
AUSTRIAN GRID

 1/18

AUSTRIAN GRID

A PROTOTYPE OF THE SEE-GRID PATHOLOGY FITTER

Document Identifier: AG-DA1c-3-2005_v1.doc (PUBLIC)

Workpackage: A1c

Partner(s): Research Institute for Symbolic Computation (RISC)
Upper Austrian Research (UAR)

Lead Partner: RISC

WP Leaders: Wolfgang Schreiner (RISC), Michael Buchberger (UAR)

Privacy: public

AUSTRIAN GRID

 2/18

Delivery Slip

 Name Partner Date Signature

From Károly Bósa RISC 29.07.2005

Verified by

Approved by

Document Log

Version Date Summary of changes Author

1.0 2005-07-28 Initial Version See cover on page 3

AUSTRIAN GRID

 3/18

A PROTOTYPE OF THE SEE-GRID
PATHOLOGY FITTER

Karoly Bosa
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)

Johannes Kepler University Linz
{Karoly.Bosa, Wolfgang.Schreiner}@risc.uni-linz.ac.at

Michael Buchberger
Thomas Kaltofen

Department for Medical Informatics

Upper Austrian Research (UAR)
Thomas.Kaltofen@uar.at

August 29, 2005

AUSTRIAN GRID

 4/18

ABSTRACT... 5

1 INTRODUCTION ... 6

2 PATHOLOGY FITTING ... 7
2.1 THEORY AND DESIGN ... 7

3 PATHOLOGY FITTING WITH PARALLEL GAZE PATTERN CALCULATION........................ 10

4 PARALLEL PATHOLOGY FITTING... 11
4.1 NEW MESSAGES IN THE SOAP PROTOCOL ... 11
4.2 USER MANUAL ... 13

4.2.1 The "SEE++ to Grid Bridge".. 13
4.2.2 The SEE++ client.. 14

5 IMPLEMENTATION STATUS AND BENCHMARKS ... 14
5.1 CHANGING TO GLOBUS WEB SERVICE INTERFACE ... 14
5.2 BENCHMARKS OF PATHOLOGY FITTING WITH PARALLEL GAZE PATTERN CALCULATION 15
5.3 IMPLEMENTATION STATUS OF PARALLEL PATHOLOGY FITTING ... 16

6 FURTHER DEVELOPMENT STEPS .. 16

REFERENCES.. 17

AUSTRIAN GRID

 5/18

Abstract

In the previous phase of the SEE-GRID project, we implemented the "SEE++ to Grid
Bridge", via which normal SEE++ clients are able to access and exploit the computational
power of the Austrian Grid.

This document discusses the theory and the design of a new functionality of the SEE-GRID
system called pathology fitting and described its two simple parallelized versions. SEE-GRID
is based on the SEE++ software for the biomechanical simulation of the human eye. SEE++
was developed in the SEE-KID project by the Upper Austrian Research and the Upper Austria
University of Applied Sciences. SEE++ consists of a client component for user interaction
and of a server component that runs various computations.

The pathology fitting algorithm in SEE-GRID uses the result data of the medical examination
Hess-Lancastar Test as input and it is able to determine (approximately) the pathological
cause of strabismus in case of a patient. This paper addresses the following issues:

• How the sequential pathology fitting algorithm works.

• How the sequential pathology fitting can be improved by using the results of the

previous phase of the SEE-GRID project.

• How the pathology fitter can be parallelized.

At the end of this paper, we summarise our first experiences with the pathology fitting and
make a plan for the further developments.

AUSTRIAN GRID

 6/18

1 Introduction

SEE++ Clients

SEE++ Server

GRID (Globus PRE-OGSA)

SEE++ Server

SEE++ Server

.

.

.

SEE++ Server

SEE++ To GRID
Bridge

Figure 1: The Current Architecture of SEE-GRID

The design of SEE-GRID is based on the SEE++ software for the biomechanical simulation
of the human eye. SEE++ was developed in the frame of the SEE-KID project by Upper
Austrian Research and the Upper Austria University of Applied Sciences [SEE-KID,
Buchberger 2004, Kaltofen 2002]; it consists of a client component for user interaction and of
a server component that runs various computations ("currently "Hess Diagram Calculation").

In the previous phase of the SEE-GRID project [SEE-GRID Deliverable 2005], we
implemented the "SEE++ to Grid Bridge", which is the initial component of SEE-GRID.
Then we demonstrated how normal SEE++ clients are able to access via this bridge (see
Figure 1) to the Austrian Grid and how a noticeable speedup can be reached in SEE++ — by
applying simple data parallelism — by the exploitation of the huge computational power of
the Grid.

The current phase of the project was mostly a studying period. Primarily we investigated the
problem of the Pathology Fitting [SEE-GRID Design, 2004] and we implemented two initial
grid based variations of it, see Section 2. Then we have got some experiences with these
preliminary versions, see Section 4.

Since our original plan was to implement SEE-GRID as some kind of (web) service on the top
of a Globus infrastructure [SEE-GRID Design, 2004], we started to investigate the new Web
Service interfaces of Globus 4, too.

AUSTRIAN GRID

 7/18

2 Pathology Fitting

Figure 2: Gaze Patterns: Intended (blue lines), Measured (green lines)
and Simulated (red lines)

SEE++ is able to simulate the result of the Hess-Lancaster test which is a test for binocular
functions with separated images for both eyes [SEE-KID, 2004]. A gaze pattern (or "Hess
Diagrams") which is the outcome this kind of examination is an eye pair’s image of set of
reference points in the plane. The most common kind of gaze patterns used by the software
contains 9 points (see Figure 2). If a patient stares such a diagram with a perfectly healthy pair
eyes, these points form a regular pattern (called intended gaze pattern) for her (see the blue
lines on Figure 2). But if somebody has an impaired pair eyes, the seen pattern is distorted
(see the green lines on Figures 2).

Basically, SEE++ deals with the calculation of a gaze pattern from an eye model (the
“forward problem”). In case of the pathology fitting, we need to calculate an eye model from
a gaze pattern (the “inverse problem”). As usual, the inverse problem is the mathematically
more difficult and the computationally more time-consuming one.

2.1 Theory and Design

Pathology Fitting takes an initial eye model of one eye and gradually “improves” it (by
modifying individual parameters or combinations of parameters) until the gaze diagram
calculated from the eye model “nearly” matches the measured diagram of a patient. A model
of one eye consists of the data of the eye globe (globe radius, cornea radius, etc.) and
characteristic of the 6 eye muscles (see Figure 3).

AUSTRIAN GRID

 8/18

Figure 3: Top View of the Right Eye

The main effect (the direction of pull) of each muscle can be derived from its designation
[Buchberger, 2004]:

• Superior rectus (upper straight eye muscle): upward,
• Inferior rectus (lower straight eye muscle): downward,
• Lateral rectus (outside straight eye muscle): sideways outward,
• Medial rectus (internal straight eye muscle): sideways inward,
• Superior oblique (upper diagonal eye muscle): downward and outside,
• Inferior oblique (lower diagonal eye muscle): upward and inside.

In the SEE++ system, all six eye muscles are simulated with a force model [Buchberger,
2004] and they are characterized with the following parameters:

• Coordinates of the origin. The origin is the point where the one of the ends of a
muscle connects to some bones on back side of the orbita.

• Coordinates of the insertion. The insertion is the point where the other end of a

muscle connects to the skin of the eye globe.

• Coordinates of the pulley. The pulley is the point where the string of a muscle

elastically connects to a side of the orbita near to the insertion point. The main
function of the pulley is to stabilize the pull direction of the muscle.

• The Muscle length represents only the contractile part of the muscle without its
tendon.

• The Tendon length defines the summarized length of the tendons on the both
ends of a muscle.

• Innervation. All eye muscles are controlled by some nerves. These contain the
cell body of neurons which innervate the muscles and thus serve as a common
path through which all eye movement control must be accomplished. In normal
case, each eye muscle is innervated by approximately 1000 neurons and the

AUSTRIAN GRID

 9/18

single neurons branch out in the eye muscle and innervate approximately 4 to 40
muscle fibers respectively. Roughly, the innervation is a number which shows
how the muscle is supplied with nerves.

• The Active strength of a muscle results from activation (innervation) of a

muscle initiated by the brain.

• The Passive strength of a muscle represents the flexible stretch characteristics
of a muscle, which works opposite to the active strength.

The Pathology Fitter receives these muscle characteristics for all six muscles as an input
parameter and starts to modify them in a specific order (except the origin and the pulley). The
SEE-KID software essentially reduces by proper encoding the pathology fitting problem to a
numerical optimization problem to which standard solutions can be applied. Unfortunately,
there are several problems, which make the things more complicated:

• While an eye model uniquely determines a gaze pattern, the inverse does not
hold, i.e. many eye models yield the same gaze pattern; furthermore, most of
these eye models do actually not match the patient’s real physiology.

• At the moment, it is very hard to define precisely in a formal way which eye

model configurations are pathologically not possible (except some special cases,
e.g.: the insertion must not be located on the cornea, etc.).

• There is no general rule yet that can define in which order the muscle parameters

have to be modified (fitting strategy). In different situation, different strategies
can be applied that may results different eye models. Therefore, in the current
versions, the user always denotes by a “parameter selection” S those parameters
in a specific order that may be modified. For instance such a possible strategy
could be the following: 1. Innervation, 2. Muscle length, 3. Tendon length, 4.
Horizontal insertion and 5. Vertical insertion.

The pathology fitting algorithm always receives the models of fixing eye, following (or
pathological) eye and reference eye [SEE-GRID Design, 2004], a matrix M with the
coordinates of the points of the measured gaze pattern and the fitting strategy S chosen by the
user. The rough sketch of the algorithm is the following:

AUSTRIAN GRID

 10/18

pathologyFitting(Efollowing, Efixing, Ereference, M, S)

E1 := Efollowing
C1 := gazePattern(E1, Efixing, Ereference)
if C1 matches M return E1

loop

p := nextParameterVariation(S)
if p is equal to NULL return E1
E2 := apply(p, E1)
C2 := gazePattern(E2, Efixing, Ereference)
if C2 fits M better than C1
 E1 := E2
 C1 := C2

 if C1 matches M return E1

Of course, a measured gaze pattern and a simulation one almost never match exactly. There
are two important consequences of this:

• The algorithm does not terminate most of the case before it tries to fit all the
possible kinds of muscle parameters given in the fitting strategy.

• If the algorithm returns an eye model, it cannot be decided from the comparison of

the measured and the simulated gaze patterns, whether a proper fitting strategy was
applied.

3 Pathology Fitting with Parallel Gaze Pattern Calculation

As it can be seen from the sketched algorithm above, the gaze pattern calculation is called
several times during a pathology fitting process. Hence, we intended to combine the existing
sequential version of the pathology fitting algorithm and the parallel gaze pattern calculation
(developed in the previous phase of the project) and to test it.

The implementation of the algorithm did not require the modification of the existing
communication protocol. We simply reused the existing SOAP messages described in [SEE-
GRID Deliverable 2005]. This means the followings:

• When a gaze pattern calculation is triggered by the fitting process, a new thread T is
created. While the new gaze pattern is calculated the pathology fitter is blocked
(because the last calculated gaze pattern of the last created eye model is always used
for the creation of a next/new eye model).

• T sends a message Calculate_Binocular_Test(E1, E2, E, I) [SEE-GRID Design,

2004] to the "SEE++ to Grid Bridge" where E1, E2, E define an eye model (fixing
eye, following eye, reference eye) and I is a matrix which determines the points of the
gaze pattern used on the client. The “SEE++ to Grid Bridge” splits I and distributes
the subsets of I to SEE++ servers running some Grid site.

AUSTRIAN GRID

 11/18

• T uses the session_Id received as an answer for Calculate_Binocular_Test message
and sends a message Poll_Status(session_Id) [SEE-GRID Design, 2004] to the
“SEE++ to Grid Bridge” from time to time. The bridge collects the status information
of the gaze pattern calculation from the corresponding SEE++ servers then it
summarises and returns them to the client.

• If T receives an aswer “calculation_terminated” for the last Poll_Status message, it

sends a message Poll_Result(Allocation_id) [SEE-GRID Design, 2004] to the
“SEE++ to Grid Bridge”. The bridge collects the calculated parts of the gaze pattern
from the SEE++ servers and assembles them and returns with the complete calculated
gaze pattern.

• If T receives the gaze pattern, it sends a signal to the blocked pathology fitter and

terminates. The fitter takes the gaze pattern and resumes its execution (with the
comparison of the calculated and measured gaze patterns).

4 Parallel Pathology Fitting

We also wanted to develop a simple parallelized version of the pathology fitting algorithm
independently from the previously mentioned implementation. For achieving this, we
separated the pathology fitting algorithm from the SEE++ client and extended the
communication protocol with some new SOAP messages (see Section 4.1).

For parallelizing the algorithm, we exploited that the pathology fitting algorithm always
checks before the calculation of a new eye model, whether the values of muscle parameters of
the last calculated eye model are located within some domains (that are typical for the kinds
of the corresponding muscle paramters). By this, the pathology fitter filters out the obviously
pathological impossible muscle parameter values. If such a value is outside the corresponding
domain, then the value is set to the closest bound value of the domain.

In the parallel version, an arbitrary muscle from the six eye muscles is chosen first (in the
current version, this muscle is the "Lateral Rectus"). Before the algorithm starts the fitting
procedure, it takes the first element of the current fitting strategy (which is a kind of muscle
parameter e.g. muscle length, active strength, etc.) and divide the domain of this kind
parameter of the previously chosen muscle to distinct subsets. Each subdomain is assigned to
a SEE++ server. By this, we managed to distribute the search space between the servers, since
each server can take values for this parameter of the choosen eye muscle only from the
subdomain assigned to the server.

4.1 New Messages in the SOAP Protocol
For establishing the Grid based version of the pathology fitter, we added five new messages to
the SOAP communication Protocol (every two-way/blocking message is executed in an
independent thread) :

AUSTRIAN GRID

 12/18

• Two-Way Message

Request: PathologyFitter (E, M, fixingMode, S)
Answer: sessionID

For triggering the pathology fitting, the SEE++ client issues this message, where E is
the eye model, M is the measured gaze pattern, fixingMode specify which eye the
fixing eye and which is the following eye and at last S is the fitting strategy.

If a SEE++ server receives such a message it starts the pathology fitting algorithm in a
different thread and returns an identifier sessionID which identifies the computation
on the server.

If the "SEE++ to Grid Bridge" receives such a message, it allocates some SEE++
servers which are running on some grid sites (similarly to the case of the parallelized
gaze pattern calculation [SEE-GRID Deliverable 2005]). It sends a message
ParallelPathologyFitter (E, M, fixingMode, S, n, fitterID) to each allocated server. The
"SEE++ to Grid Bridge" returns an identifier sessionID which identifies the
computation.

• Two-Way Message

Request: ParallelPathologyFitter (E, M, fixingMode, S, n, fitterID)
Answer: sessionID

In the parameter list, E,M, FixingMode and S are the same as in the parameter list of
PathologyFitter message. n is the number of the SEE++ servers allocated for this
pathology fitting calculation (this value is given by the user as a command line
argument of the "SEE++ to Grid Bridge", see Section 4.2.1). fitterID is an integer
number which is greater than or equal to 0 and less than n and which is uniquely
identifies the server within the current pathology fitting calculation.

If a SEE++ server receives such a message, it can easily determine from n and fitterID
those subdomain of the corresponding muscle parameter of the "Lateral Rectus" which
is assigned to this server. Namely, it divides the corrensponding domain to n
subdomain and it uses only the subdomain determined by the fitterID.

Then the server starts the pathology fitting algorithm in a different thread and returns
an identifier sessionID which identifies the computation on the server.

• Two-Way Message

Request: FitterPollStatus (sessionID)
Answer: terminated, goodness

After a PathologyFitter message is sent, the SEE++ client issues this message from
time to time with sessionID received as an answer for PathologyFitter message.

AUSTRIAN GRID

 13/18

If the "SEE++ to Grid Bridge" receives such a message, it forwards it to the
corresponding SEE+ servers.

If a SEE++ server receives such a message, but the corresponding fitting process is not
terminated, then it returns a false terminated value and an undefined goodness value. If
the fitting process is done, then the value of the terminated is true and value of the
goodness is a number which shows the difference between the measured gaze pattern
and the last simulated one on this server.

The "SEE++ to Grid Bridge" collects the goodness values from the server and
compares them. If it find the smallest one, it sends a message GetModifiedSimulation
(sessionID) to the server from where smallest value arrived. It also send
RemoveModifiedSimulation(sessionID) to all the other servers allocated for the
current pathology fitting calculation.

• Two-Way Message

Request: GetModifiedSimulation (sessionID)
Answer: E’

If a SEE++ client receives true terminated value as an aswer for the last sent
FitterPollStatus message, then it send such a message to the "SEE++ to Grid Bridge".

If the “SEE++ to Grid Bridge” receives such a message, it sends back the calculated
eye model which is received from the server from where smallest goodness value
arrived.

If a SEE++ server receives such a message it returns with the corresponding calculated
eye model and then removes it.

• One-Way Message

Request: RemoveModifiedSimulation (sessionID)

When a SEE++ server receives such a message, it simply removes the corresponding
calculated eye model

4.2 User Manual

4.2.1 The "SEE++ to Grid Bridge"

This manual is only an extension of the one that is described in [SEE-GRID Deliverable
2005]. The user is able to start the executable called "seepp2grid" with some parameters. The
only parameter that has to be given compulsory is the fully qualified domain name of the grid
site on which "seepp2grid" program will start a/some SEE++ server(s):

AUSTRIAN GRID

 14/18

seepp2grid [-help] [options…] GRIDSITE

The following new parameter can be used for the "seepp2grid":

-dist_fitter or -f : To number of the parallel branches of the search tree.

For instance, the command

seepp2grid -n 9 -g 1 -f 5 -path /home/local/agrid/ag10022
altix1.jku.austriangrid.at

starts 9 processes of SEE++ server located in the directory "/home/local/agrid/ag10022"on the
Austrian Grid site "altix1.jku.austriangrid.at". Moreover, if a Pathology Fitting is triggered on
a SEE++ client, the bridge splits the calculation to 5 parallel branches and sends further 5
server processes.

4.2.2 The SEE++ client

Currently, the Pathology Fitter is not included in the latest official version of SEE++.
Therefore, we use only a temporary GUI interface (a dialog box) for testing purpose that can
be reached from the menu "Help" in SEE++. This dialog box contains two buttons one for
fitting the left eye and one for fitting the right eye.

5 Implementation Status and Benchmarks

5.1 Changing to Globus Web Service Interface

In the original design document [SEE-GRID Design, 2004], we proposed to use the Web
Service (WS) interface of the latest stable release of Globus [Globus, 2004] (Globus 3.2) in
order to connect SEE++ to the Austrian Grid. Unfortunately, the WS part of Globus was not
integrated into the software specification of Austrian Grid at the very beginning. Therefore,
we had to modify our conception and to change our design to the pre-WS interface of Globus.

Since the new software specification document of the Austrian Grid [AGRID New S. Spec.,
2004] has already involved the complete Globus Toolkit 4 (GT4) (with the implementation of
a reworked Web Service interface, too), we started to investigate Web Service part of GT4.

The Globus Toolkit 4 includes three more or less complete implementations (e.g.: C
implementation does not contain notification management yet) of the Web Service Resource
Framework (WSRF) specification: on Java, on C and on Python implementations. It also
contians thee kinds of runtime environment (WS container) for the WS services which are
implemented on three mentioned programming language. WSRF was developed by [OASIS]
and specifies roughy an extension of Web Services with useful standardised features (e.g.:
stateful services, resources, notification, lifetime managements, etc).

AUSTRIAN GRID

 15/18

It was suprising for us that the GT4 still does not support simple users to deploy (grid)
applications as web services. If somebody intends to do this, she needs to have special rights
on each grid site for writing to the directory '$GLOBUS_LOCATION' and (in case of the C
WS Core) compiling the source code of the application into the globus code. This is even true
in the case of the java command line tool 'globus-deploy-gar'.

Most of the new Globus services were implemented in Java on top of WSRF implementation
“Java WS Core” (the toolkit still includes the pre-WS components). Our plan is to extend the
"SEE++ to Grid Bridge" (which is implemented in C) in the near future such that it will be
able to submit a grid job vi the WS-GRAM and to use the features of this new kind of
infrastructure of Globus 4.

Unfortunatelly, we found that the currently avialable documentation about WS-GRAM is not
complete yet and not enough for implemeting a client in C (the only complete and available
example written in C is the source code of the command line tool 'globusrun-ws' — so, it
should be debugged…).
�

5.2 Benchmarks of Pathology Fitting with Parallel Gaze Pattern
Calculation

For testing the speedup of the pathology fitter extended with parallel gaze patter calculation,
we took two real pathological gaze patterns and compared the execution time of the fitting
procedure in different circumstances. We applied the default gaze pattern in both test cases
(with 9 points, see Figure 2). We chose the left eye as the pathological eye (following eye)
and we always tried to fit the eye model parameters in the same order (fitting strategy):

1. Active strength of the eye muscles,
2. Passive strength of the eye muscles,
3. Length of the eye muscles,
4. Length of the eye muscle tendons,
5. Horizontal insertion of the eye muscles on the eye globe,
6. Vertical insertion of the eye muscles on the eye globe.

We performed two kinds of tests: local tests within our own network and grid-based tests
across the Internet. In the local tests, we used an AMD Dual Opteron 1.6Ghz. The grid-based
tests were executed on the Austrian Grid site altix1.jku.austriangrid.at, which contains 64
pieces of Ithanium processors. In the second case, we investigated the effectiveness of the
parallelism in different situations where 1, 3 or 9 processes of the SEE++ server are started
and the maximum number of the gaze pattern points which are sent together to one process
(granularity value) is not limited, 3, 2 or 1. Each value located in the following tables is the
median execution time of 5-7 executions.

Machine Name Dual Opteron Altix 350
(altix1.jku.austriangrid.at)

Server processes / Max.
number of points sent together

1/all 1/all 3/3 9/1

1. Test Case (see Figure 2a) 6min 07.45s 3min 29.03s 2min 35.77s 2min 10.89s
2. Test Case (see Figure 2b) 5min 51.36s 3 min 17.52s 2min 19.81s 1min 58.83s

Table 1: Benchmark Results

AUSTRIAN GRID

 16/18

The measured gaze pattern for the first test case can be seen on Figure 2a (green lines). In this
case, the main pathological problem is that the Superior Rectus Muscle connected to the
patient's left eye does not have enough (active and passive) strength. The Gaze pattern
calculated from the simulated pathology, which can also be seen on Figure 2a (red lines), is
nearly the same.

In the second test case (the green lines on Figure 2b), the pathological situation is completely
different. The insertion and the length of Inferior Rectus and the Lateral Rectus Muscles are
abnormal. As it can be seen on Figure 2b (red lines), the simulated pathology does not
correspond to the real situation, because we applied a wrong fitting strategy for it.

From the measurement results it can be seen, however the current version of the pathology
fitter is sequential and it is always blocked while the next gaze pattern is calculated, we could
reach some speedups by applying some simple parallelizations in the gaze pattern calculation.

5.3 Implementation Status of Parallel Pathology Fitting

Since our next milestone is at the end of August 2005, the implementation of the parallel
pathology is still in the debugging phase. Hence, we cannot provide test experience and
benchmarks data about it.

6 Further Development Steps

Figure 4: Directions of Further Developments

Current state

Improvement of Parallelization
and GRIDablity

Improvement
of the
 Fitter

Algorithm

Combining the parallel
fitter and the parallel

Gaze pattern algorithms
in MPI Jobs

Adding some parallel
search/optimization
techniques to the
fitter algorithm

Extending the “SEE++
To Grid Bridge” with

WS-GRAM interface of GT4

Determining and using multiple
fitter strategies

Accessing to a Grid based database in order
to decide about applicable fitter strategies

and to speed up the fitter algorithm

Using the grid
 information service

for the exploration
of free resources

AUSTRIAN GRID

 17/18

In the next steps, we intend to improve the grid based implementation of the pathology fitting
(see Figure 4). First of all, we would like to combine the parallel pathology fitting and parallel
gaze pattern calculation by usimg MPI.

Then, we also would like to improve the current sequential algorithm of the parameter fitting
with some parallel and distributed variants of the “branch and bound” optimized for grid
computing [Filho et al, 2003, Aida et al, 2003, Aida Osumi, 2005].

We also want to finish and test the extension of the "SEE++ to Grid Bridge" with the WS-
GRAM interface.

We plan to generalize the pathology fitting algorithm such that it could determine the proper
fitting strategy automatically in every case. For this, either we may introduce some kind of
precalculation phase into algorithm or we will use a large representative grid-based database
for storing and searching for the pairs of measured gaze pattern and already simulated
pathologies.

In the future, we may also deal with the development of the automatic exploration of
available/free “SEE++ grid services” on the whole grid infrastructure. For achieving this, we
intend to use the information provided by the information service of the Austrian Grid.

References

[Aida et al, 2003] Kento Aida, Wataru Natsume, Yoshiaki Futakata. Distributed Computing
with Hierarchical Master-worker Paradigm for Parallel Branch and Bound Algorithm, 3rd
International Symposium on Cluster Computing and the Grid, May 12 - 15, 2003, Tokyo,
Japan. http://csdl.computer.org/comp/proceedings/ccgrid/2003/1919/00/ 19190156abs.htm

[Aida Osumi, 2005] Kento Aida, Tomotaka Osumi, "A Case Study in Running a Parallel
Branch and Bound Application on the Grid," Proc. IEEE/IPSJ The 2005 Symposium on
Applications & the Internet (SAINT2005), pp.164-173, Feb. 2005.
http://www.alab.ip.titech.ac.jp/papers/saint2005.pdf

[AGRID New S. Spec., 2004] Austrian Grid Software Specification,
http://www.austriangrid.at/austriangrid/internal/deliverables/docs/WP_I-1/2005/AG-D-I1-2-
v0.5.doc

[Buchberger, 2004] Michael Buchberger. Biomechanical Modelling of the Human Eye.
Ph.D. thesis, Johannes Kepler University, Linz, Austria, March 2004.
http://www.see-kid.at/download/Dissertation_MB.pdf

[Ethereal, 2004] Ethereal Network Protocol Analyzer. http://www.ethereal.com

[Filho et al, 2003] J. Viterbo Filho, L. M. A. Drummond, E. Uchoa e M. C. S. Castro.
Towards a Grid Enabled Branch-and-Bound Algorithm. Report RT-05/03, Department of
Computer Science -- Fluminense Federal University, 2003.
http://www.ic.uff.br/PosGrad/RelatTec/reltec03.html

AUSTRIAN GRID

 18/18

[Globus, 2004] The Globus Tookit. http://www.globus.org/toolkit/

[glogin, 2004] Herbert Rosmanith and Jens Volkert "glogin - Interactive Connectivity for the
Grid" in: Z. Juhasz, P. Kacsuk, D. Kranzlmüller, "Distributed and Parallel Systems - Cluster
and Grid Computing", Proc. of DAPSYS 2004, 5th Austrian-Hungarian Workshop on
Distributed and Parallel Systems, Kluwer Academic Publishers, Budapest, Hungary, pp. 3-11
(Sept. 2004). http://www.gup.uni-linz.ac.at/glogin/

[gSOAP, 2005] gSOAP 2.7.0 User Guide, 2005. http://www.cs.fsu.edu/~engelen/soap.html

[Kaltofen, 2002] Thomas Kaltofen. Design and Implementation of a Mathematical Pulley
Model for Biomechanical Eye Surgery. Diploma thesis, Upper Austria University of Applied
Sciences, Hagenberg, June 2002. http://www.see-kid.at/download/Pulley_Model_Thesis.pdf

[OASIS] OASIS, http://www.oasis-open.org

[SEE-GRID Design, 2004] Karoly Bosa, Wolfgang Schreiner, Rebhi Baraka, Michael
Buchberger, Thomas Kaltofen, Daniel Mitterdorfer. SEE-GRID Design Overview.
Austrian Grid Deliverable A1c-1, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, November 2004.

[SEE-GRID Deliverable 2005] Károly Bósa, Wolfgang Schreiner, Michael Buchberger,
Thomas Kaltofen. The Initial Version of SEE-GRID. Austrian Grid Deliverable A1c-1-2005,
Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz,
March 2005.

[SEE-KID, 2004] SEE-KID home page, 2004. http://www.see-kid.at

[SOAP, 2003] SOAP Version 1.2 Part 1: Messaging Framework, W3C Recommendation,
June 2003. http://www.w3.org/TR/2003/REC-soap12-part1-20030624

[WSRF Comparison, 2005] M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M.
Rodriguez, J. Gawor, S. Lang, J. Bester, I. Foster, S. Meder, S. Pickles, and M. McKeown.
State and Events for Web Services: A Comparison of Five WS-Resource Framework and WS-
Notification Implementations. 14th IEEE International Symposium on High Performance
Distributed Computing (HPDC-14), Research Triangle Park, NC, 24-27 July 2005.
http://www.cs.virginia.edu/~humphrey/papers/WSRFComparison2005.pdf

