
An FGLM Method for Decoding Linear Codes∗

Mijail Borges Quintana† Franz Winkler‡ Miguel A. Borges Trenard†

December 18, 2008

Abstract

A new algorithmic method is presented for the decoding process of a linear code. This
method has the flavor of the FGLM techniques that belong to the framework of the
Gröbner Bases Theory. This method consists of two algorithms, one for the prepa-
ration phase of the code, and the other one for the decoding process. Starting from
a parity check matrix of the linear code, our approach enables the user to decode a
given codeword in a number of steps proportional to its length. Complexity analysis,
complete examples and comments about the application of FGLM techniques to linear
codes are also given in this paper.

Introduction

In this paper we present a new method for decoding linear codes. Gröbner bases tools
play an essential role in our method. But our approach is different from other known
applications of Gröbner bases in coding theory 1, such as to find a Gröbner basis of the
error locator ideal and a systematic method for encoding and decoding m-dimensional cyclic
codes. FGLM techniques have been already related with coding theory in some literature
(see [Sak], [CLO]), but these connections are rather different from the approach presented
in this work.

Our method has strong connections with the general method for decoding a linear code
known as syndrome decoding. In the syndrome decoding method one looks for the coset
leader of the syndrome corresponding to the received word. In our approach, we look directly
for the coset leader corresponding to the received word. Before the stage of decoding, as
in the syndrome decoding method, we need to perform preliminary calculations, which
essentially amount to an execcution of a variant of the procedure Matphi of the FGLM
basis transformation algorithm [FGLM]. The process of decoding amounts to reducing
a word to its canonical form by means of a border basis. Preliminary calculations are

∗This work was done while the first author spent the academic year 1999/2000 at RISC-Linz, sup-
ported by ÖAD. We also acknowledge partial support by the Austrian Fonds zur Förderung der wis-
senschaftlichen Forschung, under project Nr. SFB 013/F1304. The first author’s email address at RISC-Linz
is mborges@risc.uni-linz.ac.at

1See [Sak], [CLO], [CCS].

1

2 FGLM and linear codes.

guaranteed to be done with a very good complexity and with no more memory required
than for the syndrome decoding method. The low complexity for the decoding algorithm
could be a good reason for using this approach, wherever the requirements of our method
can be satisfied.

We will present in this work only essential proofs, the rest of the proofs and a more
detailed analysis of this method can be found in [BWB].

1 Linear codes

In this section we review the main notions of the theory of linear codes. The reader not
familiar with this topic could consult, for example, [vL], [CLO]. We will also give some
results relating to linear codes that will be frequently used in this work.

Let Fq be the Galois Field of q elements (q = pm, where p is a prime number). The
elements of Fq are represented by a0 + . . .+ am−1α

m−1, where α is a root of an irreducible
polynomial of degree m over Fp and, for j ∈ [0,m− 1], αj ∈ Fp.

Let E be a linear map from F k
q to Fn

q for k < n. Let C = E(F k
q) ⊂ Fn

q be the linear
code defined by E. The elements in C are called codewords.

Theorem 1.1. (Characterization of a linear code by its parity check matrix) There exists
a matrix Hn×(n−k) with coefficients in Fq, such that a vector c in Fn

q is a codeword if and
only if it satisfies the system

cH = 0. (1)

By this theorem the set C can be characterized as the set of all elements in Fn
q satisfying

System (1). H is called a parity check matrix for the linear code.
We will use in this work the well known Hamming distance. The minimum distance of

a code C is the minimal Hamming distance d(c, c′) of two codewords c, c′. The weight of a
codeword is its distance from zero. If d is the minimum distance for the code C, it is well
know that one can correct up to t errors, where d = 2t + 1 or d = 2t + 2. t is called the
error-correcting capability of the code.

Theorem 1.2. (The error vector system) Given the received word y ∈ Fn
q such that it

contains at most t errors, there exists only one solution e of the system

eH = yH, (2)

where e has weight less than or equal to t. This solution e of the System (2) is such that
y−e = c is the corresponding codeword for the received word y, that is, e is the error vector.

The value yH is known as the syndrome of the vector y ∈ Fn
q , that is, C is the subspace

of the vectors whose syndrome is zero. The set of y ∈ Fn
q with t errors at the most2 can be

represented as:
B(C, t) := { y ∈ Fn

q | ∃
c∈C

d(c, y) ≤ t }.

2which are considered in the previous theorem.

Borges, Winkler, Borges [BBW]. 3

2 Associating a monoid with a linear code

In connection with the vector space Fn
q a set X of variables will be introduced so that later

we can relate the free commutative monoid in these variables with the structure of the linear
code.

Given (y1, . . . , yn) ∈ Fn
q , each component yi can be represented as yi =

∑m
j=1 βijα

j−1.
Based on this representation, the alphabet X = {x11, . . . , x1m, . . . , xn1, . . . , xnm | i ∈
[1, n] and j ∈ [1,m]} is introduced and the free commutative monoid [X] is associated with
Fn

q in the following way: let ψ be the mapping from X to Fn
q that sends every xij to the

corresponding vector with zero in all its components up to the position i which is equal to
αj−1.

As [X] is freely generated by X and ψ is a mapping of X onto a generating set of the
additive monoid Fn

q , ψ can be extended in a natural way to a linear morphism of [X] onto

Fn
q ; moreover, ψ maps

∏n
i=1

∏m
j=1 x

βij

ij into the vector (
∑m

j=1 βijα
j−1)i modulo p.

Remark 2.1. Taking into consideration the comments made above, the variables xij can
also be seen as the set of nm variables xk, where k = (i− 1)m+ j. This last representation
of variables will be used in the subsequent sections of this paper.

It is well known that a linear code defines an equivalence relation R(C) in Fn
q given as:

∀
x,y∈F n

q

((x, y) ∈ R(C) ⇐⇒ x− y ∈ C).

By the linear morphism ψ, the congruence modulo C can be transferred onto [X] in the
following way:

u ∼=C w ⇐⇒ (ψ(u), ψ(w)) ∈ R(C) ⇐⇒ ψ(u)H = ψ(w)H.

After setting ξ(u) := ψ(u)H we can write this relation as: u ∼=C w ⇐⇒ ξ(u) = ξ(w).
Normally, in the literature, a free commutative monoid over an alphabet with n elements

is associated, in a canonical form, to Fn
q . Using the representation given above makes it

possible to associate the normal multiplication in the monoid with the + operation in Fn
q .

In fact, this is the very beginning for using as much as possible the linear structure of the
linear code in relation with the monoid.

Before introducing the term ordering that will be used in this work, the following nota-
tions are introduced:
1 the unit for the product in [X].
i, j, s, l integers in the rank [1, max(m,n)].
u, v, w elements of [X] (terms).
Supp(w) the set of variables that divide w,

i.e. the support of w.
Ind(w) { i ∈ [1, n] | ∃

j
j ∈ [1,m] ∧ (xij ∈ Supp(w)) },

i.e. the indeces associated to w.
Card(U) the cardinal of the set U .

4 FGLM and linear codes.

Definition 2.2. (The Error Vector term ordering <e) u <e w (u is less than w w.r.t. the
error vector term ordering), iff one of the following conditions holds:

(i) Card(Ind(u)) < Card(Ind(w)).

(ii) Card(Ind(u)) = Card(Ind(w)) and u ≺ w, where ≺ denotes any arbitrary but fixed
admissible 3 term ordering on [X].

Proposition 2.3. (Properties of <e)

(i) 1 <e u, for all u 6= 1.

(ii) u <e ux, for all x ∈ X.

Unfortunately, the term ordering <e is not admissible. But Proposition 2.3 is enough
for getting our decoding algorithm. Everything will look as a normal use of border bases
like in [MMM], [BBM].

Definition 2.4. (Standard representation) The word w is said to be in standard represen-
tation iff all the exponents of the variables in the representation of w are less than p. Given
y ∈ Fn

q , we say that w is the standard representation of y iff ψ(w) = y and w is in standard
representation.

Definition 2.5. (Normal form) The word w is said to be the normal form of the vector
y ∈ Fn

q iff the following two conditions hold:

(i) ξ(w) = yH.

(ii) ∀
u∈[X]\{w}

((ξ(u) = yH) =⇒ w <e u).

Conversely, we say that w is a normal form iff it is the normal form of ψ(w).

Remark 2.6. For a given syndrome, the normal form corresponding to this syndrome is the
least word w according to <e such that ξ(w) corresponds to this syndrome.

Theorem 2.7. (Normal forms of the vectors in B(C, t)) For every y in B(C, t), we is the
normal form corresponding to y if and only if ψ(we) is the error vector corresponding to y
and we is in standard representation.

Proof. Let y ∈ B(C, t), ey be the error vector corresponding to y; then, eyH = yH
and weight(ey) ≤ t (see Theorem 1.2 of Section 1). Let, on the other hand, w be the
standard representation of ey; accordingly, Card(Ind(w)) ≤ t 4. Let us now suppose u
such that ξ(u) = yH and u <e w; then by definition of <e, we have that weight(ψ(u)) ≤
Card(Ind(u)) ≤ Card(Ind(w)) and by applying again Theorem 1.2 in Section 1, ψ(u) = ey,
i.e., there exists v 6= 1 such that u = wv; therefore, by Proposition 2.3.ii we have that
w <e u.

3In Gröbner Bases Theory, ≺ is admissible if 1 is the lowest element w.r.t. ≺ and the multiplication on
[X] is compatible with ≺.

4Card(Ind(w)) ≥ weight(ψ(w)). The equality holds if w is in standard representation (see Proposition
2 and Remark 2 in [BWB]).

Borges, Winkler, Borges [BBW]. 5

3 FGLM and linear codes

In this section we show how to use the FGLM techniques to compute the function Matphi 5

over a set of canonical forms N built by the algorithm. But this set N does not coincide
with N<e , the set of all the normal forms in the sense of the reduction determined by <e

and the congruence R(C). However, N contains a very important subset of this set and
precisely this fact will allow us to use the function Matphi for decoding a received word
very fast.

The sources for the algorithm presented in this section have been [FGLM] and [BBM],
particularly the procedure Matphi in the first paper and the Section 4 of the last paper
(specializations to monoid and groups algebras).

In the following we give the essential properties that N and Matphi should have; we do
it in order to be quite self contained and to clarify the differences between our set N and
function Matphi and the ones given in the previous literature.

Properties of a set of canonical forms.

(i) 1 ∈ N and N ⊂ [X].

(ii) Card(N) = qn−k.

(iii) Two different words of N determine distinct coset module R(C).

(iv) For all w ∈ N there exists x ∈ X such that w = w′x and w′ ∈ N .

Note that property (iv) makes the properties of the set N weaker than the ones for N<e

when the order is admissible.

Properties of the function Matphi:

(i) Matphi is a mapping φ from N ×X onto N 6.

(ii) For all (w, x) ∈ N ×X ξ(φ(w, x)) = ξ(wx) 7.

Our purpose will be to show that the algorithm presented herein builds such a set N
and a function Matphi with the required properties.

Let us start making some references to some subroutines of the algorithm.
InsertNexts[w,List] inserts properly the products wx (for x ∈ X) in List and sorts it by
increasing ordering with respect to the ordering <e.
NextTerm[List] removes the first element from List and returns it.
Member[v′, {v1, . . . , vr}] returns True if v′ ∈ {v1, . . . , vr} and False otherwise. When the
output is True, it also returns an additional output with the position j such that v′ = vj .
Following Remark 2.1, the variables will be represented with only one index.

5See [FGLM] for the definition of the function Matphi and [BBM] for the specific case of monoid rings.
6The image of (w, x) will be denoted by φ(w, x).
7it means that φ(w, x) is the representative element for the coset determined by ξ(wx).

6 FGLM and linear codes.

Algorithm 3.1. (FGLM for linear codes)
Input: p, n, m, H the defining parameters for a given linear code.
Output: N , φ.
1. List := {1}; N := ∅; r := 0;
2. While List 6= ∅ do
3. w := NextTerm[List];
4. v′ := ξ(w);
5. (Λ, j) := Member[v′, {v1, . . . , vr}];
6. If Λ = True
7. then for each k such that w = uxk with u ∈ N do
8. φ(u, xk) := wj ;
9. else r := r + 1;
10. vr := v′;
11. wr := w; N := N ∪ {wr};
12. List := InsertNexts[wr, List];
13. for each k such that w = uxk with u ∈ N do
14. φ(u, xk) := w;
15. Return[N, φ].

See justification of the algorithm in [BWB], where the proofs of termination and cor-
rectness are given. We have proved in [BWB] that Algorithm 3.1 computes a set N and a
function Matphi with the properties required above. The only property that is not obvious
from the construction of Algorithm 3.1 is the property (ii) of the set N of canonical forms.
This property will be a consequence of Theorem 4.3.

The reason for keeping List ordered will be discussed later, it is mainly for guaranteeing
that a certain subset of [X] is contained in N .

4 Decoding linear codes

In this section we design an easy to understand and fast decoding algorithm which takes as
its input the output of Algorithm 3.1. Previously, we have to introduce a canonical form
function that will be denoted by CF . In fact CF is defined in a recursive way:

CF : [X] −→ N

CF (1) := 1;
CF (w) := φ(CF (u), xk),
where w = uxk and u ∈ [Xk] = [x1, . . . , xk].

(3)

Remark 4.1. The decomposition w = uxk means that xk is the greatest variable that divides
w, so, the above factorization of w is uniquely determined; one can continue in this way,
now with CF (u), until CF (1) is reached.

Lemma 4.2 and Theorem 4.3 show some important properties that connect the function
CF with our previous knowledge.

Borges, Winkler, Borges [BBW]. 7

Lemma 4.2. (Canonical form of the error vectors) Let v be a word in standard represen-
tation satisfying Card(Ind(v)) ≤ t. Then, CF (v) = v.

The proof 8 is done by induction on the length of v. The key point is to use Theorem
2.7 in connection with the fact that List is built by taking into consideration <e.

One of the must important theorems of this paper is the following.

Theorem 4.3. (Every element has Canonical Form) For every element w in [X], CF (w)
is the unique element in N with the same syndrome as w, that is:

ξ(w) = ξ(CF (w)).

Proof. Uniqueness comes from the property (iii) of the set N of canonical forms. Let now w
be an arbitrary word. We decompose w in the following form: w = xi1 . . . xik , where xij ≤e

xij+1 . Thus ξ(CF (w)) = ξ(φ(CF (xi1 . . . xik−1
), xik)) (by definition of CF), and

ξ(φ(CF (xi1 . . . xik−1
), xik)) = ξ(CF (xi1 . . . xik−1

)xik) (by the property of the function φ).
If one continues now with xik−1

, until CF (1), one can obtain the following equality:
ξ(CF (w)) = ξ(CF (1)xi1 . . . xik) (ξ is a morphism from [X] to Fn−k

q). But CF (1) = 1, so
we are done.
Remark 4.4. (i) As a direct conclusion of this theorem we have that the cardinality of N

is qn−k.

(ii) We know from Theorem 2.7 that, if Card(Ind(w)) ≤ t and w is in standard repre-
sentation then w is a normal form, that is, w ∈ N<e . Now, from Lemma 4.2, we also
have that w ∈ N and precisely this is the important subset of N<e that is a subset
of N : the set of all the standard representations of the error vectors with weight at
most t 9.

Theorem 4.5. (Decoding) Let w be such that ψ(w) ∈ B(C, t). Then ψ(CF (w)) is the
error vector corresponding to ψ(w).

Proof. Let we be the standard representation of the corresponding error vector of ψ(w).
Consequentely, Card(Ind(we)) ≤ t and, by Lemma 4.2, we ∈ N . But ψ(w)H = ψ(we)H,
which amounts to ξ(w) = ξ(we). On the other hand, by Theorem 4.3, ξ(w) = ξ(CF (w)).
So, ξ(we) = ξ(CF (w)) and therefore, we = CF (w) 10.

Note that from Theorem 4.5 we can already extract a decoding algorithm. It is only
necessary to know the error-correcting capability of the code.

Theorem 4.6. (error-correcting capability) Let List be the list of words in Step 3 of Algo-
rithm 3.1 and let w be the first element analyzed by NextTerm[List] such that w does not
belong to N and w is in standard representation. Then

t = Card(Ind(w))− 1.
8See the proof in [BWB].
9If C is a perfect code N<e = N .

10there exists only one element in N with the same value for ξ.

8 FGLM and linear codes.

See the proof of this theorem in [BWB]. The important fact is that due to <e the elements
in List are organized by levels with regard to Card(Ind).

The algorithm for decoding will be presented now. First let us explain some procedures
used by the algorithm.
Read: Reads the vector y and returns its standard representation in [X].
NextVar: Returns the first index k of a variable such that xk ∈ Supp(w) and then computes
w := w/xk. If w = 1, NextV ar returns 0.
Remember that xij corresponds to x(i−1)m+j when we use only one index instead of two
(see remark 2.1).

Algorithm 4.7. (The Algorithm for decoding)

Input: A received vector y.
Output: The codeword corresponding to y, if y ∈ B(C, t),

and the error message “more than t errors” otherwise.
1. w := Read(y); we := 1;
2. i := NextVar[w];
3. While i 6= 0 do
4. we := φ(we, xi);
5. i := NextVar[w];
6. If weight(ψ(we)) > t then Return[“more than t errors”]
7. else Return[y − ψ(we)]

Steps from 3 to 5 correspond to the computation of CF (w), the correctness of this
algorithm follows directly from Theorems 4.5 and 4.6.

5 Example

In our example we will work with the linear code over F 6
2 determined by the parity check

matrix given in the left hand side of table 1, the set C of codewords is given in the right
hand side. The minimum distance is d = 3, so, t = 1, the numbers of variables is 6, ≺
is set to be the pure lexicographical ordering with xi+1 > xi. Only essential parts of the
computation will be described.
Table1.∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
C = {(0, 0, 0, 0, 0, 0), (1, 0, 1, 1, 0, 0), (1, 1, 1, 0, 0, 1),

(1, 1, 0, 0, 1, 0), (0, 1, 0, 1, 0, 1), (0, 1, 1, 1, 1, 0),
(0, 0, 1, 0, 1, 1), (1, 0, 0, 1, 1, 1)} ;

Application of Algorithm 3.1:

List := {1}; N := {}; r := 0; w := 1; ξ(1) = (0, 0, 0); N := N ∪ {1} = {1};

Borges, Winkler, Borges [BBW]. 9

Neval := {(0, 0, 0)}; List := {x1, x2, x3, x4, x5, x6}; w := x1; ξ(x1) = (1, 1, 1); N :=
{1, x1}; Neval := {(0, 0, 0), (1, 1, 1)}; After analyzing x6 we have the following stage:
N := {1, x1, x2, x3, x4, x5, x6}; φ(1, xi) = xi ∀ i ∈ [1, 6]. For w = x1x2, w /∈ N because
ξ(x1x2) = ξ(x5) = (0, 1, 0), x1x2 is the first element in List in standard representation
that does not belongs to N 11, therefore, by Theorem 4.6, t = 2 − 1 = 1. For w = x2x3,
ξ(x2x3) = (1, 1, 0) /∈ Neval then, x2x3 is the last element that is included in N .

Before giving two examples of how to decode, the shape of the function Matphi in this
case is given below. In the first argument of each component of Matphi the corresponding
error vector is stored, in the second argument we store 1 if the error vector in the first
argument has weight at most t and zero otherwise, and the list of mn components in the
third argument correspond to pointers to the values φ(w, xi) for i ∈ [1, nm].

[[[0, 0, 0, 0, 0, 0], 1, [2, 3, 4, 5, 6, 7]], [[1, 0, 0, 0, 0, 0], 1, [1, 6, 5, 4, 3, 8]],
[[0, 1, 0, 0, 0, 0], 1, [6, 1, 8, 7, 2, 5]], [[0, 0, 1, 0, 0, 0], 1, [5, 8, 1, 2, 7, 6]],
[[0, 0, 0, 1, 0, 0], 1, [4, 7, 2, 1, 8, 3]], [[0, 0, 0, 0, 1, 0], 1, [3, 2, 7, 8, 1, 4]],
[[0, 0, 0, 0, 0, 1], 1, [8, 5, 6, 3, 4, 1]], [[0, 1, 1, 0, 0, 0], 0, [7, 4, 3, 6, 5, 2]]].

Examples of the decoding process:

(i) y ∈ B(C, t) : y = (1, 1, 0, 1, 1, 0); wy := x1x2x4x5; φ(1, x1) = x1; φ(x1, x2) =
x5; φ(x5, x4) = x2x3; φ(x2x3, x5) = x4, this means e = ψ(x4) = (0, 0, 0, 1, 0, 0),
weight(e) = 1 then, the codeword corresponding to y is c = y − e = (1, 1, 0, 0, 1, 0),
the reader can see in table 1 above that this output c belongs to C.

(ii) y /∈ B(C, t) : y = (0, 1, 0, 0, 1, 1); wy := x2x5x6; φ(1, x2) = x2; φ(x2, x5) = x1;
φ(x1, x6) = x2x3; e = (0, 1, 1, 0, 0, 0); weight(e) > 1 then, we report an error in the
transmission process, in this case the reader can check that the vector y is out of the
set B(C, 1) for the set C given in table 1. Note that we could also give the value
y − e as a result, this could be useful for applications of codes when to give a result
is always necessary.

6 Complexity analysis

First of all the complexity analysis of Algorithm 4.7 will be presented below. The reader
will see that this very good complexity suggests to try out this approach on some linear
codes with practical interest. Limitations of our method will be discussed later.

Theorem 6.1. (Complexity of Algorithm 4.7.) Algorithm 4.7 computes the corresponding
codeword of the received word in O((p− 1)mn) operations.

11Note that x2
i is not in standard representation.

10 FGLM and linear codes.

The proof comes from the fact that in order to compute CF (w) it is necessary to
perform as many steps as the length of the word w. The maximal length of a word in
standard representation is (p− 1)mn, from where the complexity function follows.
Comparison with other methods: It is well known that in the class of linear codes the
class of Goppa codes 12 turns out to be of high practical interest because of the parameters
of the codes and the algorithms for decoding. In many of the papers that have been quoted
in the references (see [FR], [Du], [HøPe]), the algorithms for decoding Goppa codes take
O(n3) operations. It is easy to see the difference between this complexity and the complexity
of our algorithm. Normally n is greater than q = pm (n > q is the most interesting case).
The complexity of our algorithm is less than O(n2) if n ≥ (p − 1)m. Note also that the
bigger the difference n− q is, the closer our algorithm is to being linear in n. In [Sak] the
author states that his approach for decoding a one point Goppa code has complexity O(na)
with 2 < a ≤ 3, which is generally less than O(n3), but it is always bigger than O(n2).
In [SJH] a special case is presented where the complexity is O(n5/2) and in this case our
algorithm takes O(n5/4). In [JLJH] and [SJMJH] another special case is presented where
the complexity is O(n7/3) and in this case our algorithm takes O(n4/3). Another advantage
of our approach is that the algorithms known for Goppa codes are able to decode only up
to half of the designed minimum distance of the code 13 and, by using Algorithm 4.7 one
can correct up to t errors 14. The reader should also note that this method proposed here
is for general linear codes and not for a particular family.

Clearly the main limitation of this method is the memory required for keeping the
information represented by Matphi. We recommend to see in [BWB] the detailed analysis of
the last section devoted to complexity analysis. We will show below some interesting bounds
for the memory required and complexity function in the computation with Algorithm 3.1
for a given code. The meaning of the constant can be found in [BWB].

The memory required for Algorithm 3.1 is cmn2qn−k + c1(n − k)qn−k = qn−k(cmn2 +
c1n−c1k), the number of operations performed by Algorithm 3.1 is O(mn2qn−k) operations.
In order to use Algorithm 4.7 for decoding we need to keep the information contained in
Matphi, whose size is given by qn−k(nc+ nmc′ + c′′).

Note that in order to apply this method for decoding one really needs to fulfil the
requirements stated above. But Algorithm 3.1 is executed just once, in the preparation
phase of the code. The complexity of Algorithm 3.1 is reasonable if one keeps in mind that
this algorithm computes among all the qn vectors in Fn

q the qn−k representative vectors
for the cosets determined by the code. Moreover, these representative elements are not
arbitrarily chosen. The algorithm also computes the Matphi, which gives us a way of
multiplying cosets. We only need one computer powerful enough for computing the Matphi
for the code. Then, if the code is really big, at least the same computer that was able to
execute Algorithm 3.1 will be able to decode by Algorithm 4.7. Due to the difference in
the complexity functions between our algorithm and the algorithms given previously in the

12See [Pre] for treatment of algebraic geometric codes.
13In general less than the real minimum distance of the code.
14The error-correcting capability of the code.

Borges, Winkler, Borges [BBW]. 11

literature, our algorithm can be faster for big codes even when we have to store the Matphi
in external memory. In this case, your “chip” (Matphi) is attached to the equipment (a PC
for example), where you also have to install the decoder 15.

If one considers n and d fixed, it is an interesting problem in Coding Theory to find k
as big as possible such that such a [n, k, d] linear code exists. We know from the bounds
given before that the better the code is (which means, if n and d are fixed, the bigger k is)
the less information one needs to store and the fewer operations are needed in Algorithm
3.1.

References

[BBM] M. Borges-Trenard, M. Borges-Quintana, T. Mora. Computing Gröbner Bases by
FGLM Techniques in a Noncommutative Setting. J. Symbolic Computation (to appear
2000).

[BWB] M. Borges-Quintana, F. Winkler, M. Borges-Trenard. FGLM Techniques Applied
to Linear Codes – An Algorithm for Decoding Linear Codes. Techn. Rep. RISC-Linz,
RISC - 00-14, J. Kepler Univ., Linz, Austria (2000).

[CCS] A. M. Cohen, H. Cuypers, H. Sterk (Eds). Some Tapas of Computer Algebra.
Springer-Verlag, Berlin (1999).

[CLO] D. Cox, J. Little, D. O’Shea. Using Algebraic Geometry. Springer-Verlag, New York
(1998).

[Du] I. M. Duursma. Majority Coset Decoding. IEEE. Trans. On Inf. Theory, vol. 39/3,
pp. 1067-1070 (1993).

[FR] G.-L. Feng, T.R.N. Rao. Decoding Algebraic-Geometric Codes up to the Designed
Minimum Distance. IEEE Trans. On Inf. Theory, vol. 39/1, pp. 37-45 (1993).

[FGLM] J.C. Faugere, P. Gianni, D. Lazard, T. Mora. Efficient Computation of Zero-
dimensional Gröbner Bases by Change of Ordering. J. Symbolic Computation, 16, pp.
329-344 (1993).

[HøPe] T. Høholdt, R. Pellikaan. On the Decoding of Algebraic-Geometric Codes. IEEE
Trans. On Inf. Theory, vol. 41/6, pp. 1589-1614 (1995).

[MMM] M. G. Marinari, H. M. Möller, T. Mora. Gröbner Bases of Ideals Defined by Func-
tionals with an Application to Ideals of Projective Points. Applicable Algebra in Enge-
neering, Communication and Computing, vol. 4, pp. 103-145 (1993).

[MR1] K. Madlener, B. Reinert. String Rewriting and Gröbner bases – A General Approach
to Monoid and Group Rings. In Proceedings of the Workshop on Symbolic Rewriting
Techniques, Monte Verita, Birkhäuser, pp 127-180, 1995 (printed 1998).

15A program or device that is able to execute Algorithm 4.7 by using the “chip” Matphi.

12 FGLM and linear codes.

[MR2] K. Madlener, B. Reinert. Relating Rewriting Techniques on Monoids and Rings:
Congruences on Monoids and Ideals in Monoid Rings. Theoretical Computer Sciences,
208, pp. 3-31 (1998).

[MRM] K. Madlener, B. Reinert, T. Mora. A note on Nielsen Reduction and Coset Enu-
meration. Proc. ISSAC 98, pp. 171-178 (1998).

[Pre] O. Pretzel. Codes and Algebraic Curves. Clarendon Press. Oxford (1998).

[SJH] S. Sakata, H. E. Jensen, T. Høholdt. Generalized berlekamp-Massey Decoding of
Algebraic-Geometric Codes up to Half the Feng-Rao Bound. IEEE Trans. On Inf.
Theory, vol. 41/6, pp. 1762-1768 (1995).

[SJMJH] S. Sakata, J. Justesen, Y. Madelung, H. E. Jensen, T. Høholdt. Fast Decoding of
Algebraic-Geometric Codes up to the designed Minimum Distance. IEEE Trans. On
Inf. Theory, vol 41/5, pp. 1672-1677 (1995).

[Sak] Shojiro Sakata. Gröbner Bases and Coding Theory. In Gröbner Bases and Applica-
tions (Proc. of the Conference 33 Years of Gröbner Bases). B. Buchberger, F. Winkler
(eds.). Cambridge University Press, London Mathematical Society Lecture Notes Se-
ries, vol. 251, pp. 205-220 (1998).

[JLJH] J. Justesen, J. Larsen, H. E. Jensen, T. Høholdt. Fast Decoding of Codes from
Algebraic Plane Curves. IEEE Trans. On Inf. Theory, vol. 38/1, pp. 111-119 (1992).

[vL] J. H. van Lint. Introduction to Coding Theory (2nd ed.). Springer-Verlag, Berlin (1992).

Address of the authors:

† Departamento de Matemática, Fac. de Ciencias. ‡ RISC-Linz. Johannes Kepler
Universidad de Oriente, Santiago de Cuba 90500, Cuba. University. Linz, Austria.
mijail@csd.uo.edu.cu, mborges@csd.uo.edu.cu winkler@risc.uni-linz.ac.at

