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Abstract.

Based on the results of [8], [9] and [12], in this paper we present a calculus algorithm for the study of
the compressible fluid’s stationary movement through profile grids, on an axial-symmetric flow—surface,
in variable thickness of stratum. We show the applicability of the boundary element methods (BEM)
with real values, and the possibility of solving the integral equation of the velocity potential by using the
successive approximation method w.r.t. the parametéfisiid’'s density) andh (thickness variation of

fluid stratum), and using the Lagrangian interpolation formula through five points for the calculation of
the derivatives of the velocity potential.
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1 Presenting the Problem. The Calculus Algorithm for Solving the Inte-
gral Equation of Velocity Potential

The fundamental equations (from the CVYBEM method) in the problem of the compressible fluid’s move-
ment on a axial-symmetric flow—surface, in variable thickness of stratum, could be ( [7], [8], [9]):
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where:
A —is a fixed point on the base profilg);
t —is the grid step;
I" —is the circulation around,.
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where:
p —is the fluid’s density,



h —is a function that represents the thickness’ variation of the fluid stratum.
D,. —bounded simple convex domain, defined as:

Dy. : —%<§<§,—(t+é><n<<t+é>} (3)
where:

[ —is the projection of.( profile’s frame on th&y axis.

Our purpose is to solve the fundamental equations (1) (obtained from the CVBEM method) using
(BEM) in real variables. For doing so, we consider the fundamental integral-equation of the complex
potential F'(z) = ¢ + iy and transform it into an integral equation with real variables, i.e. we build the

integral equation of the velocity potentials) (¢ (s) is the flow rate function).

Theorem 1.1.[9], [12] In the subsonic motion of the compressible fluid through the profile grid, on an
axial-symmetric flow—surface, in variable thickness of stratum, the velocity potefitial s € Ly is
the solution of the integral equation (4):
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where:
s(zo,yo) ando (&, n) are the curvilinear coordinates of the fixed point A on fhebase profile;

b(s) = 2(20Vma + Yovmy) + TM (s,04) + [ [¢(s) — ¢(0)] L do
Lo
thz (7—
M(2,¢) = Larctgygh =2
(5)

N(zp,(¢) = %ln \/% [Ch%’r(n — yo) — oS 27”(5 — :co)}
Umaz, Umy are the components of the asymptotic mean velegity

Proposition 1.1. [12] In the case of an axial-subsonic movement of a perfect and compressible fluid
through profile grids, the flow rate function is determined from the boundary condition (6):

P(s) = ug - /05 p*(s) (}f{)) ds, ug = whRy, (6)

where:

e w is the angular rotation velocity of the profile grid;

e Ry defines the origin of the axis system related to the turbine’s axis.

2 The Successive Approximations Method in Solving the Integral Equa-
tion of Velocity Potentials
Equation (4) is an integro—differential equation. In this section, we will show a possibility of solving this

equation applying thenethod of successive approximatigne iteration method), using also the result
from [10] about the order of the term containing the double integral expression:

ff q(o)N(s,o)dédn. (7)



Proposition 2.1. [1] In the case of the subsonic movement of the compressible fluid through the profile
grid on an axial-symmetric flow—surface, in variable thickness of stratum, the integral equation of the
velocity potentialp : Dj. — 3t is solvable by applying the method of successive approximations w.r.t.

the parametep” = 2.

Proof. For isentropic processes , by the Bernoulli-equation, we obtain:

y—1v2\7? dip 1 dy
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where:

e 7 is the adiabatic constant;
e ¢ is the sound velocity in the zero velocity point;

e v, andwv, are, respectively, the tangential and normal velocitieg.en

In the first approximation it is assumed that= py = constant ang* = p*(¥) = constant. Thus,
from (2), it results thag(®) (o) = 0. Hence, in the integral equation (4) the double integral (7) is neglected
and results the following Fredholme integral equation of second type, with continuous nucleus:
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From solving equation (9) we obtaip’ (s), and furthermore from (6), (8), (12)!, p’ are obtained.
Finally, using the relation:
* P h ~ *
p=—, q(c) = —gradp - gradin p”, (10)
Po

ap*! andg’ (o) are determined.

In the second iteratiop* = p*! is assumed and for the determinationyf (s) the following
Fredholme integral equation of second type, with continuous nucleus, will be solved:

G0+ [ )P dr = b11(s) + ] o (0)N (s, o) 1)

where aip! andb!!(s) are previously calculated from (6) and (5), respectively.
From solving equation (11), we obtais'/. Furthermore, from (6), (8), (12) and (19Y!, p'’,
p*! andq!! (o) are obtained, respectively. Next, the third approximation might be done by assuming
p* = p*!, and so on.
]

Proposition 2.2. Having given the values of the velocity potential on each element ditheofile’s
division, the tangential velocity, may be calculated in each division element of fhebasic profile’s
boundary by the formula:

v =¢'(s8:) = %(%#2 —pi—2) — ﬁ(%’ﬂ — Pi-4),

h = As; = si11 — 8i-1, (12)

1=1,3,5,...,2n — 1,

wheren denotes the number of division elements and;bwe refer to the'” element of the division of
Lo.



Proof. The tangential velocity, on theLg basic profile’s boundary can be calculated by the well-known
formula:

dyp
r=—. 13
vr = (13)
Furthermore, as it is also known, the derivativeo0$;) can be calculated using approximative numerical
methods, e.g. usinthe interpolation formula of Lagrange through five poif@$ one can calculate the
derivativey’(s;). O

To ensure the practical functionality of proposition 2.1, i.e. to indicate the solving method of the
Fredholme integral equation of second type obtained in each approximation step (equation (6), (11)), let
us formulate and prove two more propositions.

Proposition 2.3. [12] In the first approximation step, solving the velocity potential’s Fredholme integral
eqguation of second type is reduced to the solving of four systems of linear algebraic equations.

Proof. Using the superposition rule of potential streams, we seek the solution of the Fredholme integral
equation of second type (9) to be of the form:

@' = lvmg + PLvmy + O3T + lug, up = wRy, (14)

wherep! | k = 1 =+ 4 are the solutions of the system (15) of integral equations:
Pk Yy g q

o) + [ o) 5o = M(s,0) 4o
ei(s) + | Ph (o) 2T do = ba(s)
where:
bi) = [ [01(6) = ') G (16)

The integral equations (15) could be solved using the BogoliubdaKmethod, conform to which,
solving each integral equation reduces to solving a system of linear algebraic equations. Conform to the
method, using an arbitrary division, we partition the boundarfoin »n subintervalsAs = Ac. Note,
that the chosen division might be not uniform, for instance at the trailing or the leading edge, where the
variation of the functiomoi is stronger from point—to—point, the length of subintervals might be shorter.

In each subinterval, the functicm,i is assumed to be constant and equa,bﬁ_(}) wherej represents the
number of the middle—points of the considered subintervals. If the first division—points are debited by
even numbers, and the division—points of the middle of the subintervals by odd numbers, then, conform
to the approximation method, the integral equations (15) can be approximated by the following systems
of linear algebraic equations:

2n—1
Ohi+ Y ek AMy; =bl;,  i=1305,...2n—1  k=1234, (17)
j=1



where:
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Solving the algebraic system (17), we obt@i,@ in n distinct point from the boundary dfy. Finally,
from equations (14),! is determined in each point of the boundary’s division. O

Proposition 2.4. [12] In the second approximation step, the Fredholme integral equation (11) of the
velocity potential is reduced to solving four systems of linear algebraic equations.

Proof. From (8) and (10), &’ and ag’ (o) is determined, respectively. Consequently, using the super-
position rule of potential streams, we seek the solution of the Fredholme integral equation of second type
(11) to be of the form:

‘PU = ‘P{IUmx + ‘Pélvmy + ‘Pélr + 80?“0’ up = why (19)

wherep!!| k =1 + 4 are the solutions of the system 20 of integral equations:
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Using the numeric method presented in proposition 2.3, by applying the Bogoliutidevwnethod,
solving (20) is reduced to solving systems of linear algebraic equations.
These systems of linear algebraic equations will have the form:
2n—1
Oh+ Y eHAM; =b,,  i=135....2n—1,  k=1234, (22)
j=1

whereb!!, bLI, bl andbi! are obtained by using the Simpson formula for handling the double integral.
Solving the algebraic system (22), we obt@'@ in n distinct point from the boundary dfy. Finally,
from equations (19)y/! (i = 1, n) is determined in each point of the boundary’s division.
]



3 The Lagrange Interpolation Polynomial. Theory and experiments

The problem of constructing a continuously defined function from given discrete data is unavoidable
whenever one wishes to manipulate the data in a way that requires information not included explicitly
in the data. The relatively easiest and in many applications often most desired approach to solve the
problem isinterpolation[20], where an approximating function is constructed in such a way as to agree
perfectly with the usually unknown original function at the given measurement points. In the practical
application of the finite calculus of the problem of interpolation is the following: given the values of
the function for a finite set of arguments, to determine the value of the function for some intermediate
argument[16].

A chronological overview of the developments in interpolation theory, from the earliest times to the
present date could be found in [15]. In this section we focus our attention on the theoryagriduege
interpolation polynomia[13], since, as we have already mentioned in the proof of proposition 2.2, its
usage arises also in our calculus algorithm for the study of the compressible fluid’s stationary movement
through profile grids on an axial-symmetric flow—surface in variable thickness of stratum.

3.1 The Problem of Interpolation

The problem of interpolation consists in the following[6]: Given the valyesorresponding ta;, i =
0,1,2,...,n,afunctionf(z) of the continuous variable is to be determined which satisfies the equa-
tion:

yi = f(x;)fori=0,1,2...,n (23)

and finally f (z) corresponding ta = 2’ is required. (i.ez’ different fromz;,7 = 1, n.)

In the absence of further knowledge as to the nature of the function this problem is, in the general
case, indeterminate, since the values of the arguments other than those given can obviously assigned
arbitrarily.

If, however, certain analytic properties of the function be given, it is often possible to assign limits
to the error committed in calculating the function from values given for a limited set of arguments. For
example, when the function is known to be representable by a polynomial of degreevalue for any
argument is completely determinate when the values ferl distinct arguments are given.

3.2 Lagrange Interpolation

Consider the functiotf : [z, z,] — R given by the following table of values [14]:

Xk ‘ ) Tl “o T

fle) | flzo) flz1) ... flza)

x, are callednterpolation nodesand they are not necessary equally distanced from each other. We
seek to find a polynomiaP(x) of degreen that approximates the functiof{z) in the interpolation
nodes, i.e.:

flag) = P(zk); k=0,1,2,...,n. (24)
Thelagrange interpolation methodfinds such a polynomial without solving the system 24.

Theorem 3.1. Lagrange Interpolating Polynomial



ThelLagrange interpolating polynomi& the polynomial of degree that passes througfn + 1)
pointsyy = f(zo), y1 = f(1),... yn = f(zy) . Itis given by the relation ([21]):

(z—z0)(z—21)(T—22

—a3)

) =) Pj) (25)
j=0
where:
L xr—x
Py =y [[ — (26)
k=0,k7 k
Written explicitly:
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P) = Groeo-ss)-@o-sa %0 T Gi-zo)ei—sa)-(@-sn Y1 T 27)
(z—z0)(T—21)(T—Tn—1)
(wn—xo)(xn—:nl)~--(:En—1'n71)yn'
Lagrange interpolating polynomials are implementedviathematica[22] as Interpolating
Polynomials[data,var]
For the case = 4, i.e. interpolation through five points, we have:
= (z—z1)(z—22)(z—23)(T—24) (z—0)(z—22)(z—23)(T—74)
P(z) = (wo—m;(xo—xz)(ﬂﬁo z3) (o 4x4)y0 + (m1—zo())(xl—xz)(m—;3)(z1—4x4)y1+
(z—z0)(z—z1)(z—23)(x—74) (z—z0)(z—21)(z—72)(T—74)
(332—%0())(2?2—961)( zo—x3)(z2 41?4)y2 + (Is—wot))(ﬂfs—mi)(ms—;z) 2703—4934)y3+ (28)
)( )(z
)(za—z2)

(za—z0)(za—71)(Ta—72) (T2 — I2)y4
and
P(z) = (z—z2)(z—23)(T—24)+(2— fﬂl()ggf ;0))((;00 xi)(gﬁ z;))(éofil()ﬁ*w@ﬂwfrl)(wfxz)(iv*fvs)y0+
(z—z2)(z—a3)(x—a4)+(x—20)(x—a3) (x—T4)+(z—20) (z—22) (z—24)+(z—z0) (z—x2) (z—3)
2 3 4 0(;1;1 —2a) e x2)(m x(;)( 1_2“) 4 0 2 3 v+
(z—z1)(z—23)(x—24)+(x—20)(z—23) (x—T4) +(x=20) (x—21) (T=24) +(z—20) (x—21) (z—23)
1 3 4 o(gc2 8 Il)(xz x(;)( 27;4) 4 0 1 3 Yot (29)
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Note that the functiorP(x) passes through the poirs;, v;), i.e. P(z;) = y;.

3.3 Applicability of the Lagrange Interpolation for the Study of the Compressible Fluid’s
Stationary Movement

For illustrating the usability of the Lagrange interpolation method through five points for our calcu-
lus algorithm for the study of the compressible fluid’s stationary movement through profile grids on an
axial-symmetric flow—surface in variable thickness of stratum, namely, for calculating the tangential ve-
locity v, = ‘fl—‘g (see section 2, proposition 2.2, equation (13)), consider the following table of values

(i=0,1,2,3,4):



si(incm) [ 10 17 24 31 38
o(s;) (incm/y [ 0.1 03 0.9 05 0.7

To obtain the table value representatiorvpf= ‘fl—f, we use equation (29), hence , fof = fl—f(so)
we have the relation:
—  (s0—s2)(s0—s3)(s0—54)+(s0—51)(s0—53)(s0—54)+(50—51)(s0—52)(s0—54)+(s0—51)(s0—52)(50—53)

Vpy = po+

(s0—s1)(so—s2)(s0o—s3)(s0o—s4)

(so—s1)(s0—s3)(s0—s4)
s2—50)(s2—51)(s2—s3)(s2—54)

(s0—52)(s0—53)(s0—54)
(s1—s0)(s1—52)(s51—53)(51—54)

p1+ ( p2t+ (30)

(s0—s1)(so—s1)(s0—s4) (s0—s1)(s0—s2)(s0—s3)
(53 30) (s —31)(53—32) (55 —50) P3 T (aa=s0)(s4—31) (54 —52)(s1—52) ¥4

Using the notation from proposition 2.2, we obtain :

Vpy = 12h( 2500 + 481 — 362 + 163 — 3p4). (31)
Similarly, we obtain:

Uy = 12h( 3o — 101 + 182 — 63 + p4) (32)

1
i _ _ 33
Ur, 12h(s00 81 + 83 — p4) (33)

1
Vpy = 12h( o + 691 — 18p2 + 10¢3 + 3¢4) (34)
Ury = oh (3@0 — 161 + 36@2 — 483 + 25@4) (35)

Thus, we have the result of proposition 2.2, namely:

2 1
Ury = ﬁ(vm —Upy) — m(vm — Upy)-

Finally, using equations (31X32), we have the table value representation,gihnamely:

si(incm) | 10 17 24 31 38
v-(s;) (incm/g | —0.17381 0.12619 0.0119 —0.08809 0.25476

3.4 Experimental Results inMathematica

Plotting the given values af, from section 3.3, yields the following graphitathematica

e
0.z

0.1

Figure 1: Point Representation of Given Values pf



Applying the lagrangian interpolation method, by tihéerpolatingPolynomial command
of Mathematicathe obtained approximation polynomial is:

—0.000342119s* + 0.0033265% — 0.113874s% + 1.61754s — 7.94575.

Finally, plotting Mathematicathe obtained approximation polynomial in, we obtain the following
graphic, that describes the behaviorof

]
0.4
0.2

0.2

5 A %
‘ 15 zw a0 a5
-1 i

Figure 2: Lagrange Interpolation Polynomialwgf

4 Conclusion and Further Work

We have shown the usage of the boundary element method with real values for the study of the compress-
ible fluid’'s stationary movement through profile grids, on an axial-symmetric flow—surface, in variable
thickness of stratum. Moreover, we presented a calculus algorithm for solving the integral equation of
the velocity potential by using the successive approximation method w.r.t. the param@leids den-
sity) andh (thickness variation of fluid stratum). It turned out, that by using the Lagrangian interpolation
formula through five points, the derivatives of the velocity potential can be calculated.

Regarding the Lagrange interpolation method, our plans for the near future are:

e make more test cases w.r.t. several input values of the velocity potentials;

e study the possibility of applying the approximation method for the calculation of other fluid—
characteristics.
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