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Abstract.

A plane algebraic curve is given as the zeros of a bivariate polynomial. How-
ever, this implicit representation is badly suited for many applications, for in-
stance in computer aided geometric design. What we want in many of these ap-
plications is a rational parametrization of an algebraic curve. There are several
approaches to deciding whether an algebraic curve is rationally parametrizable
and if so computing such a parametrization. In all these approaches we ulti-
mately need some simple points on the curve. The field in which we can find
such points crucially influences the coefficients in the resulting parametrization.
We show how to find simple points over some practically interesting fields. Con-
sequently, we are able to decide whether an algebraic curve defined over the
rational numbers can be parametrized over the rationals or the reals. Some of
these ideas also apply to parametrization of surfaces. If in the term geometric
reasoning we do not only include the process of proving or disproving geometric
statements, but also the analysis and manipulation of geometric objects, then
algorithms for parametrization play an important role in this wider view of ge-
ometric reasoning.

I. The parametrization problem

An algebraic curve C in the affine plane A2(K) over the algebraically closed
field K is defined as

C = {(x, y) ∈ K2|f(x, y) = 0},

where f(x, y) is a bivariate square–free polynomial with coefficients in K, called
the defining polynomial of C. Observe that the defining polynomial of a plane
algebraic curve is determined up to multiplication by non-zero constants in K.
The curve C is irreducible iff its defining polynomial is irreducible. The degree
of C, deg(C), is simply the degree of the defining polynomial f .
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The singularity structure of an algebraic curve is not fully apparent in the
affine plane, since the curve might have “singularities at infinity”. So from time to
time we will need to view an algebraic curve as an object in the projective plane
P2(K). The affine plane is embedded into the projective plane by identifying
an affine point (a, b) with the projective point (a : b : 1). In addition to these
affine points, the projective plane contains points at infinity, with projective
coordinates (a : b : 0), where (a, b) 6= (0, 0). A projective curve agrees with
the corresponding affine curve, except that finitely many points at infinity are
added. The points on the projective curve are the solutions of F (x, y, z) = 0,
where F (x, y, z) is the homogenization of f(x, y) w.r.t. the homogenizing variable
z.

Some algebraic curves can also be represented parametrically, i.e. their points
can be generated by rational functions

x(t) =
p1(t)
q1(t)

, y(t) =
p2(t)
q2(t)

,

in K(t), i.e. p1(t), p2(t), q1(t), q2(t) ∈ K[t]. More precisely, we have the following
definition.

Definition I.1: If the irreducible affine plane curve C is defined by f(x, y) ∈
K[x, y], K an algebraically closed field of characteristic 0, then P(t) = (x(t), y(t))
∈ K(t)×K(t) is a rational parametrization of C iff, except for finitely many ex-
ceptions, every evaluation (x(t0), y(t0)) at t0 ∈ K is a point on C, and conversely
almost every point on C is the result of evaluating the parametrization at some
element of K.

In this case C is called parametrizable or rational.
Equivalently, P(t) = (x(t), y(t)) is a rational parametrization of C if P :

K −→ C is rational and not both x(t) and y(t) are constant. Furthermore, if P
is birational we say that P(t) is a proper parametrization.

In computer aided geometric design (cagd) one usually requires that the al-
gebraic curves are rational, see e.g. [3]. In fact, transformation methods between
these two representations of algebraic curves of genus 0 are of great interest in
cagd. This problem appears as one of the 10 most important problems in cagd
in [8].

The problem of deciding whether an algebraic curve over an algebraically
closed field of characteristic 0 is rational was solved by Hilbert and Hurwitz more
than 100 years ago [1]. In fact, they prove that if the rational curve C is defined
by a polynomial f(x, y) ∈ K[x, y], where K is not necessarily algebraically closed,
then C has a parametrization with coefficients in an algebraic extension field L
of K with [L : K] ≤ 2 and L = K for deg(f) odd. The construction of such an
“optimal” parametrization requires O(deg(f)) birational transformations. Every
one of these transformations decreases the degree of the curve by 2, and thus
ultimately leads to either a line (in the odd degree case) or to an irreducible
conic C2 defined over the same field as the original curve C. This reduction



process was abbreviated in [12] and actually the corresponding conic can simply
be interpolated. Every point on the conic C2 corresponds rationally to a point on
C and vice versa (with finitely many exceptions). So, if we can find a point of C2

in an extension field L of K, then we can parametrize C2 and C with coefficients
in L.

In a geometric approach to the parametrization problem, we consider a linear
system L of curves having prescribed multiplicities at the singular points of C.
In particular, it is reasonable (but not necessary) to consider a system L of
curves of degree deg(C) − 2 and require that every singular point P of C be a
point on every curve in L with multiplicity at least multP (C)− 1. L is called the
system of adjoint curves of C. The dimension of L is deg(C) − 2. So by fixing
deg(C) − 3 simple points on C to also be simple points on every curve in L,
we reduce the dimension of L to 1, i.e. every curve in L will intersect C in the
fixed points (the singularities and some fixed simple points of C) and exactly
1 additional “free” simple intersection point on C, which depends rationally
on the free parameter of the system L. Thus, the rational expression of the
“free” intersection point immediately yields the desired parametrization of C.
This geometric approach was theoretically described in [14] and was investigated
from the computer algebra point of view in [11].

Example I.1: The irreducible curve C in the affine plane over the complex
numbers C is defined by

f(x, y) = x5 + 3x4y − 2x3y2 + x2y3 + y5 − 2x4 − 4x3y + x2y2

−xy3 − 2y4 + x3 + x2y + xy2 + y3.

C has a triple point P1 at the origin (0, 0), and double points P2 = (0, 1), P3 =
(1, 1), P4 = (1, 0). So the genus of C is 0, and it is parametrizable. In order
to construct a subsystem of dimension 1 of the system of adjoints of C, we
need 2 simple points on C. Intersecting C by the line P2P3 we get the simple
point P5 = (−3, 1), and intersecting C by the line P2P4 we get the simple point
P6 = (5/6, 1/6). The system A of adjoints of degree 3 having multiplicity 2 at
the base point P1 and 1 at the base points P2, P3, P4, P5, P6 is defined by

h(x, y, t) = −tx3 − 3tx2y + (3t− 1)xy2 + (5− 7t)y3 + tx2 + xy + (7t− 5)y2.

Because of Bézout’s theorem we expect the intersection multiplicity of curves
in A with C to be 5 · 3 = 15. In the base points of A we get an intersection
multiplicity of 6+2+2+2+1+1 = 14. So a general element of A has one more
intersection point with C, depending rationally on the parameter t. This point
traverses the curve C as t traverses the affine line, yielding the following rational
parametrization of C:

x(t) =
−648t5 + 2502t4 − 3900t3 + 3067t2 − 1217t + 195
702t5 − 2673t4 + 4113t3 − 3196t2 + 1254t− 199

,

y(t) =
−216t5 + 810t4 − 1194t3 + 859t2 − 298t + 39

702t5 − 2673t4 + 4113t3 − 3196t2 + 1254t− 199
.



Since the simple points P5, P6 have coefficients in Q, also the parametrization has
coefficients in Q, i.e. we need no algebraic extension of the field of coefficients.

Alternative algebraic approaches to the problem of parametrization of alge-
braic curves are investigated in [13] and [6]. But also in these approaches the
field of coefficients L of the parametrization is precisely the field in which we
can construct simple points of the curve C.

So in any case, the determination of an optimal field of parametrization L,
i.e. a field achieving the bound on the extension degree in the paper of Hilbert
and Hurwitz, hinges on the ability to determine points on irreducible conics. Let
us demonstrate this fact by a simple example.

Example I.2: We consider the tacnode curve C in the affine plane over C defined
by

f(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4.

The tacnode curve has double points at (0, 0) and (0, 1), and one more double
point in the first neighborhood of (0, 0). So we need one more point on C for
determining a system of adjoints of degree 2 and dimension 1.

(a) Intersection of C with the line y = −1 yields the simple point P1 = (α,−1) on
C, where α is any one of the 4 roots of the irreducible polynomial 2z4 + 3z2 + 4.
This leads to the following parametrization over Q(α):

x(t) =
−36αt4 + (48α2 + 144)t3 + (108α3 + 18α)t2 − (40α2 − 84)t + 24α3 + 20α)

4 · (9t4 + 24αt3 − (16α2 + 60)t2 − (24α3 + 20α)t + 12α2 + 6)
,

y(t) =
−9t4 − (18α3 + 3α)t3 + (2α2 − 33)t2 − (12α3 + 2α)t− 4

(9t4 + 24αt3 − (16α2 + 60)t2 − (24α3 + 20α)t + 12α2 + 6)
.

The coefficients of this parametrization are in C\R.

(b) Intersection of C with the line y = 1 yields the simple point P2 = (β, 1) on
C, where β is any one of the 2 roots of the irreducible polynomial 2z2 − 3. This
leads to the following parametrization over Q(β):

x(t) =
2βt4 + 9t3 − 27t− 18β

11t4 + 24βt3 + 12t2 + 18
,

y(t) =
2t4 + 12βt3 + 39t2 + 36βt + 18

11t4 + 24βt3 + 12t2 + 18
.

The coefficients of this parametrization are in R.

(c) Intersection of C with the line x = 1 yields the simple point P3 = (1, 2) on
C. This leads to the following parametrization over Q:

x(t) =
2t4 + 7t3 − 21t− 18

9t4 + 40t3 + 64t2 + 48t + 18
,

y(t) =
4t4 + 28t3 + 73t2 + 84t + 36
9t4 + 40t3 + 64t2 + 48t + 18

.



Thus, the field in which we can find a simple point on C determines the
coefficient field of the resulting parametrization.

Fig. 1

In fact, because every rational curve can be birationally transformed into a
conic over the same coefficient field, it suffices to find simple points on irreducible
conics.

Relation of parametrization to geometric reasoning

If in the term geometric reasoning we do not only include the process of prov-
ing or disproving geometric statements, but also the analysis and manipulation of
geometric objects, then algorithms for parametrization play an important role in
this wider view of geometric reasoning. Implicitization and parametrization are
operations for changing the algebraic representation of geometric objects. For
some operations we want implicit representations, e.g. for deciding whether a



point actually belongs to a curve or surface. For other operations we want (some
of) the geometric objects in parametric representation, e.g. for intersection of
objects or for visualization.

II. Rational points on conics

In this section we consider irreducible conics defined over Q, i.e. curves of
degree two with rational coefficients. Such an irreducible conic in the projective
plane over Q, the field of algebraic numbers, is defined by an irreducible homo-
geneous polynomial G ∈ Q[x, y, z] of degree two as the set {(x : y : z) ∈ P2(Q) |
G(x, y, z) = 0}. In the sequel we refer to

G(x, y, z) = ax2 + bxy + cy2 + dxz + eyz + fz2 = 0, or
(1)

g(x, y) = G(x, y, 1) = ax2 + bxy + cy2 + dx + ey + f = 0,

as the General Conic Equation. (1) defines the projective and the corresponding
affine conic, respectively. We denote the projective conic by C∗ and the affine
conic by C.

Definition II.1: We call P = (x : y : z) ∈ C∗ a rational point on C∗ iff
P ∈ P2(Q). Analogously for the corresponding affine curve.

Our goal is to decide whether there is a rational point on the conic C∗, and
if so, compute one. We follow the presentation of [2], where any missing details
can be found. [2] in turn is based on [4], [5] and [10].

The following theorem shows that the existence of one rational point on an
irreducible conic implies that there are infinitely many rational points on it. In
particular, if the projective conic C∗ has a rational point, then the affine conic C
has a rational point in A2(Q). Indeed, we will basically not distinguish between
C∗ and C and treat them quite interchangeably.

Theorem II.1: An irreducible conic defined over Q has no or infinitely many
rational points.

Proof: We give only a sketch of the proof. Suppose there is a rational point P
on the conic. Then we intersect the conic with a line through this rational point
having a rational direction vector. We will usually get two intersection points –
the original rational point P and an additional rational point. Varying the slope
of the line leads to infinitely many other rational points on the conic.

It makes sense to distinguish between parabolas on the one hand and ellipses
and hyperbolas on the other hand, since on a parabola we are guaranteed to find
one (and therefore infinitely many) rational point(s). Indeed, in the parabolic
case we can give a formula for a rational point on the conic (namely a rational
function in the coefficients of (1)). On the other hand, on an ellipse or hyperbola
we are not guaranteed that such a rational point even exists. In case it does (we



will show how to decide that) we can compute such a point by an algorithm that
is based on a constructive proof of the so called Legendre Theorem. First we deal
with the parabolic case.

The parabolic case
C is a parabola if and only if the coefficients of (1) satisfy one of the following

relations :
b2 = 4ac, or d2 = 4af, or e2 = 4cf.

W.l.o.g. we assume now the case b2 = 4ac, i.e. we consider a parabola with
respect to x and y, whereas z is the homogenizing variable.

First, let us assume c 6= 0. By simple expansion we have

4cg(x, y) = (bx + 2cy + e)2 + d′x + f ′,

where d′ = 4cd − 2be, f ′ = 4cf − e2. Because C is irreducible, we have d′ 6= 0.
Thus, a rational solution is given by

x = −f ′

d′ , y = −e + bx

2c
, (z = 1).

Now the remaining case to treat is c = 0. Again by irreducibility, we have
a 6= 0. A rational solution is then given by

x = −d + by

2a
, y = −f ′

d′ , (z = 1),

where d′ = 4ae− 2bd and f ′ = 4af − d2.

Example II.1: Consider the parabola defined by

g(x, y) = x2 + 2xy + y2 + x + 2y − 2,

i.e. (a, b, c, d, e, f) = (1, 2, 1, 1, 2,−2). Since a 6= 0 and c 6= 0, we might use both
formulae. Let us first use the formula for the case c 6= 0:

d′ = 4cd− 2be = −4, and f ′ = 4cf − e2 = −12.

So we get the rational point

x = −f ′

d′ = −3, y = −e + bx

2c
= 2

on the parabola.
Now we use the formula for the case a 6= 0:

d′ = 4ae− 2bd = 4, and f ′ = 4af − d2 = −9.

So we get the rational point

x = −d + by

2a
= −11

4
, y = −f ′

d′ =
9
4



on the parabola.

The hyperbolic/elliptic case

We consider (1), but we impose other conditions on the coefficients. We use
ideas from [5]. The hyperbolic/elliptic case is characterized by

b2 6= 4ac and d2 6= 4af and e2 6= 4cf.

We consider the dehomogenization with respect to z (i.e. in what follows, we
will only make use of b2 6= 4ac). Let us define

N = 4de− 4bf , D = 4ac− b2,
M1 = 4c2d2 − 4bcde + 4ace2 + 4b2cf − 16ac2f,
M2 = 4a2e2 − 4bade + 4acd2 + 4b2af − 16ca2f.

We consider two cases.
(Case a = c = 0) In this case we have b 6= 0 and N 6= 0 (by irreducibility). In
the new coordinates

x′ = b(x + y) + d + e,
y′ = b(x− y)− d + e

the equation 4bg(x, y) = 0 has the following form :

(x′)2 − (y′)2 = N.

(Case c 6= 0) We have M1 6= 0 and (D > 0 ⇒ M1 > 0) (both conditions are
consequences of irreducibility). Under the coordinate change

x′ = Dx + 2dc− be,
y′ = bx + 2cy + e

the equation 4cDg(x, y) = 0 becomes

(x′)2 + D(y′)2 = M1.

The case a 6= 0 is totally analogous to the case c 6= 0 (just interchange the roles
of x and y and therefore also those of a and c and those of d and e; in addition
use M2 instead of M1).

In both cases we arrive at an equation of the form

X2 + KY 2 = L, (2)

where K, L ∈ Q, and in both cases we do not have (K > 0 ∧ L < 0), which
would exclude the existence of a real solution.

Hence we can restrict us to equations of this form . Switching to homogeneous
coordinates we set

X =
x

z
, Y =

y

z
, K =

b′

a′ , L = − c′

a′ .



Note that if K = k1/k2, L = l1/l2 we may choose a′ = lcm(k2, l2),
b′ = k1l2/ gcd(k2, l2), and c′ = −l1k2/ gcd(k2, l2). Then (2) becomes the dio-
phantine equation

a′x2 + b′y2 + c′z2 = 0. (3)

Clearly a′, b′, and c′are nonzero and do not all have the same sign (look at their
definitions and use ¬(K > 0∧L < 0)). But we want to achieve more, namely the
reduction of (3) to an equation of similar form whose coefficients are squarefree
and pairwise relatively prime. We use ideas from [10]. Let us assume that

a′ = a′
1 r2

1, b′ = b′1 r2
2, c′ = c′1 r2

3,

where a′
1, b′1, and c′1 are squarefree2. Consider

a′
1x

2 + b′1y
2 + c′1z

2 = 0. (4)

(4) has an integral solution iff (3) has one.
Now, we divide (4) by gcd(a′

1, b
′
1, c

′
1), getting

a′′x2 + b′′y2 + c′′z2 = 0. (5)

What remains is to make the coefficients pairwise relatively prime.
Let g1 = gcd(a′′, b′′), a′′′ = a′′/g1, b′′′ = b′′/g1, and let (x, y, z) be an integral
solution of (5). Then g1 | c′′ z2, and hence, since gcd(a′′, b′′, c′′) = 1, we have
g1 | z2. Furthermore, since g1 is squarefree (since a′′, b′′ are), we have g1 | z. So,
letting z = g1z

′ and cancelling (5) by g1, we arrive at

a′′′x2 + b′′′y2 + c′′g1︸︷︷︸
c′′′

(z′)2 = 0. (6)

We have gcd(a′′′, b′′′) = 1 and c′′′ is squarefree since g1 and c′′ are relatively
prime. Repeating this process with g2 = gcd(a′′′, c′′′) and g3 = gcd(b′′′′, c′′′′) we
arrive at

a(x′)2 + b(y′)2 + c(z′)2 = 0, (7)

the so called Legendre Equation. We note : a, b, and c are nonzero, do not all
have the same sign, are squarefree, and pairwise relatively prime. We will now
try to find an integral solution of this diophantine equation that can then be
2 For actually determining r1, r2 and r3 we are confronted with integer factorization.

Although there are no polynomial-time algorithms known for the factorization of
large integers (the most powerful general purpose factoring method leads to a fac-
torization of an integer m in time O[exp(2L{L[L(m)]})], where L(m) denotes the
length of m) this does not lead to problems in practical computations. Usually the
integers to be factored are small enough such that succesful and fast application of
integer factorization commands as provided by computer algebra systems is guaran-
teed.

Things are trivial if a′, b′, and c′ are polynomials (this will occur if we deal with
conic equations over Q(t) as in the following section) since squarefree factorization
of polynomials poses no problems at all.



transformed back to a rational solution of the original equation. Algorithmic for-
mulations (in pseudocode) of the above steps (including the parabolic case) can
be found in [2], where in the appendix one can also find a Maple implementation.

Hence the problem of finding a rational point on an ellipse/ hyperbola reduces
to the problem of finding a nontrivial integral solution of the so called Legendre
Equation

ax2 + by2 + cz2 = 0, (8)

where a, b, and c are integers such that abc 6= 0. By a nontrivial integral solution
we mean a solution (x, y, z) ∈ Z3 with (x, y, z) 6= (0, 0, 0) and gcd(x, y, z) = 1.
We also pointed out that we may assume, w. l. o. g.,

a > 0, b < 0 and c < 0, (9)
a, b, and c are squarefree, (10)

gcd(a, b) = gcd(a, c) = gcd(b, c) = 1. (11)

We now deal with necessary and sufficient conditions in order that (8) has
nontrivial integral solutions. Such conditions are given by the Theorem of Legen-
dre. For a formulation of Legendre’s Theorem we need the notion of quadratical
residues.

Definition II.1: Let m, n be nonzero integers. Then m is a quadratic residue
modulo n (written m R n) iff ∃x ∈ Z : x2 ≡n m.

Now we can state the theorem.

Theorem II.3: (Legendre, Version 1) Suppose a, b, and c satisfy (9), (10) and
(11). Then (8) has a nontrivial integral solution iff

−abR c, −bc R a, and − acR b. (12)

We prove only the necessity of (12) for this first version of the theorem and
prove the sufficiency then for a second (equivalent) version.

Proof: (Legendre’s Theorem, necessity of (12))
Let (x, y, z) be a solution of (8); it follows that gcd(c, x) = 1. For if any prime p
divides gcd(c, x), then p divides by2 but p does not divide b (since gcd(b, c) = 1
by (11)) and so p divides y. Consequently we have p2 divides ax2 + by2 and
hence p2 divides cz2. But c is squarefree and so p divides z. This contradicts the
assumption gcd(x, y, z) = 1.

As gcd(c, x) = 1 we can find x′ satisfying xx′ ≡c 1. Also, clearly

ax2 + by2 ≡c 0,

and so, by multiplying with b(x′)2,

b2(x′)2y2 ≡c −ab(xx′)2 ≡c −ab.



Thus −abR c holds. The remaining conditions can be derived similarly.

Theorem II.4: (Legendre, Version 2) Let a and b be positive squarefree integers.
Then

ax2 + by2 = z2 (13)

has a nontrivial solution if and only if the following three conditions are satisfied:

aR b, (14)
b R a, (15)

− ab

gcd(a, b)2
R gcd(a, b). (16)

The equivalence of these two versions is easily established (see [2]). The
following constructive proof of the Legendre Equation can be found in [4], we
give the presentation from [2] (where all missing details can be found).

Proof: (Theorem II.4) The necessity of (14) to (16) is established by the necessity
of (12) for the solvability of (8) and the claimed equivalence of the two versions
of Legendres Theorem. So we show sufficiency and hence assume now that (14)
to (16) hold.

Let us first of all consider two special (simple) instances of (13)

(Case a = 1) Obviously, (x, y, z) = (1, 0, 1) is a solution.
(Case a = b) Condition (16) requires −1 to be a square modulo b. If this is the

case, we can find integers r and s such that b = r2 + s2 (consider this as an
easy lemma), leading to a solution (x, y, z) = (r, s, r2 + s2).

Now we proceed to the general case. We may assume a > b, for if b > a just
interchange the roles of x and y. The strategy will be the following : We construct
a new form Ax2 + by2 = z2 satisfying the same hypotheses as (13), 0 < A < a,
and having a nontrivial solution iff (13) does so (and a solution of (13) can
be computed from a solution of the new form). After a finite number of steps,
interchanging A and b in case A is less than b, we arrive at one of the cases A = 1
or A = b, each of which has been settled. Now for the details.

We assume now that (14) - (16) hold. By (15) there exist integers x and k
such that

x2 = b + ka. (17)

Let k = Am2, where A is the squarefree part of k. Also note that we can choose
x such that |x| ≤ a/2 by choosing the absolute least residue of x modulo a
(“symmetric representation of the integers modulo a”). Let us now restate (17)
as

x2 = b + Am2a. (18)

First of all we show that 0 < A < a. Since by (18) and b < a

0 ≤ x2 = b + Am2a < a + Am2a = a(1 + Am2)



we have 0 < 1 + Am2, and hence A ≥ 0. But if A = 0, then (18) gives x2 = b,
contradicting the fact that b is squarefree. So we established A > 0. On the other
hand by (18) and b > 0 and since |x| ≤ a/2 we have

Am2a < x2 ≤ a2

4
,

and so we have A ≤ Am2 < a/4(< a). So we consider now

Ax2 + bY 2 = Z2. (19)

Clearly A, b are positive and squarefree integers. So we want to show

A R b, (20)
b R A, (21)

− Ab

gcd(A, b)2
R gcd(A, b). (22)

In addition, we need that (13) has a nontrivial solution if and only if (19) has
one, which will be shown constructively.

(Show (21)) With g = gcd(a, b), let b1 = b/g, a1 = a/g. We show A R g and
A R b1. Then, we have A R b1g (consider this as a lemma), i.e. A R b. First
of all, note that (18) may be written as

x2 = b1g + Am2a1g. (23)

Since g is squarefree we have that g divides x. Setting x1 = x
g and cancelling

gives
gx2

1 = b1 + Am2a1. (24)

Thus Am2a1 ≡g −b1, and hence

Am2a2
1 ≡g −a1b1. (25)

Also note that gcd(m, g) = 1, since a common factor would divide b1 (by
(24)) and hence b = b1g would not be squarefree. But also gcd(a1, g) = 1
since a = a1g is squarefree. Let m′ and a′

1 be the inverses of m respectively
a1 modulo g. By (16) (i.e. by −a1b1 R g) we may choose y such that y2 ≡g

−a1b1. Now (25) becomes A ≡g (m′)2(a′
1)

2y2, i.e. A R g. So this part is done.
It remains to show A R b1.
By (23) we have

x2 ≡b1 Am2a. (26)

By (14) (i.e. by aR b) we have aR b1. Note also that gcd(a, b1) = 1 since a
common factor would divide b1 and g, contradicting the fact that b = b1g is
squarefree. Similarly, gcd(m, b1) = 1 (use(23)). Let a∗ and m∗ be the inverses
of a respectively m modulo b1. Let z be such that z2 ≡b1 a and let z∗ be its
inverse modulo b1. Now (26) becomes

A ≡b1 x2(m∗)2a∗ ≡b1 x2(m∗)2(z∗)2,

i.e. A R b1.



(Show (22)) By (18), we have b R A immediately.
(Show (23)) With r = gcd(A, b) let A1 = A/r, b2 = b/r. We have to show

−A1b2 R r.
From (18) we conclude

x2 = b2r + A1rm
2a.

Since r is squarefree we have r divides x. So

A1m
2a ≡ −b2 (mod r), or

−A1b2m
2a ≡ b2

2 (mod r). (27)

Since gcd(a, r) = gcd(m, r) = 1, we may choose a+ and m+ as the inverses
of a respectively m modulo r. Furthermore, from (14) (i.e. from aR b) we
obtain aR r. Choose w such that w2 ≡r a. Denote by w+ the inverse of w
modulo r. Then (27) becomes

−A1b2 ≡r b2
2(m

+)2a+ ≡r b2
2(m

+)2(w+)2,

i.e. −A1b2 R r.

So we established (20) - (22) for (19). Assume now that (19) has a nontrivial
solution (X,Y , Z). Then

AX
2

= Z
2 − bY

2
. (28)

Multiplying this by (18) (i.e. by Am2a = x2 − b) gives

a(AXm)2 = (Z
2 − bY

2
)(x2 − b) =

= (Zx + bY )2 − b(xY + Z)2.

Thus a solution of (13) is

x = AXm, y = xY + Z, z = Zx + bY .

Written in matrix notation we havex
y
z

 =

Am 0 0
0 x 1
0 b x

 ·
X

Y
Z

 .

The matrix is invertible since its two blocks are : the second (2 × 2) block has
determinant x2 − b 6= 0 (since b is squarefree). The solution is nontrivial since
we claim that x = AmX 6= 0. Suppose Am = 0. Then by (18) we have x2 = b,
contradicting the squarefreeness of b. Suppose X = 0. Then by (28) we have
Z

2
= bY

2
, contradicting the squarefreeness of b.

Algorithm for solving the Legendre Equation

The constructive proof for the existence of a nontrivial integral solution of
the Legendre Equation in the previous section leads to a recursive algorithm



for computing such a solution. We will give a formulation in a Pascal-like pseu-
docode. We do not consider an algorithmic formulation of the transformations
that lead from the General Conic Equation to the Legendre Equation, see [2] for
that purpose. We assume the procedure msqrt (“modular squareroot”), that has
the following meaning : for integers a, b with aR b we have

msqrt(a, b)2 ≡b a.

Such a procedure exists for example in MapleTM. We work in symmetric repre-
sentation of the integers modulo any number. In addition, we use the knowledge
that for a natural number r with −1 R r there exist integers x, y such that
r = x2 + y2 (for a proof of that fact and a procedure Circle that computes such
x and y for given r see again [2]). Finally we need a procedure sqfrp (“squarefree
part”) for computing the squarefree part of an integer, i.e. for n =

∏
p prime pnp

we have
sqfrp(n) =

∏
p prime

pmod(np , 2).

Now we can give the pseudocode.

PROC LegendreSolve(↓ a ↓ b ↑ x ↑ y ↑ z)
IN :
a, b ∈ Z :

positive, squarefree with aR b, b R a, −ab/gcd(a, b)2 R gcd(a, b).
OUT :
x, y, z ∈ Z

such that ax2 + by2 = z2.
LOCAL
r, s, T , A, B, X, Y , Z, m ∈ Z
BEGIN

if a == 1 then
x := 1; y := 0; z := 1

elseif a == b then
Call Circle(↓ b, ↑ x, ↑ y);
z := x2 + y2

elseif a > b then
s := msqrt(b, a);
T := (s2 − b)/a;
A := sqfrp(T ); m := sqrt(T/A);
Call LegendreSolve(↓ A, ↓ b, ↑ X, ↑ Y, ↑ Z);
x := AXm; y := sY + Z; z := sZ + bY

else
s := msqrt(a, b);
T := (s2 − a)/b;
B := sqfrp(T ); m := sqrt(T/B);
Call LegendreSolve(↓ B, ↓ a, ↑ Y, ↑ X, ↑ Z);



y := BY m; x := sX + Z; z := sZ + aX
end if

END LegendreSolve

Some words on the number of self-references in LegendreSolve. The worst thing
that can happen is that we reduce both coefficients of

ax2 + by2 = z2

to 1. The number of self-references of LegendreSolve needed to achieve this is
bounded by 2 log4(max(a, b)), since every time we reduce a coefficient, it is re-
duced by a factor of 4 at least. In the situation a = b we call Circle (and no more
call to LegendreSolve is needed), which calls itself not more than log(a) times
(compare [2]). So in all cases, the maximal number of any procedure calls is
O(log(max(a, b)). The (theoretical) time complexity of the main algorithm (in-
put an irreducible conic over the rational numbers and output a rational point
if existent) would be at least exponential in any way since we use integer fac-
torization in the implementation of the procedure sqfrp. But this fact has not
turned out to be an obstacle in practical computations.

Some words on the space complexity of the main algorithm: If we denote by
l the maximum length of any numerator or denominator of the coefficients of
the General Conic Equation, then we have for the (integer) coefficients a and b
of the associated Special Legendre Equation

ax2 + by2 = z2

that3

L(max(a, b)) ≤ 12l.

(This worst case bound may be reached if the numerators and denominators of
the General Conic Equation are all of equal length). For the diophantine solution
(x, y) of the Special Legendre Equation we can give the bound

L(max(x, y)) ≤ 5L(max(a, b))2.

Concluding we obtain (the backward transformations do not influence the order)
that the maximal length of any numerator or denominator for the (rational) so-
lution of the General Conic Equation is O(l2).

Example II.2: Consider the conic defined by

g(x, y) = x2 − 4xy − 3y2 + 4x + 8y − 5.

Carrying out the above described transformations leads to the corresponding
(Special) Legendre Equation

7x2 + 21z2 = y2.

3 We assume integers in decimal representation.



Now we call LegendreSolve(↓ 7, ↓ 21, ↑ x, ↑ z, ↑ y). Here is a trace of the cor-
responding values of the local variables s, T , B, m and the recursive calls of
LegendreSolve :

(s, T,B,m) = (7, 2, 2, 1);CallLegendreSolve(↓ 2, ↓ 7, ↑ Y, ↑ X, ↑ Z);
(s, T,B,m) = (3, 1, 1, 1);CallLegendreSolve(↓ 1, ↓ 2, ↑ Y, ↑ X, ↑ Z);

Now the equation Y 2 + 2X2 = Z2 has the integral solution (Y, X,Z) = (1, 0, 1).
So the procedure produces the following integral solutions of the stacked equa-
tions :

(X, Y, Z) = (1, 1, 3),
(z, x, y) = (2, 10, 28),

the latter being an integral solution of 7x2 + 21z2 = y2, the (Special) Legendre
Equation. Inverting the above indicated transformations we arrive at a rational
solution of g(x, y) = 0 :

(x, y) = (−3
7
,
16
7

).

Real points on conics4

Let us assume that no rational point lies on the conic. In this case we ask
whether there is at least a real point on the conic, i.e. whether there exists
(x, y) ∈ R2 such that

g(x, y) = 0.

Since every parabola contains a rational point, we only have to consider the
elliptic/hyperbolic case. Again we transform the General Conic Equation to an
equation of the form

x2 + Ky2 = L, (29)

where K, L are rational numbers. A real point on the conic exists if and only if
¬(K ≥ 0 ∧ L < 0). In this case, a real solution of (29) is given by

(x, y) = (
√

L, 0) if L > 0,

(x, y) = (0,

√
L

K
) if L < 0.

By back transformation, we arrive at a real solution for the General Conic Equa-
tion.

4 The question when a rational algebraic plane curve over Q is parametrizable over R
is treated in section 3.3 (”Parametrizing over the reals”) of [12]. We state here the
main result.
Theorem 3.2 (in [12]) A rational algebraic plane curve over Q is parametrizable
over R if and only if it is not birationally equivalent over R to the conic x2 +y2 +z2.



III. Points on conics over the rational function field

As in the rational case, we only have to consider the reduced equation

X2 + K(t)Y 2 = L(t), (30)

where K, L ∈ Q(t). Our goal is to find rational functions X(t), Y (t) satisfying
(30). This solves the problem of finding rational functions satisfying the General
Conic Equation with coefficients in Q(t) completely. For solving (30), we try to
exploit the method used for the rational case. In order to point out the analogy
between these cases, we note that Q(t) is the quotient field of Q[t], a Euclidean
Domain (ED for short), like Q is the quotient field of Z (the standard example
of an ED). This means that we can make use of modular arithmetic, as we
did in the rational case. Also those details of the rational case depending on
factorization can be adapted, since every ED is a Unique Factorization Domain
(UFD). So we can do all transformations that we did in the rational case and
finally arrive at an equation of the form

a(t)x2 + b(t)y2 = z2, (31)

where a and b are nonzero and squarefree polynomials satisfying (at least if there
exists a rational solution)

aR b, (32)
b R a, (33)

− ab

gcd(a, b)2
R gcd(a, b). (34)

(The notion of quadratic residue for polynomials is analogous to the one for
integers). W. l. o. g. let us assume deg(a) ≥ deg(b). From the proof of Legendre’s
Theorem for the rational case we know that in the new coordinates

x = AXm,

y = sY + Z,

z = sZ + bY,

where5

s(t) = pmsqrt(b(t), a(t)),

k(t) =
s(t)2 − b(t)

a(t)
,

A(t) = sqfrp(k(t)),

m(t) =

√
k(t)
A(t)

,

5 pmsqrt : ”polynomial modular squareroot”, i. e.

pmsqrt(b(t), a(t))2 = b(t) mod a(t).



(31) has the form
AX2 + bY 2 = Z2.

In analogy to the rational case A is smaller than a in some sense : in the rational
case it was the absolute value of a that dropped; here it is the degree of the
polynomial a(t) that drops. The point now is that by iterated application of the
above transformation (as in the rational case) we arrive at some simple instances
of the (polynomial) Legendre Equation, where we can decide the existence of a
rational (function) solution and - if one exists - give a solution. Technical details
and algorithmic formulations can be found in [2].

The problem treated in this chapter arises in the context of parametrizing
surfaces over Q. In particular, the following two problems are closely related :

1. Parametrize a conic f(x, y) = 0 (where f ∈ Q(t)[x, y]) with rational func-
tions in s and coefficients in Q(t).

2. Parametrize a surface F (x, y, t) = 0 (where F ∈ Q[x, y, t] is of total degree
2 in x and y) with rational functions in s and t.

The exact relationship and the application of our results to the parametriza-
tion of such surfaces needs to be investigated further.

Conclusion

Given an algebraic curve defined over the rational number field, we can de-
cide whether the curve has genus 0 and infinitely many points over the rational
numbers and therefore can be parametrized over the rationals. Similarly we can
decide whether a real curve can be parametrized over the reals. We are able to
extend these decision methods from Q to Q(t), the field of rational functions
over Q. We conjecture that this extension should lead to parametrization algo-
rithms for certain surfaces of interest in computer-aided-geometric-design, such
as discussed in [9]. This needs further investigation.
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1. Hilbert, D., Hurwitz, A.: Über die Diophantischen Gleichungen vom Geschlecht
Null. Acta math. 14 (1890) 217–224

2. Hillgarter, E.: Rational Points on Conics. Diploma Thesis, RISC-Linz, J. Kepler
Universität Linz, Austria (1996)

3. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design, A.K.
Peters, Wellesley MA (1993)

4. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory,
Springer Verlag, New York Heidelberg Berlin (1982)

5. Krätzel, E.: Zahlentheorie, VEB Dt. Verlag der Wissenschaften, Berlin (1981)
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