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Abstract. Increasing power of computing devices shed a new light on the roie
of mathematical experiments. Constructive methods yield new insights into the
nature of complicated problems. This paper describes the system CASA which
implements basic principles of the classical algebraic geometry. Tt was created
around the notion of the algebraic set and is currently supporting many operations
on them while adhering to simplicity and efficiency.

1 Introduction

The old masters of algebraic geometry developed this field in an inherently con-
structive spirit. This fact together with the increasing power of computers laid
a firm basis for implementation of a large portion of this field in software. Thus it
becomes possible to automatize many computations hence opening new prospects
and possibilities not only to mathematical research but also to industrial appli-
cations.

The package CASA - the name standing for Computer Algebra System for
Algebraic geometry— was designed to perform computations and utilize reason-
ing about geometrical objects in the classical affine and projective algebraic ge-
ometry over algebraically closed fields of characteristic 0. Usually, the under-
lying ground field is the field of rational numbers or finite algebraic extensions
thereof. CASA has been developed at the Research Institute for Symbolic Com-
putation, Linz, Austria, in a research group headed by F. Winkler. The project
started in 1990. A first report on development of CASA appeared in [5]. Since
that time many people contributed to CASA in one or in the other way. The
largest part of work has been done by R. Gebauer, M. Kalkbrener, M. Miluk,
R.J. Sendra, P. Stadelmeyer, B. Wall, and F. Winkler.

CASA has been built around the notion of the algebraic set. Originally, fun-
damental algorithms were written for algebraic sets in implicit representation,
i.e. for sets given by zeros of a set of polynomials. However, due to theoreti-
cal and practical reasons the variety of possible representations was extended to
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comprise also the parametric, projected and the representation by power series
(used for curves).

Implicit representation: An algebraic set is the set of common zeros of a sys-
tem of polynomial equations. To give an algebraic set in implicit form means
to give finitely many polynomials. -

FProjected representation: As a consequence of the primitive element theo-
rem every irreducible d—dimensional algebraic set in n~dimensional space is,
after a suitable linear transformation of coordinates, birationally projectable
ontoan irreducible d-dimensional algebraic set in (d + 1)—dimensional space.
The image of this projection can be specified by a single polynomial in d + 1
variables. This can be generalized to unmixed-dimensional algebraic sets.
An algebraic set in projected form is given by a polynomial and a tuple of
rational functions (specifying the birational mapping).

Parametric representation: Some irreducible algebraic sets can be parametr-
ized by rational functions. An algebraic set in parametric form is givenbya
tuple of rational functions that parametrizes the algebraic set.
Representation by places: All algebraic curves can be parametrized by a set
of power series that are convergent around a point of the curve. An algebraic
set is given by places if for each branch passing through a certain point on
the algebraic set a tuple of power series that parametrizes the algebraic set
around the point is specified. '

CASA also works with the polynomial ideals corresponding to these geometric
objects.

The operations available in CASA include

ideal theoretic operations +, ,M, /,

creating algebraic sets in different representations,
generating curves of fixed multiplicities at given points,
intersection, union, and difference of algebraic sets,
computing tangent cones and tangent spaces,
computation of the dimension of an algebraic set,
decomposition into irreducible components,
transformations of algebraic sets to hypersurfaces,
computation of the genus of a curve,

rational parametrization of curves,

implicitization of parametrically given algebraic sets,
Puiseux series expansions,

plotting both explicitly and implicitly given curves and surfaces.

For more information on the underlying mathematics and software issues we re-
fer to [13, 14]. Some typical sessions of CASA may be found in 8,17, 18].
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The basic philosophy of CASA is to provide a variety of operations on al-
gebraic sets. As the efficiency of these operations is tightly bound to the way
algebraic sets are represented, conversion routines have been provided to sup-
port various views on one object, to deepen the understanding of its principles,
and to speed up algorithms working on algebraic sets. The major goal was to de-
sign a system which provides a comfortable, easy to use, efficient, flexible, and
mathematically exact working environment for constructive algebraic geometry
where all basic theoretical concepts map easily to available data structures. The
fact that CASA is based solely on Maple and is fully independent of the operating
system, allows it to be used on every hardware where Maple is running.

There are software systems which partially cover some of the fields of CASA,
however, to authors’ knowledge, there is currently no system with comparable
capabilities available.

2 ‘ Structure of CASA

CASA evolved over several years from an independent set of Maple programs.
From version 2.1 to 2.2 there was a significant change in the internal structure
of the system. The code was reorganized into a number of separate modules.
Each module contains a set of operations performing related tasks. After this,
the code became cleaner and several modules may be now used as stand-alone
Maple packages having distinguished name space which avoids conflicts with
other software already loaded in the Maple session. The whole system is dis-
tributed as a single Maple archive of compiled routines. Unlike previous ver-
sions of CASA, the modules and their major parts are loaded into memory using
Maple’s readlib-facility when they get used for the first time. This signifi-
cantly cuts the amount of memory occupied by the code keeping it free for data.

The documentation of CASA is written using a restricted set of I&[EX com-
mands. The description of every procedure may then be converted to both on-
line Maple help file and to high quality printouts including mathematical formu-
lae. This approach was chosen in order to keep the on-line help consistent with
printed manual.

3 Modules

3.1 Basic Operations

The central notion of CASA — the algebraic set — is implemented as a structure
(Maple’s unevaluated function call) holding the defining entities, a description
of the underlying space in which the set is embedded, and some attributes and
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properties. During a computation, when a new knowledge about an algebraic
set is obtained, it is added to its property list to avoid laborious recomputations
when this knowledge is needed later. The information already contained in the
property list is retrieved whenever some function requires it.

The module for basic operations provides functions to manipulate the struc-
ture of the algebraic set, to add new knowledge, and to query about it.

To create an algebraic set given by a polynomial ideal the function
mkImplAlgSet is called with the generating ideal, the space in form of a list
of variables, and some additional information which may be known in advance.
The set is implicitly assumed to be affine if it is not explicitly declared projective
(by adding the attribute basespace=projective to the property list. -

> A = mkImplAlgSet ([x* (x"2+y"2-1),x%z,x"2+y"2+272-1],
> [x,v,z1);

A :=algebraicset([xz,x (% +* — 1), 2+ + 22 — 11,[x,%,2])
Parametric sets are given by a list of rational functions in some parameters.

> PrsmkParadAlgSet ([ (£ 4-12*t 2-3*t+13)/ (£ 3-2%ts1),
> (5*t"3-6*£"2-4}/(£73+2%t+1) ], [t]);
#1212 -31+13 583 ~6:2—4
B —-2r+1 7 PB4+2+1 ]’[tl) ,
The representation may be obtained by calling the function represent.
> represent {(P);

4 =1212—314+13 507612 -4
13-2t+1 T34 2r41

P = algebraic_set ( [

3.2 Gribner Bases and Syzygies

The concept of Grobner bases was originally introduced for polynomial ideals
(f1]). But as shown in [9] it can be naturaily generalized to submodules of a free
module over polynomial rings.

Besides the improved classical Grobner bases algorithm CASA contains an
implementation of Grébner bases for modules over polynomialt rings. It allows to
compute Grébner bases for multivariate polynomial medules and solve systems
of linear equations with polynomial coefficients.

Consider the following linear system of equations in z1,2,23 € K[x, ¥l

(fﬂy«ty—i—x+y2), a =( o -y )

—x+yx3—1 y-1 Q T G
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The function msolveGB yields the basis of the solution space.

> msolveGB({[x 3-y, x+y1,[x*y—l x"3-1], [-x+y"2,y-1]11,
[2*y"2-y"2, ~x"5+x"2-x+y" 2], [x,y], term, tdeg) ;

Uy, —2x, 1~ 1 +x+y =y +xy —xy* +5° ¥ = &,
ym—yz—)r?’wxz+xy+xy2—y3+x‘5y,
x=2y+8+x 48y — 2y — 21

3.3 Set Operations

The canonital correspondence of algebraic sets and radical polynomial ideals
allows to perform set theoretic operations on algebraic sets (union, difference,
intersection, Zariski closure, etc). The basic algorithm used here is the compu-
tation of Grobner bases in polynomial rings.
Let us consider the algebraic set A from Section 3.1 and represent it as an
intersection of radical ideals by calling the function computeRadical.
> radA := computeRadical (A);

radA :=a1gebraic_set({z,x2 +y = 11,[x,%z]),
algebraic_set({x,y* + 22 — 11,[x,3,z])

The union of the two algebraic sets from above is obtained using implUniocn.
> G:=implUnion{radA);

G := algebraic_set({xz,2)* +2° — 2,2 +y* x ~ x,

Py el P -yt eyt 2 -2y -2+ 1), (2%, 5]
Using the corresponding operations on ideals, the closure of the set theoretic
difference of A and the second component radA4, of rad4 is computed.

A = algebraicset( [x (22 +32 — 1), xz,2 +y* + 2 = 11,[x3,2])
radA, = algebraic_set([x,y* +2* ~ 1], {x,3,2])

> implbifference(A,rada(2]}

algebraic.set([z, % +y* — 11, [x,3,z])

3.4 Conversions

To utilize efficient computations over algebraic sets and to supportdifferent views,
many conversion operations between representations mentioned above are im-
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plemented in CASA. The conversion of a one-dimensional set in implicit form
to a parametric representation is done by the algorithm described in {12]. To im-
plicitize parametric sets, Grobner basis computation is used. Algorithms for con-
verting algebraic sets to projected representation are described in [15]. Puiseux
series are used to obtain curves represented by places (series).

To convert the set A to the projected  representation,
convertRep (A, proj) iscalled.

> B:i:=convertRep (A, proj);

B :=algebraic_set([[* +y* — 11,[x,,011, [3,x1),
algebraic_set{[[ 22 ~ 1 +x* 1[0, —x,2]1,[x,2])
The representation of the first set

> represent (B[1]};

([ +5* ~ 1), [x,,01]
consists of a list defining a hypersurface x* + y* — 1 in the 2-dimensional affine
space and a mapping

A 5 A3
(x,y) — (x,»,0)

In this computation, the Gribner basis of A has been determined and auto-
matically added to the property list by some function called by convertRep.

> attributes{A};

[groebnerbasis = [ plex, [ x> +y* + 2% ~ 1,x2,2y° +2° — 2]]]
The basis will be retrieved whenever it is needed in subsequent tasks.
Among others, routines to convert parametric representation to the implicit

one are implemented in CASA. The following parametric space curve C may be
represented as a zero set of an ideal in K[x,y, z] with 4 generators given below.

> Ci=mkParallgSet ([ {t 4+3*£"2-7T*t+4)/ (£ 2=3%t+1),
> (4*£7"2-1)/(2*t"2-3),t), [t]l};

32~ Tr+4 4:2—1t [
23] 212371

C .= algebraic.set ([

> convertRep(C, impl);
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algebraic set([5010x+ 9772y — 3500z + 1500zx — 17843 + 884 x?
+21960xy — 13421y% +8076y° — 176X + 13047 y + 9548 y* &
— 107223 Y% — 168837 x* +430y° x — 14280y x — 125362y
+23225y%,392x + 3136y + 176 X% +2996 xy — 2793 — 2702 y*
+2184y° +1724Y2 % — 768y° 2 + 1564y° x ~ 413297 x — 6735*
— 13922y + 116y* 5% — 148 y* x,590zy% — 12602y +910z
+116y3 2% — 86x+ 189y — 88x% — 2356 xy + 653 y* — 673
~ 53632 2% — 148 x+ 1519+ 1558 % x + 652x7 ,250 %
— 116y° 5 +196x + 1026y + 88 + 1596 xy — 838y* + 673y
+536y% 52 + 148 x = 12687 x — 1459 — 6522y, [x,,2])

3.5 Dimension

For the dimension computation the algorithm in [6] was implemented in CASA.
Only one Gribner basis w.r.t. a lexicographic term ordering needs to be com-
puted for determining the dimension of an ideal.

> U ;= mkImplAlgSat([36*z*y‘2*x+8*x“3*z”5+16*x‘3*z“2*y‘3-

> —BAx Ghg 4R 3wz 2Ryt 2-DRaéyt2¥x"2-773%y 4,

> 12%x 6 z*y " 2-4B*x"4*2-39*z*y " 6~12%g*y " 2*x,

> -12*x"3*z-3%z*y"2], [x, ¥, 2]}

- 3 6.,.2 4 6 2

U :=algebraic set([12x" zy* — 48x" z— 39zy° — 12zy" x,
362y x+8° 2 + 16522y — 8507 — 45 2y ~ 227 — 22y,

~12237-32y*1, [%,y,2])

> dimension(U);

3.6 Decomposition

Decomposing algebraic sets into irreducible parts is achieved by constructing the
characteristic set for the defining polynomial ideal (cf. [16]). For sets in 3-dimen-
sional space, the projected representation onto unmixed dimensional hypersur-
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faces may be used to achieve partial splitting, The factors of generating polyno-
mials of hypersurfaces vield then the irreducible components.
N:=mkImplAlgSet ([-y"2*z"2 + 10*y 2%z - y*z"2 - 25*y"2

+ bry*z + x - BFy 41,y 3%z%2 - 10*y 3%z 4+ 25*y"3
- ¥ 2%z + 5¥y"2 - y*z o+ v]);

VoV oy

> U:i=decompose (N);

U :=algebraic.set([y,1 +x],{x,y,2]),

algebraic_set([
20yz+zx+5z~xy — 54y — 15257 ~ 2292 x
- I9yx+2y2x2 -4,

YF 76y — 1552 —3y—1-11y°x~ 15y x— 3yx —x,

42 +2x~ 232~ 25 415252 + 106y + 36 + 22y x + 41 yx
+16x~ 22y, ~16xy+65z — 44x — 438y — 1064y +22x
—306y*x — 197yx - 8y* 2 +2y2 2 — Py + 222 — 108, [x,y,z])

3.7 Curves

Many algorithms for dealing with algebraic curves are implemented — paramet-
rization and implicitization, tangent cones, adjoint curves, sin gularities, implicit
plots, etc. All algorithms use symbolic methods to achieve exact results, In the
future, mixed symbolic-numerical methods will be implemented to gain more
speed-up while keeping sufficient accuracy.

Let us consider a curve C in the 2-dimensional projective space.

> Cl:=mkImplAlgSet ([-15*y 2%z 3-76%y 3%z 2-2"5-3%y*g" 4
> =15*x*y " 2*z 211 *x* y 3 *z-x*z 4 -3 nryr 2 34y " 3* %" 2],
> [%,v,z], {basespace=projectivel);

C) :=algebraic.set((—15y" 2> ~ 765° 22 — 2% ~ 3yz* — 1553222 ~ 111y’ 2
—x2* = 3xy2 + ¥ 21 [x,3,2])

The function singularities yields all singular points of C; decomposed
into classes points having the same multiplicity.

> singularities{Cl);
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table({
3=[{1,0,0]]

2= [[RootOf(-Zz+2»Z+65),—% - %RootOf(_Zz-kZ_Z-t—ﬁS), 1},

[0,1,0]}
D

The above curve has one triple point and three! double points, it has genus
0, and hence may be converted into parametric representation.

> convertRep(Cl,para);

: 152 15— 126, - — L
a}gebra:c,set([t 158 = 751 — 126, 26+r2+11r’1]’[t])

3.8 Plotting

Visualization of algebraic sets is a critical task. Their in many cases complicated
nature must be faithfully translated into a picture. For the majority of tasks, only
singular or other distinguished points of algebraic sets yield some interesting in-
formation. These objects have to be treated with care, requiring special analy-
sis. CASA makes a thorough effort to obtain correct information about the local
topology in neighborhoods of singularities and other critical points.

The curve C; from Section 3.7 is a projective curve. We may consider the
affine pieces of Cy, i.e. Cl,.r =CinVix-1), Cl,y =CinVy-1, and Cl,z =
CiViz—- 1%

> Clx:=convertSpace({Cl,affine,x);
> Cly:=convertSpace({Cl,affine,y):
> Clz:=convertSpace(Cl,affine, z);

Ciy= ::t}‘gebraic.set([—15y2 z - 763;3 -7 - 3yz4 —15y* 7
-11Y’ -2 - 3y2+y’ L, [y2D)

Cy,y 1= algebraicset([ ~152° — 7622 — 2° — 32* — 15x2% ~ 11z
—xzt=3x2+ X%z

Cy,, = algebraic.set([ =15y — 76y° — 1 — 3y ~ 15xy* — 11xy*
—x=3xy+y 21 [xy])

! Note that the first “point” in the list of double poinis is a class of two points each comresponding
to one root of z2 + 2z +65.
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Based on the analysis of certain distinguished points, CASA's function
plotAlgSet makes exact and topologically correct drawings. See figure 1.

Clx Cly Ciz

3 N 0 AT 2 -2\.)-_,__Go i 2
__’_——‘_““
- -] -1

1S
N
]

Figure 1. Affine pieces Cy ,, Gy, and Cy ; of Gy

4 Future Developments

The CASA system is undergoing steady development. In next releases, para-
metrization of surfaces, recent results in parametrization of curves, search for
rational points on curves, an improved hybrid symbolic-numerical algorithm for
plotting algebraic sets, offset curves and surfaces, and Hilbert polynomial series
will be implemented.

Availability

CASA is available for anonymous ftp at fip.risc.uni-linz.ac.at in the, directory
/pub/CASA. As of this writing the version 2.2 (patchlevel 1) is available, A WWW
page may be accessed at http://info.risc.uni-linz.ac.at:/labs-info/compal/software/
casa/casa.html.
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