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Abstract

There are various algorithms known for deciding the parametrizability (rational-
ity) of a plane algebraic curve, and if the curve is rational, actually computing a
parametrization. Optimality criteria such as low degrees in the parametrization
or low degree field extensions are met by some parametrization algorithms. In
this paper we investigate real curves. Given a parametrizable plane curve over
the complex numbers, we decide whether it is in fact real. Furthermore, we dis-
cuss methods for actually computing a real parametrization for a parametrizable
real curve.

1. Introduction

In [?], [?] we have described a symbolic algorithm for computing a rational
parametrization (x(t), y(t)) of a plane algebraic curve C of genus 0 (only these
curves have a rational parametrization). This algorithm is implemented in the
system CASA [?]. Approaches to the parametrization problem for algebraic
curves are also described in [?] and [?].

Definition: Let K be a field of characteristic 0, K the algebraic closure of K.
Let the irreducible affine curve C be defined as the set of solutions in the affine
plane A(K)2 of the polynomial equation

f(x, y) = 0

over K, i.e. f ∈ K[x, y]. Then x(t), y(t) in K(t), the field of rational functions over
K, constitute a rational parametrization of C, if and only if, except for finitely
many exceptions, every evaluation (x(t0), y(t0)) at t0 ∈ K is a point on C, and,
conversely, almost every point on C is the result of evaluating the parametrization
at some element of K.

In this case C is called parametrizable or rational.
Equivalently, P(t) = (x(t), y(t)) is a rational parametrization of C if P :

K −→ C is rational and not both x(t) and y(t) are constant. Furthermore, if P
is birational we say that P(t) is a proper parametrization. 2
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The parametrization problem for algebraic curves consists in first deciding
whether the given curve C has such a rational parametrization, and if so finding
one.

In our geometrical approach to parametrization we basically determine the
singularities of the curve C, decide the genus of C (C can be parametrized if
and only if genus(C) = 0), find a couple of simple points on C in a low degree
(i.e. degree 1 or 2) algebraic extension K(γ) of K, and from the singularities
and these simple points derive a parametrization of C. The parametrization will
have coefficients in K(γ). So starting with a parametrizable curve defined by a
polynomial f(x, y) ∈ Z[x, y] we will either get a parametrization with rational
coefficients or with coefficients in Q(γ), γ algebraic over Q of degree 2. If the
curve C is a real curve, i.e. if C has infinity many real points, then for obvious
reasons we will not be satisfied with a parametrization with complex coefficients.

For practical applications, such as in computer aided geometric design, we
need to be able to parametrize real curves with real coefficients, if possible. In
this paper we demonstrate that if C is a real curve, then our algorithm actually
computes a parametrization of C with real coefficients. Alternatively, one could
take a possibly complex parametrization and, if possible, transform it to a real
one. This approach is developed in [?] and [?].

2. Real curves

Let f(x, y) ∈ C[x, y] be a non-constant polynomial. f defines a plane affine curve
C over the complex numbers, i.e. C ⊂ A2(C), the affine plane over C. Whenever
useful or necessary, we will also consider the curve C in the projective plane, i.e.
P2(C). Points in the projective plane are written as (a : b : c).

Definition: The curve C is a called a real curve, if and only if C has infinitely
many points in A2(R). 2

A real curve always has a defining polynomial over the reals. A proof of the
following Lemma is given in [?].

Lemma 1: If the curve C is real, then it can be defined by a real polynomial. 2

Not only can every real curve be defined over the reals, also the irreducibility
of the curve is independent from whether we view it in A2(R) or in A2(C). A
proof of the following Lemma is given in [Wi96], Theorem 5.5.3.

Lemma 2: Let C be a real curve. C is irreducible over R if and only if it is
irreducible over C. 2

The algorithm presented in [?] implies that every parametrizable plane curve
over an algebraically closed field K of characteristic zero can be parametrized
over any subfield of K that contains the coefficients of the irreducible polyno-
mial defining the curve, and the coordinates of one simple point of the curve.
Thus, as a consequence of Lemma 1, one deduces that every real parametrizable
plane curve can be parametrized over the reals (this result is also known as the
algebraic version of the real Lüroth’s theorem [?]), and that a parametrizable



plane curve is real if and only if it has at least one real simple point.

Example 1: Let the curve C1 ([Wi96]) be defined by

f1(x, y) = (x2 + 4y + y2)2 − 16(x2 + y2) = 0.

C1 is a real curve. In fact C1 is a parametrizable real curve, and a parametrization
over the reals is

x(t) =
−1024t3

256t4 + 32t2 + 1
, y(t) =

−2048t4 + 128t2

256t4 + 32t2 + 1
.

On the other hand, the curve C2 ([?]) defined by

f2(x, y) = 2y2 + x2 + 2x2y2 = 0

is not a real curve. The only point of C2 in the affine plane over the reals is the
double point (0, 0). The complex curve C2 is parametrizable, and a parametriza-
tion is

x(t) =
−t2 − 2t + 1
t2 − 2t− 1

, y(t) =
it2 + 2it− i

2t2 + 2
.

2

3. A real parametrization algorithm

Let L be a computable subfield of C, and let the irreducible affine curve C be
defined by the polynomial f(x, y) ∈ L[x, y]. We may assume that f is a real
polynomial (indeed associated with a real polynomial), for otherwise by Lemma
1 one knows that C is not a real curve. Thus, we may suppose that L is a subfield
of R. In the process of parametrization it is necessary to view C as a projective
curve in the projective plane P2(C). This projective curve, also denoted by C,
is defined by the homogeneous polynomial F (x, y, z) ∈ L[x, y, z], where F is the
homogenization of f .

The property of parametrizability is independent of whether we view C in
the affine or the projective plane, and parametrizations can be easily converted
[?].

Definition: Let the irreducible curve C of degree d be defined by the irreducible
polynomial f(x, y) ∈ L[x, y] of degree d. The singular point P ∈ P2(C) of multi-
plicity m on C is an ordinary singular point, if and only if there are m different
tangents to C at P .

If C has only ordinary singularities P1, . . . , Pn of multiplicities r1, . . . , rn,
respectively, then the genus of C is defined as

genus(C) =
1
2
[(d− 1)(d− 2)−

n∑
i=1

ri(ri − 1)].

This definition, and also the method described in this paper, can be extended
to curves with non-ordinary singularities. For the sake of simplicity we do not
consider this situation here.



The linear system of adjoint curves of degree d′ to C consists of all the curves
of degree d′ having every point Pi, 1 ≤ i ≤ n, as a point of multiplicity at least
ri − 1. 2

Since the adjoint curves of any degree d′ to a rational plane curve C have
defining polynomial over L, and can be computed in a finite number of ground
field operations [?], the problem of parametrizing is reduced to the problem of
determining a simple point on the curve. We will do that by transforming C
birationally to a conic D. The simple real points on C and on D correspond
uniquely to each other, except for finitely many exceptions. So there is a simple
real point on C if and only if there is a simple real point on D. This question can
be decided. If the answer is yes, a real point on D can be computed, transformed
to a real point on C, and from this point we can derive a parametrization of C
over R.

In [?] we prove the following generalization of a theorem by Hilbert and
Hurwitz [?].

Theorem 1: Let C be a rational plane curve of degree d defined by a polynomial
over L, Ha the linear system of adjoint curves to C of degree a ∈ {d, d−1, d−2},
and H̃s

a a linear subsystem of Ha of dimension s with all its base points on C.
Then we have the following:

(i) If Φ1, Φ2, Φ3 ∈ H̃s
a are such that the common intersections of the three curves

Φi and C are the set of base points of H̃s
a, and such that

T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}

is a birational transformation, then the birationally equivalent curve to C,
obtained by T , is irreducible of degree s.

(ii) Those values of the parameters for which the rational transformation T is
not birational satisfy some algebraic conditions. 2

We will use Theorem 1 to transform the curve C to either a line or a conic.
For the transformed curves it will be easy to decide the existence of real points
and if so to determine a real point. So we need to select a linear subsystem of low
dimension in the system of adjoint curves, e.g. by fixing additional base points.
These additional base points will introduce algebraic coefficients into the system,
unless we can find rational ones or whole conjugate families of such points.

Definition: Let F ∈ L[x1, x2, x3] be a homogeneous polynomial defining a
parametrizable projective curve C. Let p1, p2, p3,m ∈ L[t]. The set of projec-
tive points F = {(p1(α) : p2(α) : p3(α)) | m(α) = 0} ⊂ P2(C) is a family of s
conjugate simple points on C if and only if the following conditions are satisfied:
m is squarefree, deg(m) = s, deg(pi) < deg(m) for i = 1, 2, 3, gcd(p1, p2, p3) = 1,
F contains exactly s points of P2(C), F (p1(t), p2(t), p3(t)) = 0 mod m(t), and
there exists i ∈ {1, 2, 3} such that ∂ F

∂ xi
(p1(t), p2(t), p3(t)) mod m(t) 6= 0. 2



If we choose all the points in a family of conjugate points as additional base
points in the system of adjoint curves, then the corresponding subsystem will
again have coefficients over the ground field L.

Definition: Let C be a plane curve defined by a polynomial over L, H a linear
system of curves in which all the elements are of the same degree, H̃ the defining
polynomial of a linear subsystem H̃ of H, and let S̃ be the set of base points of
H̃ that are not base points of H. Then, we say that H̃ is a rational subsystem of
H if the following conditions are satified:
(1) H̃ has coefficients in L.
(2) For almost every curve Φ ∈ H, and Φ̃ ∈ H̃ it holds that

dim(H)− dim(H̃) =
∑
P∈S̃

(multP (Φ̃, C)−multP (Φ, C)),

where multP (C1, C2) denotes the multiplicity of intersection of the curves C1, C2

at the point P . 2

Essentially, this notion requires that when a point or a family of points on C
are used to generate a subsystem H̃ of H (by introducing some points on C as
new base point on H with specific multiplicities) the linear system of equations
containing the contraints is over L, and its rank equals the number of new known
intersection points between C and a generic representative of the subsystem. In
the next proposition some special cases of rational linear subsystem are analyzed.
The following Proposition 1 and Theorem 2 are proved in [SW97].

Proposition 1: Let C be a rational plane curve of degree d defined by a poly-
nomial over L, Ha the linear system of adjoint curves to C of degree a ∈
{d, d − 1, d − 2}, and F = {(p1(t) : p2(t) : p3(t))}A(t) a family of k conjugate
points on C over L. Then we have the following:

(i) If F is a family of simple points, k ≤ dim(Ha), and H̃a is the subsystem of
Ha obtained by forcing every point in F to be a simple base point of H̃a,
then H̃a is rational, and dim(H̃a) = dim(Ha)− k.

(ii) If F is a family of r-fold points, r · k ≤ dim(Ha), and H̃a is the subsystem
of Ha obtained by forcing every point in F to be a base point of H̃a of
multiplicity r, then H̃a is rational, and dim(H̃a) = dim(Ha)− r k. 2

Theorem 2: Let C be a rational plane curve of degree d defined by a polynomial
over L, and Ha the linear system of adjoint curves to C of degree a ∈ {d, d −
1, d − 2}. Then every rational linear subsystem of Ha of dimension s with all
its base points on C provides curves that generate families of s conjugate simple
points over L by intersection with C. 2

As a consequence of Proposition 1 and Theorem 2 we get the following algo-
rithmically important facts.

Theorem 3: Let C be a rational plane curve of degree d, defined by a polynomial
f(x, y) ∈ L[x, y].



(i) C has families of d− 2, 2d− 2, and 3d− 2 conjugate simple points over L.
(ii) C has families of 2 conjugate simple points over L.
(iii) If d is odd, then C has a simple point over L.
(iv) If d is even, then C has simple points over an algebraic extension of L of

degree 2.

Proof: (i) Let P1, . . . , Pn be the singular points on C, having multiplicities
r1, . . . , rn, respectively. Since we assume that all singularities are ordinary and
C is rational, we have

(d− 1)(d− 2) =
n∑

i=1

ri(ri − 1).

By application of Proposition 1 we see that the dimension of the system of
adjoint curves of degree d− 2, Hd−2, to C is

(d− 1)d
2

− 1−
n∑

i=1

(ri − 1)ri

2
= d− 2.

Now we can apply Theorem 2 for s = d− 2 (i.e. choosing the whole system) and
we get that C has families of d − 2 conjugate simple points. Similarly, by using
systems of adjoint curves of degrees d− 1 and d, respectively, we get that C has
families of 2d− 2 and 3d− 2 conjugate simple points.
(ii) We first apply statement (i) to obtain two different families of (d−2) simple
points. Let Hd−1 be the system of adjoint curves of degree (d − 1). Applying
Proposition 1 one has that the linear subsystem H̃d−1 obtained by forcing all
the points in these two families to be simple base points of Hd−1 is rational
of dimension 2. Thus, applying Theorem 2 to H̃d−1 one obtains families of two
simple points.
(iii) Applying statement (ii) one can determine d−3

2 different families of two
simple points on C. Let Hd−2 be the system of adjoint curves of degree (d− 2).
Applying Proposition 1 one has that the linear subsystem H̃d−2 obtained by
forcing all the points in these families to be simple base points of Hd−2 is rational
of dimension one. Thus, applying Theorem 2 one concludes that C has simple
points over L.
(iv) This is an inmediate consequence of statement (ii). 2

Summarizing we get the following algorithm for deciding the parametrizabil-
ity over R and, in the positive case, computing such a parametrization.

Algorithm Real-Param(f)

– Input: F (x1, x2, x3) ∈ L[x1, x2, x3] is an irreducible homogeneous polyno-
mial of degree d, that defines a rational plane curve C.

– Output: a real parametrization of C, or
“no-real-parametrization” if no real parametrization exists.

(1) Compute the linear system H of adjoint curves to C of degree (d− 2).



(2) If d is odd, apply Theorem 3 (iii) to find (d− 3) simple points of F over L.
(3) If d is even, apply Theorem 3 (ii) to find d−4

2 families of two simple points
of F over L.

(4) Determine the linear rational subsystem H̃ obtained by forcing the points
computed in steps (2) and (3) to be simple base points on H.

(5) Take Φ̃1, Φ̃2, Φ̃3 ∈ H̃ such that the common intersections of the three curves
Φ̃i and F are the set of base points of H̃, and such that

T = {y1 : y2 : y3 = Φ̃1 : Φ̃2 : Φ̃3}

is a birational transformation (Theorem 1).
(6) Determine the transformed curve D to C obtained by T . Note that applying

Theorem 1 one has that D is either a conic or a line depending on whether
d is even or odd, respectively. D can be easily determined by sending a few
points from C to D and then interpolating.

(7) If d is odd, parametrize the line D over L. Apply the inverse transformation
T −1 to find a parametrization of C over L, and therefore over R. (Or, alter-
natively, determine as many points on D over L as necessary, transfer them
back to C by T −1, and use them for computing a parametrization of C over
L.)

(8) If d is even, decide whether the conic D can be parametrized over R. If so,
parametrize D over R. Apply the inverse transformation T −1 to find a real
parametrization of C over R. (Or, alternatively, determine as many points
on D over R as necessary, transfer them back to C by T −1, and use them for
computing a parametrization of C over R.)
If not, report “no-real-parametrization”. 2

In step (8) we have to decide whether an irreducible conic D, defined by a
homogeneous polynomial G(y1, y2, y3) ∈ L[y1, y2, y3], contains a real point P . If
so, then we can obviously parametrize D by intersecting it by lines through P .

In fact we can decide whether D contains a rational point. For details see [?]
and [?]. If this is not the case, we can transform D to an equivalent conic D′ by
a birational mapping over R, such that the defining equation of D′ has the form

y2
1 ± y2

2 ± y2
3 = 0

(see, e.g., the Law of Inertia in [?]). Then D′, and hence D, has a real point if
and only if the defining equation of D′ is not equivalent to y2

1 + y2
2 + y2

3 = 0. In
fact, if D contains a real point, then we can compute one. Thus, the question in
step (8) can be completely decided.

An alternative approach is to decide the reality of C by computing the signa-
ture of the corresponding quadratic form, and once the reality is decided, to find
a family of two conjugate points on C (Theorem 3 (ii)) whose quadratic defining
polynomial has real roots.



4. Real reparametrization

If a complex rational parametization P(t) of an irreducible affine plane curve
C over C is given, or computed by any parametrization algorithm, the alternative
approach presented in [?] may be considered. In this situation, the reality of C
is decided by computing a gcd of two real bivariate polynomonials, and if the
curve is real, a linear parameter change is determined to transform the original
parametrization into a real one.

The main idea of the algorithm presented in [?] is to associate with the
original parametrization a plane curve that contains as points the complex values
(taking the real and imaginary parts) of the parameter that generates, via the
parametrization, the real points on the original curve. Then the reality of the
original curve is characterized by means of the reality of the associated curve,
that is proved to be either a line or a circle. More precisely, let P(t) be the proper
complex parametrization of C:

x(t) =
q1(t)
h(t)

, y(t) =
q2(t)
h(t)

,

where q1, q2, h ∈ C[t] and gcd(q1, q2, h) = 1. Then, we apply the formal change
of variable t = t1 + it2 to P(t) to obtain:

x(t1 + it2) =
u1(t1, t2) + iv1(t1, t2)
h1(t1, t2)2 + h2(t1, t2)2

,

y(t1 + it2) =
u2(t1, t2) + iv2(t1, t2)
h1(t1, t2)2 + h2(t1, t2)2

where h1, h2 ∈ R[t1, t2], u1, v1 ∈ R[t1, t2] and u2, v2 ∈ R[t1, t2] are the real and
imaginary parts of h(t1+i t2), q1(t1+i t2)·h̄(t1−i t2) and q2(t1+i t2)·h̄(t1−i t2),
respectively (h̄ denotes here the conjugate of h). Then, it is proved in [?] that the
plane curve C is real if and only if gcd(v1, v2) is either a real line or a real circle.
Furthermore, if the plane curve C is real, and (m1(t),m2(t)) is a real proper
rational parametrization of gcd(v1, v2), then P(m1(t) + im2(t)) is a real proper
rational parametrization of C.

Clearly, these two results provide an algorithm for deciding the reality of
curves, and in the affirmative case, computing the linear change of parame-
ter that reparametrizes the original complex proper parametrization into a real
proper parametrization.

5. Examples

Example 2: We consider the curve C1 of Example 1. C1 is defined by

f1(x, y) = (x2 + 4y + y2)2 − 16(x2 + y2) = 0.

Let us first apply the algorithm Real-Param to C1 to see whether it is
parametrizable.



C1 has 3 double points in the projective plane, namely

(0 : 0 : 1) and (1 : ±i : 0).

So genus(C1) = 0, which means that C1 is rational and must have a parametriza-
tion over C (the picture actually suggests that it is a real curve, and therefore
must have a parametrization over R).

The system H̃ of conics (curve of degree 2) passing through all three of these
double points is defined by

h(x, y, z, s, t) = x2 + sxz + y2 + tyz,

so it is a system of dimension 2. Let the birational transformation T be

T = (Φ1 : Φ2 : Φ3) = (h(x, y, z, 0, 1) : h(x, y, z, 1, 0) : h(x, y, z, 1, 1)),

i.e.

Φ1 = x2 + y2 + yz, Φ2 = x2 + xz + y2, Φ3 = x2 + xz + y2 + yz.

We determine the birationally equivalent conic D1 to C1 by sending the 6 points
in the families

F1 = {(t : −t + 2 : 1) | 4t4 − 32t3 + 80t2 − 128t + 80},
F2 = {(t : 1− 2t : 1) | t2 − 4t + 1}

onto D1 by T . This gives us the conic defined by

15x2 + 7y2 + 6xy − 38x− 14y + 23.

D1 has the real (in fact, rational) point (1, 8/7), which (by T −1) corresponds to
the point P = (0,−8) on C1.

Now we restrict H̃ to the curves through P . This restricted linear system is
defined by (after renaming of the free parameter)

h?(x, y, z, t) = x2 + txz + y2 + 8yz.

Computing the resultants of f1(x, y) and h?(x, y, 1, t), with respect to x and y,
respectively, and taking the primitive parts with respect to the parameter t, one
gets two polynomials R1 ∈ C[y, t] and R2 ∈ C[x, t], such that the degrees of
R1 and R2, with respect to y and x, respectively, are one. Hence, solving the
system {R1 = 0, R2 = 0} in the variables {x, y}, one gets the following real
parametrization P(t) of C1:

x(t) =
−1024t3

256t4 + 32t2 + 1
, y(t) =

−2048t4 + 128t2

256t4 + 32t2 + 1
.

Let us now apply the real reparametrization approach of section 4 to C1.
The idea is, therefore, to apply any basic parametrization algorithm to C1 with-
out taking care of the field extensions, and afterwards to analyze the possible
reparametrization of the achieved parametrization over the ground field. Thus,



the first steps are the same. We consider the linear system H̃ of adjoint curves
of degree 2, and then we force H̃ to pass through any simple point on the curve.
We take, for instance, Q = (− 128

9 i : − 160
9 : 1). The obtained linear subsystem of

H̃ has dimension 1 and is defined by the polynomial

h?(x, y, z, t) = x2 + txz + y2 + (
34
5
− 4

5
it) yz.

Now, proceeding as above, we get the following parametrization Q(t) over C of
C1:

x(t) = −32
−1024 i + 128 t− 144 i t2 + i t4 − 22 t3

2304− 3072 i t− 736 t2 + 9 t4 − 192 i t3

y(t) = −40
1024− 256 i t− 80 t2 + t4 + 16 i t3

2304− 3072 i t− 736 t2 + 9 t4 − 192 i t3
.

Now, we execute the formal change of parameter t = t1 + i t2 in Q(t), and we
compute the gcd of the imaginary parts, v1(t1, t2) and v2(t1, t2), of the nor-
malized (i.e. with denominators in R[t1, t2]) rational functions x(t1 + i t2) and
y(t1 + i t2), respectively:

D(t1, t2) = gcd(v1, v2) = t21 + t22 + 6t2 − 16.

In this situation, since D(t1, t2) defines a real circle, it follows that the original
curve C1 is real and, therefore, parametrizing over the reals the curve defined by
D(t1, t2) one gets the linear change of parameter to transform Q(t) into a real
parametrization. More precisely, one takes the real parametrization of D(t1, t2):

t1(t) =
−10t

t2 + 1
, t2(t) =

−10t

t2 + 1
.

Therefore, L(t) = Q(−10t
t2+1 + i −10t

t2+1 ) is a real parametrization of C1. In fact, L(t)
is the parametrization:

x(t) =
−32t

16t4 + 8t2 + 1
, y(t) = 8

4t4 − 1
16t4 + 8t2 + 1

.

2

Example 3: We consider the curve C2 of Example 1. C2 is defined by

f2(x, y) = 2y2 + x2 + 2x2y2 = 0.

Let us apply the algorithm Real-Param to C2 to see whether it can be para-
metrized. The singularitities of C2 in the projective plane are

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1),

each of which is a double point. So genus(C2) = 0, which means that C2 can be
parametrized over C.



The system H̃ of conics passing through all three of these double points is
defined by

h(x, y, z, s, t) = xz + tyz + sxy,

so it is a system of dimension 2. Let the birational transformation T be

T = (Φ1 : Φ2 : Φ3) = (h(x, y, z, 1, 0) : h(x, y, z, 0, 1) : h(x, y, z, 1, 1)),

i.e.
Φ1 = xz + xy, Φ2 = xz + yz, Φ3 = xz + yz + xy.

We determine the birationally equivalent conic D2 to C2 by sending the 8 points
in the families

F1 = {(t : −2t + 1 : 1) | 8t4 − 8t3 + 11t2 − 8t + 2},
F2 = {(t : −t + 2 : 1) | 2t4 − 8t3 + 11t2 − 8t + 8}

onto D2 by T . This gives us the conic defined by

5z2 − 6xz − 6yz + 3x2 + 2xy + 3y2.

D2 has no real point. So also C2 can have no real point, i.e. it is NOT parametriz-
able over R.

But we can parametrize C2 over C by passing the system of adjoint curves
through the point

P = (−α, α), where 2α2 + 3 = 0,

getting

h?(x, y, z, t) = xz + tyz +
2
3
(α− αt)xy.

Now, proceeding as in Example 2, we get the following parametrization P(t) of
C2 over C:

x(t) =
−αt2 − 2α

t2 − 2t− 2
, y(t) =

−αt2 − 2α

t2 + 4t− 2
.

We leave the application of the reparametrization algorithm to the reader. 2

Conclusion

So, as we have seen above, we can parametrize any parametrizable real curve
by a real parametrization P(t) = (x(t), y(t)), i.e. x(t), y(t) ∈ R(t). This is what
we usually need in applications, such as in computer aided geometric design.
The algorithms described in this paper allow us, for the first time, to decide the
possibility of a real parametrization and, if it exists, to actually compute one.
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