
An Overview of CASA { A System for ComputationalAlgebra and Constructive Algebraic GeometryTrân Quôc-Nam and Franz Winkler �Research Institute for Symbolic Computation (RISC{Linz),Johannes Kepler UniversityA{4040 Linz, AustriaE-mail: ftqnam, winklerg@risc.uni-linz.ac.atMay 7, 1997CASA is a special-purpose system for computational algebra and constructive algebraic geometry. Thesystem has been developed since 1990. With its newest version, version 2.3, in May 1997, CASA is the ongoingproduct of the Computer Algebra group at the Research Institute for Symbolic Computation (RISC-Linz), theUniversity of Linz, Austria, under the direction of the second author. The system is built on the kernel of thewidely used computer algebra system Maple.1 IntroductionConstructive methods in algebra and algebraic geometry are gaining more and more importance with theavailability of computers and computer algebra softwares. Since its �rst version (see [1]), CASA has beendesigned to perform computations and utilize reasoning about algebraic and geometrical objects in the classicala�ne and projective spaces over algebraically closed �elds of characteristic zero. More precisely, the �eld hasto be a computable �eld in the sense of the underlying computer algebra system Maple, i.e. all the arithmeticoperations have to be available in the system. Usually, the �eld of computation is the rational numbers Q or a�nite algebraic extension thereof.The system has been developed since 1990. With its newest version, version 2.3, in May 1997, CASA is theongoing product of the Computer Algebra group at the Research Institute for Symbolic Computation (RISC-Linz), the University of Linz, Austria. Several people have contributed to the system in one way or another.The names of the main contributors (see [9, 3], [8], [2], [4, 5, 7, 6]) are R. Gebauer, M. Kalkbrener, M. M�nuk,J. R. Sendra, P. Stadelmeyer, Q.-N. Tran (current coordinator), B. Wall, F. Winkler (director).In the system, an algebraic set { a central notion in algebraic geometry { can be represented in four di�erentways:� Implicit representation: An algebraic set is the set of common zeros of a system of polynomial equations.To give an algebraic set in implicit form means to give �nitely many polynomials.� Projected representation: As a consequence of the primitive element theorem every irreducible d{dimen-sional algebraic set in n{dimensional space is, after a suitable linear transformation of coordinates, bira-tionally projectable onto an irreducible d{dimensional algebraic set in (d + 1){dimensional space, whichcan be speci�ed by a single polynomial in d+1 variables. This can be generalized to unmixed-dimensionalalgebraic sets. An algebraic set in projected form is given by a polynomial and a tuple of rational functions(specifying the birational mapping).� Parametric representation: Some irreducible algebraic sets can be parametrized by rational functions. Analgebraic set in parametric form is given by a tuple of rational functions that parametrizes the algebraicset.�Supported by the Austrian Science Foundation (FWF) project HySaX, Proj. No. P11160-TEC1



� Representation by places: All algebraic curves can be locally parametrized by a set of power series thatare convergent around a point of the curve. An algebraic set is given by places if for each branch passingthrough a certain point on the algebraic set a tuple of power series that parametrizes the algebraic setaround the point is speci�ed.The system provides a variety of operations on algebraic sets. As the e�ciency of these operations is tightlybound to the way algebraic sets are represented, conversion routines have been provided to support variousviews on one object, to deepen the understanding of its principles, and to speed up algorithms working onalgebraic sets.CASA also works with the polynomial ideals corresponding to these geometric objects. The basic operationsavailable in CASA include:� ideal theoretic operations +; �;\; =,� creating algebraic sets in di�erent representations,� generating curves of �xed multiplicities at given points,� intersection, union, and di�erence of algebraic sets,� computing tangent cones and tangent spaces,� computation of the dimension of an algebraic set,� decomposition into irreducible components,� transformations of algebraic sets to hypersurfaces,� computation of the singularities, genus, neighborhood graphs and adjoint curves of an algebraic curve.Besides these basic operations, the following more advanced operations are available:� rational parametrization of rational curves,� implicitization of parametrically given algebraic sets,� Puiseux series expansions,� multivariate resultants and Dixon's resultants,� Gr�obner bases of ideals and modules,� Gr�obner walk,� computation of rational points on conics,� hybrid methods for �nding the roots of an arbitrary system of equations,� plotting both explicitly and implicitly given curves and surfaces,� computation of syzygy-bases.The major goal of CASA was to design a system which provides a comfortable, easy to use, e�cient, exibleand mathematically exact working environment for computational algebra and constructive algebraic geometrywhere all basic theoretical concepts map easily to available data structures. CASA is built on the kernel ofMaple and is fully independent of the operating system; hence, it can be used on every hardware where Mapleis running.There are software systems which partially cover some of the �elds of CASA, however, to the authors'knowledge, currently no other system provides all the functionalities of CASA.2



2 A Quick Tour2.1 Getting StartedCASA is distributed as a single Maple archive of compiled routines and is loaded via the with function afterhaving the language Maple loaded.> with(casa): Welcome to CASA 2.3.Copyright (C) 1993-1997 RISC Linz.For help type `?casa'.The code is organized into a number of separate modules. The modules and their major parts are loadedinto memory using the readlib facility when they get used for the �rst time. This signi�cantly cuts the amountof memory occupied by the code.2.2 Basic OperationsWe can de�ne an algebraic set in implicit , parametric or projected representation.> A:= mkImplAlgSet([x*(x^2+y^2-1),x*z,x^2+y^2+z^2-1], [x,y,z]);A := algebraic set( [x (x2+ y2 � 1 ); x z; x2+ y2 + z2 � 1 ]; [x; y; z ] )> A2 := mkParaAlgSet([t^2-1,1/(t-1),t+1],[t]);A2 := algebraic set��t2 � 1; 1t� 1 ; t+ 1� ; [ t ]�> A3:=mkProjAlgSet([[u^2-v^3+v^2],[u+v,u-v,1/v]],[u,v]);A4 := algebraic set��[u2 � v3 + v2 ]; �u+ v; u� v; 1v �� ; [u; v ]�We may perform conversion between representations, for example:1. Birational mapping: We may compute a projection of A. The result is a set of algebraic sets, each givenas a hyper-surface and a birational mapping to 3D-space. The union of these algebraic sets is equal to A, theintersection of the corresponding ideal is equal to the radical of A. In this case we obtain two one-dimensionalcircles.> Aproj:=convertRep(A,proj);Aproj := algebraic set( [ [x2+ y2 � 1 ]; [x; y; 0 ] ]; [y; x ] );algebraic set( [ [x2 + z2 � 1 ]; [ 0;�x; z ] ]; [x; z ] )2. Parametrization:> B:= mkImplAlgSet([x^2-y^3,z+y+x]);B := algebraic set( [x2 � y3; z + y + x ]; [x; y; z ] )> Bpara:=convertRep(B,para);Bpara := algebraic set��� 3 t+ t3 + 3 t2 + 13 t� 3 t2 � 1 + t3 ; 1 + t2 + 2 tt2 � 2 t+ 1 ; 2 1 + t2 + 2 t3 t� 3 t2 � 1 + t3 � ; [ t ]�3. Representation by places (Puiseux expansion)> Bplac:=impl2plac(B):> shAlgSet(Bplac,10);The algebraic set is known to have the following properties:It is given by the following places: 3



��18 T 3 + 332 T 4 + 21256 T 5 + 564 T 6 + 128716384 T 7 + 21256 T 8 + 46189524288 T 9+O(T 10 ); 14 T 2 + 18 T 3 + 332 T 4 + 21256 T 5 + 564 T 6 + 128716384 T 7 + 21256 T 8+ 46189524288 T 9 + O(T 10 );�14 T 2 � 14 T 3 � 316 T 4 � 21128 T 5 � 532 T 6 �12878192 T 7 � 21128 T 8 � 46189262144 T 9 +O(T 10 )��2.3 Set and Ideal OperationsThe implicit representation of algebraic sets suggests a possibility of dealing with algebraic sets by working ontheir corresponding de�ning ideals. The radical of an ideal generates set-theoretically the same algebraic set(possibly without multiple components).> A:= mkImplAlgSet({x*(x^2+y^2-1),x*z,x^2+y^2+z^2-1}, {y,z,x});A := algebraic set( [x (x2+ y2 � 1 ); x z; x2+ y2 + z2 � 1 ]; [x; y; z ] )> radA := computeRadical(A);radA := algebraic set( [x2 + y2 � 1; z ]; [x; y; z ] );algebraic set( [x; y2 + z2 � 1 ]; [x; y; z ] )During the computation of the radical, the set was split into two components. We can compute the union ofthese two algebraic sets by computing the intersection (i.e. the least common multiple) of their ideals.> G1:=implUnionLCM(radA);G1 := algebraic set( [x2 + y2 + z2 � 1; x z; z y2 + z3 � z ]; [x; y; z ] )This gives us the ideal we started with, hence we know that the ideal by which A was given is a radical ideal.The set-theoretic di�erence of sets is computed by determining the quotients of ideals.> H:=mkImplAlgSet([x, y^2+z^2-1],[x, y, z]);H := algebraic set( [x; y2 + z2 � 1 ]; [x; y; z ] )We can compute the di�erence of the sets A and H and form the Zariski closure.> implDifference(A,H); algebraic set( [x2 + y2 � 1; z ]; [x; y; z ] )2.4 Computing Dimensions and Irreducible DecompositionThe dimension is an important invariant of algebraic sets. The system CASA allows to compute the dimensionof sets given in implicit representation. Let us de�ne an algebraic set in three dimensions.> N:=mkImplAlgSet([-y^2*z^2 + 10*y^2*z - y*z^2 - 25*y^2 + 6*y*z + x - 5*y +1,> y^3*z^2 - 10*y^3*z + 25*y^3 - y^2*z + 5*y^2 - y*z + y]);N := algebraic set([�y2 z2 + 10 z y2 � y z2 � 25 y2 + 6 z y + x� 5 y + 1;z2 y3 � 10 z y3 + 25 y3 � z y2 + 5 y2 � z y + y]; [x; y; z ])N turns out to be a curve.> dimension(N); 1There are two possibilities to compute the irreducible decomposition of N. The �rst one is based on characteristicsets and works directly on the implicit representation of N.> N; algebraic set([�y2 z2 + 10 z y2 � y z2 � 25 y2 + 6 z y + x� 5 y + 1;z2 y3 � 10 z y3 + 25 y3 � z y2 + 5 y2 � z y + y]; [x; y; z ])4



> U:=decompose(N);U := algebraic set( [x+ 1; y ]; [x; y; z ] ); algebraic set([�11 y3 x� 76 y3 + x2 y3 � 15 y2 x� 15 y2 � 3 y � 3 y x� 1� x; 2x3 y2+ 2x z � 1064 y2 � 306 y2 x� 108� 8x2 y2 � 16 y x2 � y x3 � 197 y x� 44x� 438 y + x2 z + 65 z;20 z y + x z + 5 z � 152 y2 � 22 y2 x+ 2x2 y2 � y x2 � 19 y x� 54 y � 4; 4 z2 + x z � 23 z � 2x2 y2 + 22 y2 x+ 152 y2 + 106 y + 41 y x+ 36+ 16x� y x2]; [x; y; z ])The second decomposition algorithm works on algebraic sets in projected form by factoring the de�ningpolynomial of the hyper-surface.> decompose(convertRep(N,impl,proj));algebraic set([[x+ 1 ]; [�(266x z3� 232x z2 � 104x z4 � 9x z + 95x+ 17x z5 � x z6 � 11 z2 + 9 z3 � 55 z + 49� z4 + z2 x2 � 10x2 z+ 25x2)�(%1 );�(�11 z2 + 9 z3 � 55 z + 49� z4 � 10x z2 � 65x z+ 74x+ 9x z3 � x z4 + z2 x2 � 10x2 z + 25x2)�(%1 ); z]]; [x; z ]);algebraic set([[z2 x2 � 10x2 z + 25x2 � 3x z3 + 34x z2 � 114x z+ 95x� z5 + 13 z4 � 59 z3 + 126 z2 � 174 z + 91]; [�(266x z3� 232x z2� 104x z4 � 9x z + 95x+ 17x z5 � x z6 � 11 z2 + 9 z3� 55 z + 49� z4 + z2 x2 � 10x2 z + 25x2)�(%1 );�(�11 z2 + 9 z3� 55 z + 49� z4 � 10x z2 � 65x z + 74x+ 9x z3 � x z4 + z2 x2� 10x2 z + 25x2)�(%1 ); z]]; [x; z ])%1 := �257 z3 + 222 z2 + 103 z4 � 56 z � 21� 17 z5 + z62.5 Algebraic CurvesWe de�ne an irreducible projective algebraic curve.> C1:=mkImplAlgSet([-15*y^2*z^3-76*y^3*z^2-z^5-3*y*z^4-15*x*y^2*z^2-11*x*y^3*z-x*z> ^4-3*x*y*z^3+y^3*x^2],[x,y,z],[basespace=projective]);C1 := algebraic set([�15 y2 z3 � 76 z2 y3 � z5 � 3 z4 y � 15x z2 y2 � 11x y3 z� x z4 � 3x y z3 + x2 y3]; [x; y; z ])In the course of studying basic properties of C1 we will look for singular points. The result of the followingfunction call is a list of all singularities of C1 (counted properly). Usually, algebraic numbers are introduced inthis process.> singularities(C1);table([2 = ��4021 RootOf( 5 Z 2 + 4 Z + 89 )� 521 ;� 221 RootOf( 5 Z 2 + 4 Z + 89 )� 521 ; 1� ; [ 0; 1; 0 ]�3 = [ [ 1; 0; 0 ] ]])Let us take a point on C1, (2:alpha:1), say; "alpha" being a root of the irreducible polynomial:94 y3 + 45 y2 + 9 y + 3:5



> alias(alpha=RootOf(94*y^3+45*y^2+9*y+3)); I; �The tangent space (i.e. the set of points on all lines which have the intersection multiplicity > 1) at this pointis the following algebraic set (a line):> tangSpace(C1,[2,alpha,1]);algebraic set ���657 y + 643 z �+ 322�2 z + 48 z � 48x+ 14�x� 322�2x� ;[x; y; z ]�Since the projective point (0:1:0) is a singular point on C1 the tangent space is the whole projective space.> Ts:=tangSpace(C1,[0,1,0]); Ts := algebraic set( [ 0 ]; [x; y; z ] )The tangent cone is a linear subspace generating the tangent space. It is given by the following set.> Tc:=tangSpace(C1,[0,1,0],'cone');Some of the generating polynomials for the affine tangent space/coneare homogeneous. Returning only affine form of generators.% Tc := algebraic set( [�11x z + x2 � 76 z2 ]; [x; z ] )The set Tc splits over the algebraic closure of the rational numbers into two lines.> decompose(Tc,absolute);algebraic set��x+ 14 RootOf( 44 Z + Z 2 � 1216 ) z� ; [x; z ]� ; alngebraic set��x+ ��11� 14 RootOf( 44 Z + Z 2 � 1216 )� z� ; [x; z ]�It is an interesting question whether coordinates of points on an algebraic set can be expressed as rationalfunctions of some number of parameters. For curves this amounts to represent coordinates of each point interms of a single parameter. A necessary and su�cient condition is the vanishing of the genus.> genus(C1); 0Now we are able to compute a birational mapping of C1 to the line. We get a parametric description.> convertRep(C1,para);algebraic set���t3 � 15 t2 � 75 t� 126;� 5 + tt2 + 11 t+ 26 ; 1� ; [ t ]�Often it is desirable to determine (systems of) curves passing through speci�ed points with prescribed multi-plicity. The system CASA o�ers some functions to perform this task, e.g., passGenCurve.2.6 Gr�obner Bases and SyzygiesBesides the improved classical Gr�obner bases algorithm, CASA contains an implementation of Gr�obner bases formultivariate polynomial modules and is able to solve systems of linear equations with polynomial coe�cients.CASA also contains an implementation of the Gr�obner Walk algorithm for Gr�obner bases conversion.> msolveGB([[x^3-y,-x+y],[x*y-1,x^3-1],[-x+y^2,y-1]],[x*y^2-y^2,-x^5+x^2-x+y^> 2],[x,y],term,tdeg);[[ y;�x2; x ]; [[�x4+ x+ x3 y2 � y2 � x y2 + x y + y � 1;x y + x3 y � x3 � y2 � y3 + y � x2 + x y2;x3 + x3 y + x y2 � x2 y + x� 2 y � x6]]]6



2.7 Scienti�c VisualizationA powerful feature of CASA is the capability to visualize algebraic sets. For the majority of tasks, only singularor other distinguished points of algebraic sets yield some interesting information. These objects have to betreated with care, requiring special analysis. CASA makes a thorough e�ort to obtain correct informationabout the local topology in the neighborhood of singularities and other critical points while still keeping thealgorithm e�cient by using hybrid symbolic-numerical methods. Although Maple provides a function whichis claimed to plot sets in an implicit representation its output for more complicated varieties is by far notsatisfactory. Figure 1 shows the graphs produced by CASA for the following examples:1. 9339289615625 x6+(94359552625 y2+ (91521024625 y� 249088125 x4+(103219225 y4�36864y3� 773222425 y2�207360y+ 77004825 x2+(65536y6 + 49152y5 � 135168y4 � 72704y3 + 101376y2 + 27648y � 276482. 2x4 � 3x2y + y2 � 2y3 + y43. y4 � 96a2y2 + 100a2x2 � x44. 8(y2 � x2) � 8(y3 + x3) + 2y4 + x5 Figure 1: Plotting
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3 Distribution and RequirementsThe system can be obtained by anonymous ftp at the URL ftp.risc.uni-linz.ac.at. Major releases will be locatedin the directory /pub/CASA. Bug correction and minor updates will be put in /pub/CASA/update. We havealso a home page on World Wide Web http://www.risc.uni-linz.ac.at/software/casa.The system is freely distributed under the following conditions: any research activity which uses CASAshould cite the authors and the system explicitly. The system can be freely distributed to other users. Newusers are encouraged to notify the CASA coordinator so they can be included in a user list where they will bekept up to date about the progress of the system.Bug reports, questions and suggestions should be sent to the e-mail address alggeo@risc.uni-linz.ac.at.References[1] R. Gebauer, M. Kalkbrener, B. Wall, and F. Winkler. CASA: A Computer Algebra Package for ConstructiveAlgebraic Geometry. In S. M. Watt, editor, ISSAC '91, pages 403{410, Bonn, Germany, July 1991.[2] M. M�nuk. Algebraic and Geometric Approach to Parameterization of Rational Curves. PhD thesis, ResearchInstitute for Symbolic Computation, Linz, Austria, 1995.[3] M. M�nuk and F. Winkler. CASA - a system for computer aided constructive algebraic geometry. InProceedings of the International Symposium DISCO'96, pages 297{307, 1996.[4] Q.-N. Tran. A hybrid symbolic-numerical method for tracing surface-to-surface intersections. In A. H. M.Levelt, editor, Proceedings of ISSAC-95, Montreal, Canada, 1995. ACM.[5] Q.-N. Tran. On the symbolic-numerical methods for �nding the roots of an arbitrary system of non-linearalgebraic equations. In Proceedings of the First Asian Technology Conference in Mathematics, ATCM-95,Singapore, 1995.[6] Q.-N. Tran. A Hybrid Symbolic-Numerical Approach in Computer Aided Geometric Design (CAGD) andVisualization. PhD thesis, Research Institute for Symbolic Computation (RISC{Linz), University of Linz,Austria, 1996.[7] Q.-N. Tran. Extending newton's method for �nding the roots of an arbitrary system of equations and itsapplications. International Journal of Modeling and Simulation, 17(4), 1997. To appear.[8] B. Wall. Symbolic Computation with Algebraic Sets. PhD thesis, RISC-Linz, Universit�at Linz, 1993.[9] F. Winkler. Algebraic computation in geometry. In G. Jacobs, N. E. Oussous, and S. Steinberg, editors,IMACS'93 Conference, Lille, special issue J. Math. in Comp. Simulation, 1993.
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