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Abstract

Many problems in robotics and geometric design are ve-
ally problems about the construction, analysis, and repre-
sentation of curves and surfaces. If these curves and sur-
faces are algebraic, i.e. describabie by polynomial equa-
tions, then they can be treated by standard algorithms
and methods in computer algebra. This means that we
can get reliable symbolic information about these prob-
lems.

1 Introduction

Many problems in robotics and geometric design are re-
ally problems about the construction, analysis, and repre-
sentation of curves and surfaces. If these curves and sur-
faces are algebraic, i.e. describable by polynomial equa-
tions, then they can be treated by standard algorithms
and methods in computer algebra [11]. This means that
we can get reliable symbolic information about these
problems.

Computer algebra is concerned with the design, anal-
ysis, implementation, and application of algebraic algo-
rithms. Computer algebra is the symbolic version of sci-
entific computation, i.e. its destinguishing features are

e a great variety of algebraic structures, such as
various number domains, multivariate polynomials,
finitely represented groups, rational and transcen-
dental expressions among others,

¢ exact, i.e. non-approximative, computation on these
algebraic structures,

+ generating symbolic expressions and formulas as out-
put.

In particular, computer algebra contains a great wealth
of algorithms and methods for dealing with multivari-
ate polynomials and corresponding systems of polynomial
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equations. Typically, when we solve a system of algebraic
equations like

2t 4+ 2%y + Byt~ = 0,
2?4y -1 = @

by computer algebra methods, we are interested in an
exact representation {/3/2, -1/2) of the solution instead
of an approximative one such as (0.86602...,-0.5).

In computer algebra we have a variety of concepts,
methods, and algorithms for solving systems of such alge-
braic equations. Some of them concern the computation
of greatest common divisors of polynomials, factoriza-
tion of polynomials, resultants of systems of polynomial
equations, characteristic sets for algebraic equations, and
Grobner bases for systems of algebraic equations, just
fo name the most important ones. So, for instance, we
can triangularize the above systern of algebraic equations
by a Grébner basis computation, yielding the equivalent
system, in which the variables are introduced one at a

tlme:
y—4dzt+5822 -1 = 0,
162% — 242% 1. 922 = 0.

Various program systems, such as Maple, Mathemat-
ica, Reduce, just to name a few, are available for carrying
out these exact symbolic algorithms. The program sys-
tem CASA (see [4]), developed by the author’s research
group, is capable of performing all the computations in
this paper. We will demonstrate in some selected exam-
ples, how methods and algorithms from computer alge-
bra can be successfully applied to problems arising in the
fields of robotics and geometric design.

2 Parametrization of Curves and Sur-
faces

Algebraic curves and surfaces are decribed by polynomial
equations, i.e. the points on the corresponding curve or
surface are the solutions of these algebraic equations. For
Instance, the algebraic curve C; depicted in Fig. 1 is
defined as the roots of the equation

(@ +4y+°)° — 16(a? + y?) = 0.

Such defining equations are convenient for checking
whether a given point actually lies on the curve. But for



Figure 1: Algebraic curve Cy.

other applications, such as creating points, computing
intersections, determining offsets, etc., it is much more
convenient to work with parametrizations of curves and
surfaces, in particular rational parametrizations. A ratio-
nal parametrization of an algebraic curve is nothing else
than a pair of rational functions (i.e. polynomial numer-
ator and denominator) (z(t), y(f)), such that whenever
we substitute for the parameter ¢, we get a point on the
curve, ard every point on the curve can be produced in
this way (with finitely many exceptions).

It is well known, that not every algebraic curve can
be rationally parametrized. In fact, this is possible only
for irreducible curves of genus 0, i.e. these curves have
to have encugh singular points. Nevertheless, rational
curves appear in numerous applications (e.g. rational
Bézier curves), and often it is important to be able to test
whether an algebraic curve is rational, and if so, compute
a rational parametrization.

Let us consider £y for an example of the parametriza-
tion process descibed in [8] and [9]. Some of the singular-
itles of C; are “at infinity”, so they are visible only in the
projective plane. In fact, C1 has 3 double points, namely

O=(0:0:1), Pia=(l:%:0).

We consider the system of all quadratic curves through
these 3 points (in analogy to the system of lines in the
previous example). The system has 2 free parameters,
and we reduce the number of parameters by requiring
also that every curve in the system should pass through
the point @ = {0 : =8 : 1) on ;. Now the defining
equation of the system of quadratic curves is

Rz, y,t) =122 4 ty? + 2 + 8y

for an undetermined coefficient £. Intersecting C; with an
arbitrary conic of this system, we get {(by Bézout’s The-
orem) 2-fold intersections at O, Py 5, a 1-fold intersection
at (), and exactly one more intersection point depending
on t. This point has coordinates depending rationally on
the parameter ¢, leading to the parametrization

_ —2048t* 4 1282

—1024¢3
y( ) - 4 2
26644 + 32¢2 + 1

o) = e e T 1

of the curve C;.

In general, this process can introduce algebraic num-
bers in the coefficients of the parametrization, which
could in fact be non-real algebraic numbers. This raises
the question of whether a “real” algebraic curve {i.e. a
curve having infinitely many points in the real plane) hav-
ing any rational parametrization (with possibly complex
coeficients), can in fact be parametrized with coefficients
in the field of real numbers. Fortunately, the answer to
this question is “yes” (see [9] and [10]).

The rational parametrization of algebraic surfaces
poses additional problems. But also for surfaces there
are parametrization algorithms availabie, see [7].

3 Geometric Design: Offset Curves

In computer aided geometric design we frequently en-
counter the problem of having to offset a curve or surface.
This means to determine, for a given generating curve C
and a given distance d, a parallel or offset curve D at dis-
tance d, having the following property: for every point P
on C there is a point ¢ on the offset curve D such that
the distance between P and @ is exactly d, and the line
PQ is perpendicular to C at P and vice versa.

Figure 2: Offset to the parabola.

Such offset curves arise for instance, when we want
to cut out an object whose boundary 1s a curve ¢, and
we want to use a circular cutfer of diameter d. Then the
center of the cutter has to traverse exactly the offset curve
to C at distance d. Other applications in computer aided
geometric design are in robot path planning, geometric
optics, and the formulation of geometric procedures such
as growing and shrinking, blending, filleting, etc. For
symbolic algorithms on offset curves we refer to [3], {1].

Let us demonstrate some of the problems and tech-
niques for the parabola (compare Fig. 2). The parabela
is given parametrically by z{t} = ¢,y(t) = #2. In gen-
eral, if the generating curve C is given parametrically by
(fi(2), f2(t}), then the offset curve at distance d is the
solution of the system

(- fi{t))* + (J fz(t)) —di’mo
B()(e — A1)+ 32(t)(y - f1) =

distance d
perpendicular



For the parabola this means that we have to eliminate
the variable ¢ from the equations

w? - Ur+t2 + oyt =20yt -1 =0,
:t:—tu§~2ty~*21‘.3:{].

Computing the resultant of these two polynomials w.r.t.
the variable ¢ (any computer algebra system can do this
for us), we get the defining equation of the offset curve
at distance 1 to the parabola:

16y* — 32273 — 40° + 162%y? + Gy? — 402%y
+62%y + 40y + 162° — 4727 + 2822 - 25 = 0.

This equation describes the twe-sided offset curve, and in
fact this two-sided offset to the parabola is an irreducible
curve, i.e. we cannot decompose it into a left- and right-
sided offset. This is, of course, not always so. For instance
the offset to a circle clearly decomposes into 2 circles.

Since the parabola is a rational curve, it is natural to
ask whether the offset to the parabola is also rational.
Given a rational curve C defined by = = f1({),y = f2(¢),
we get a parametric representation P (1) of the offset curve
at distance d by setting

) = (a(t), y(1)) + — N (1)
PR E

where A/(2) is the normal vector (—f4(t), fi{#)) and
m(t) is the norm of the normal vector, i.e. m(f) =
T2 + F22(). (Observe that this definition does not
work for singular points, so we have to consider the
Zariski closare of P(1).) If the norm m{l) is not ratio-
nai, then the parametrization 7 (¢} will not be a rational
parametrization of the offset. This is indeed the case for
the parabola. But still the offset to the parabola is a ra-
tional curve, and we can get arational parametrization ei-
ther by replacing the parameter ¢ in P(¢) by (s*—16)/18s,
or by directly applying the parametrization algorithm de-
cribed above. In any case, we get a rational parametriza-
tion of the offset as

:I}('t)
y(t} =

(t*~16¢t4+16}{t7—16)
16(LoF16t) ’
£5— 16¢" £2048t% — 256174096
256{L5F16t7) .

We have a complete overview of the situations that can
occur w.r.t. the raticnality of offset curves:

offset curve

2 rational components

1 rational component

1 non-rational compent

1 rational and 1 non-rat. comp.
2 non-rational components

1 non-rational component

generator curve
rational

non-rational

Or cowrse, offsets are also very important for surfaces.
However, the results for surfaces are by no means so com-
plete as for curves. Special cases, such as canal surfaces,
can be handled successfully (see [6]).

4 Robotics: Inverse Kinematics

We consider robots with two types of joints, namely
prismatic and revolute joints. The kinematics of such
robols can be described by multivariate polynomial equa-
tions, after having represented angles o by their sines
and cosines and having added the equation sin®{a) +
cos?(a) = 1 to the set of polynomial equations. This
description can be found, for instance, in [3].

There are basically two kinds of kinematics problems
related to this situation: forward kinematics and inverse
kinematics. The former determines the position of the
end-effector for given lengths of prismatic joinés and an-
gles of revolute jomts, whereas the latter determines pos-
sible lengths and angles from a predetermined goal posi-
tion of the end-effector. Whereas a forward kinematics
problem always has exactly one solution, an inverse kine-
matics problem could have ne, exactly one, or several
(possibly infinitely many) solutions.

As an example, let us consider a robot consisting of
two bars of fixed lengths joined by a revolute joit. The
{irst bar 1s fixed to the origin of the coordinate system in
(2,y, z)-space, always stays perpendicular to the [z, y)-
plane, but can rotate relative to the (2, y)-plane describ-
ing an angle d;. The second bar may assume an angle d;
relative to the first one. The end-effector is located at the
other end of the second bar. So this robot has two “de-
grees of freedom”, l.e. we can — within suitable bounds -
set two of the coordinates of the end-effector, and deter-
mine the third coordinate and the angles producing this
position. See Fig. 3.

z end-effector

Iy

Figure 3: Robat arm with 2 degrees of {reedom.

A variant of this robot is studied in [2}. The inverse
kinematics problem for such a robot consists in fixing a
point (actually only 2 coordinates of the desired point
can be fixed, since the robot has only 2 degrees of free-
domm) in space, and subsequently determining the possible
adjustments of the angles for achieving this position.



For transforming the original problem into a system of
algebraic equations, we infroduce the following variables
and sines and cosines of angles;

li,1s
e, py, p

lengths of the two robot arms

2-, y-, and z-coordinates of the position of
the end-effector

angles describing the rotations of the
revolute joints

81, 87, 1, ¢ sines and cosines of 4y, 8, respectively

dy, 0y

Now the inverse kinematics preblem for given values
of the geometrical variables (i.e. {1,1) and position vari-
ables (i.e. pwz,pz) is solvable with joint variables (i.e.
$1,¢1, §2, ¢2) and third coordinate py if and only if these
variables satisfy the following system of algebraic equa-
tions:

ly ey co—pr =
ly 851 co—py =
Iy - 59+ 14 - pr =
el st el =
C% + S% -1 =

oo O oD

For solving this system of algebraic equations, we com-
pute a Grobner basis (w.r.t. a lexicographical term order-
g} for this system. This, in effect, changes the original
system into a new equivalent one, which is “triangular”,
t.e. the variables are introduced one after the other. So
we can apply a recursive process for solving the new sys-
tem. Technically, we compufe a Grobner basis for this
system in the polynomial ring

Q([i ) !'2: Pfg-,}m){cly Ca; 81, S?ipy]:
getting

(12 =13+ 2lpe—pe —pe®y ey —pe-sy-py = 0,

(13 — L2 + 2olypz — lopz® — Lpz?) - ¢y
+(—1Z + l%,— 2pr +p®) s opy o= 0,

(3~ +2pzr—p2?) -2 - B4 17— 2p2
+p2f 4 px® = 0,
{3859 + 11 — pr = 0,
—E 13— 2pzr 4 p b pe 4y = 0.

From this Grobner basis for the equations of the robot
-—which 1s typically computed “off-line” — we can easily
determine particular solutions of the inverse kinematics
problem: from the last equation we get py, from the 4th
equation we get sy, and so on. Let us assume that the
lengths of the two arms are Iy = 30,13 = 45. Since our
robot has only 2 degrees of freedom, we can predetermine
for instance the - and the z-coordinates of the position
of the end-effector. Let us set

__ 4548

45

= 27.5567... r-coordinate of end-effector

+ 30 = 61.8198 . . . z-coordinale of end-ellector

i
S

Then there are several solutions, one of them being

452 Ve

8y = e 8y =
4

2

s 1
= -, L5 = , 01 =
by o 2 : €1

i.e. the angles have to be set to

(5] = 360,53 = 430
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