡ 0
(mod I) for i = 1, . . . , n. Let U be the Jacobian matrix of f1, . . . , fn eval-
uated at (a1, . . . , ar), i.e., U = (uij), where uij = ∂fi/∂xj(a1, . . . , ar).
Assume that U is right-invertible modulo I, i.e., there is an r×n matrix
W = (wjl) such that U · W ≡ En (mod I) (En is the n × n identity

matrix). Then for every t ∈ N there exist a
(t)
1 , . . . , a

(t)
r ∈ R such that

fi(a
(t)
1 , . . . , a

(t)
r ) ≡ 0 (mod It) for 1 ≤ i ≤ n, and a

(t)
j ≡ aj (mod I) for

1 ≤ j ≤ r.

If the ideal I is generated by the prime element p, then the Lifting
Theorem guarantees a p-adic approximation of the solution. An impor-
tant special case of the Lifting Theorem is the Hensel Lemma on p-adic
approximation of factors of a polynomial.

C.54.4 Theorem (Hensel Lemma) Let p be a prime number and
a(x), a1(x), . . . , ar(x) ∈ Z[x]. Let (a1 mod p), . . . , (ar mod p) be pair-
wise relatively prime in Zp[x] and a(x) ≡ a1(x) · · · · · ar(x) mod p. Then

for every natural number k there are polynomials a
(k)
1 (x), . . . , a

(k)
r (x) ∈

Z[x] such that a(x) ≡ a
(k)
1 (x) · · · · · a

(k)
r (x) mod pk and a

(k)
i (x) ≡

ai(x) mod p for 1 ≤ i ≤ r.

The lifting procedure, and also the Hensel Lemma, can be made
quadratic, i.e., lifting from equality modulo It to equality modulo I2t.

Further details on computational ring theory can be found in a vari-
ety of books on computer algebra, e.g., (Gathen and Gerhard 1999) or
(Winkler 1996).
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C.55 Applications of Rings

by Günter F. Pilz in Linz, Austria

Many results in ring theory enable us to present a ring R as a direct sum
of simpler rings Ri. If the transitions between R and

⊕

Ri is reasonably
“smooth”, a direct sum decomposition means the ability to do parallel
computations. Examples are the use of Chinese remainder theorem,
the decomposition of the group algebra C[G], and the Fast Fourier and
the Fast Hadamard Transformations. One can see that all these cases
are closely related. Real-life applications include compact disc players,
which use these fast transforms to decode music signals very efficiently.

But we now turn to another area which seems to be less well-known:
rings and dynamical systems. More on this can be found in (Lidl and
Pilz 1998).

C.55.1 Example Let a point of mass m = 1 be the end of a pendulum
of length r (cf. Figure 1). Here, g is gravity and x the radiant measure
of α. If b denotes air resistance, Newton’s second law tells us that x =
x(t)) is governed by the differential equation

rẍ(t) + brẋ(t) + g sin x(t) = 0,

For small x, this can be replaced by the linear equation

rẍ(t) + brẋ(t) + gx(t) = 0.

For x(t) :=
(

x(t)
ẋ(t)

)

, we then get ẋ(t) =
�

0 1
−g/r −b

�
x(t) =: Fx(t).

Suppose now that the pendulum is hanging on a bar which can be
turned at an angular speed of u(t) and has the friction coefficient k
(between the bar and the rope, cf. Figure 2). For small x, the linear
equation has the form

rẍ(t) + brẋ(t) + gx(t) = k(u − ẋ).

With F̄ :=

(

0 1

−g/r −b − k/r

)

and G :=

(

0

k/r

)

, the equation becomes

ẋ(t) = F̄x(t) + Gu(t).

This is a typical example of a linear continuous system . We shall
not introduce a formal definition of a system as a 7-tuple here; see e.g.,
(Kalman, Falb, and Arbib 1969) for precise definitions. The main terms


