
Computer Algebra: General Principles

For article on related subject see SYMBOL MANIPULATION.

Computer algebra is a branch of scientific computation. There are several characteris-
tic features that distinguish computer algebra from numerical analysis, the other principal
branch of scientific computation. (1) Computer algebra involves computation in algebraic
structures such as finitely presented groups, polynomial rings, rational function fields, alge-
braic and transcendental extensions of the rational numbers, or differential and difference
fields. (2) Computer algebra manipulates formulas. Whereas in numerical computation
the input and output of algorithms are basically (integer or floating point) numbers, the
input and output of computer algebra algorithms are generally formulas. So, typically,
instead of computing

∫ 1/2

0

x

x2 − 1
dx = −0.1438... ,

an integration algorithm in computer algebra yields
∫

x

x2 − 1
dx =

ln | x2 − 1 |
2

.

(3) Computations in computer algebra are carried through exactly, i.e. no approximations
are applied at any step. So, typically, the solutions of a system of algebraic equations such
as

x4 + 2x2y2 + 3x2y + y4 − y3 = 0

x2 + y2 − 1 = 0

are presented as (0, 1), (±
√

3/4,−1/2) instead of (0, 1), (±0.86602...,−0.5). Because of the
exact nature of the computations in computer algebra, decision procedures can be derived
from such algorithms that decide, for example, the solvability of systems of algebraic
equations, the solvability of integration problems in a specified class of formulas, or the
validity of geometric formulas.

Applications of computer algebra

(1) The piano movers problem. Many problems in robotics can be modelled by the piano
movers problem: finding a path that will take a given body B from a given initial position
to a desired final position. The additional constraint is that along the path the body should
not hit any obstacles such as walls or other bodies. A simple example in the plane is shown
in Figure 1. The initial and final positions of the body B are drawn in full, whereas a
possible intermediate position is drawn in dotted lines. J.T. Schwartz and M. Sharir have
shown how to reduce this problem to a certain problem about semialgebraic sets that can
be solved by Collins’ cylindrical algebraic decomposition (cad) method.

Semialgebraic sets are subsets of a real m–dimensional space R
m that can be cut out

by polynomial equations and inequations. I.e. start with simple sets of the form

{(x1, . . . , xm) | p(x1, . . . , xm) = 0} or {(x1, . . . , xm) | q(x1, . . . , xm) > 0},

1

where p, q are polynomials with real coefficients, and allow the construction of more com-
plicated sets by means of intersection, union, and difference. Any subset of R

m that can
be defined in this way is called a semialgebraic set.

Fig. 1 Fig. 2

Consider a two–dimensional problem as in Figure 1. Starting from some fixed position
of the body B (say P at the origin, where P is the point at which the parts of B are joined
together) in R

2, obtain an arbitrary position of B by applying a rotation T1 to part B2,
a rotation T2 to B, and afterwards a translation T3 to B. (See Figure 2.) Since T1, T2

can be described by 2 × 2–matrices and T3 by a vector of length 2, any such position of
B can be specified by 10 coefficients, i.e. a point in R

10. Some of these possible positions
are illegal, since the body B would intersect or lie outside of the boundaries. If the legal
positions L(⊂ R

10) can be described by polynomial equations and inequations, then L is
a semialgebraic set.

The piano movers problem is now reduced to the question of whether two points
P1, P2 in L can be joined by a path in L, i.e. whether P1 and P2 lie in the same connected
component of L. This question can be decided by Collins’ cad method, which makes
heavy use of computer algebra algorithms. In particular, the cad method uses algorithms
for greatest common divisors of polynomials, factorization of polynomials into square–free
factors, resultant computations, and isolation of real roots of polynomials.

(2) Algorithmic methods in geometry. Often a geometric statement can be described by
polynomial equations over some ground field K, such as the real or complex numbers.
Consider, for instance, the statement “The altitude pedal of the hypothenuse of a right-

angled triangle and the midpoints of the three sides of the triangle lie on a circle” (see
Figure 3).

Once the geometric figure is placed into a coordinate system, it can be described by
polynomial equations. For instance, the fact that E is the midpoint of the side AC is
expressed by the equation 2y3 − y1 = 0; the fact that the line segments EM and FM are
of equal length is expressed by the equation (y7 − y3)

2 + y2
8 − (y7 − y4)

2 − (y8 − y5)
2 = 0;

and so on. In this way the system h1 = . . . = hm = 0 of polynomial equations in the
indeterminates y1, . . . , yn determines the geometric figure. Call these polynomials the
hypothesis polynomials. The equation (y7 − y3)

2 + y2
8 − (y7 − y9)

2 − (y8 − y10)
2 = 0 then

states that the line segments HM and EM are also of equal length. Call this polynomial

2

the conclusion polynomial.
The problem of proving the geometric statement is now reduced to the problem of

proving that every common solution of the hypothesis polynomials, i.e. every valid ge-
ometric configuration, also solves the conclusion polynomial, i.e. the statement is valid
for the configuration. Various computer algebra methods can be used for proving such
geometry statement. Wu Wen-tsun has given a method using characteristic sets of poly-
nomials, Kutzler&Stifter and Kapur have used Gröbner bases. The underlying computer
algebra algorithms for these methods are mainly the solution of systems of polynomial
equations, various decision algorithms in the theory of polynomial ideals, and algorithms
for computing in algebraic extensions of the field of rational numbers.

Fig. 3

(3) Modelling in science and engineering. In science and engineering, it is common to
express a problem in terms of integrals or differential equations with boundary conditions.
Numerical integration leads to approximations of the values of the solution functions. But,
as R.W. Hammings has written, “the purpose of computing is insight, not numbers.” So
instead of computing tables of values it would be much more gratifying to derive formulas
for the solution functions. Computer algebra algorithms can do just that for certain classes
of integration and differential equation problems.

Consider, for example, the system of differential equations

−6
dq

dx
(x) +

d2p

dx2
(x) − 6 sin(x) = 0,

6
d2q

dx2
(x) + a2 dp

dx
(x) − 6 cos(x) = 0

subject to the boundary conditions p(0) = 0, q(0) = 1, p′(0) = 0, q′(0) = 0. Given this
information as input, any of the major computer algebra systems will derive the formal
solution

p(x) = −12 sin(ax)

a(a2 − 1)
− 6 cos(ax)

a2
+

12 sin(x)

a2 − 1
+

6

a2
,

q(x) =
sin(ax)

a
− 2 cos(ax)

a2 − 1
+

(a2 + 1) cos(x)

a2 − 1

for a 6∈ {−1, 0, 1}.

3

Some algorithms in computer algebra

Since computer algebra algorithms must yield exact results, these algorithms use in-
tegers and rational numbers as coefficients of algebraic expressions because these numbers
can be represented exactly in the computer. Coefficients may also be algebraic.

Addition and subtraction of integers are quite straightforward and these operations
can be performed in time linear in the length of the numbers. The classical algorithm for
multiplication of integers x and y proceeds by multiplying every digit of x by every digit
of y and adding the results after appropriate shifts. This clearly takes time quadratic in
the length of the inputs. A faster multiplication algorithm due to A. Karatsuba and Yu.
Ofman is usually called the Karatsuba algorithm. The basic idea is to cut the two inputs
x, y of length ≤ n into pieces of length ≤ n/2 such that

x = a · βn/2 + b, y = c · βn/2 + d,

where β is the basis of the number system. A usual divide–and–conquer approach would
reduce the multiplication of two integers of length n to four multiplications of integers of
length n/2 and some subsequent shifts and additions. The complexity of this algorithm
would still be quadratic in n. However, from

x · y = acβn + ((a + b)(c + d) − ac − bd)βn/2 + bd

we see that one of the four multiplications can be replaced by additions and shifts, which
take only linear time. If this reduction of the problem is applied recursively, we get a
multiplication algorithm with a time complexity proportional to nlog

2
3. This is still not

the best we can hope for. In fact, the fastest known algorithm is due to Schönhage and
Strassen and its complexity is proportional to n(logn)(log log n). However, the overhead
of this algorithm is enormous, and it pays off only if the numbers are incredibly large.

Polynomial arithmetic with coefficients in a field, like the rational numbers, presents
no problem. These polynomials form a Euclidean domain, so we can carry out divi-
sion with quotient and remainder. Often, however, we need to work with polynomials
whose coefficients lie in an integral domain like the integers. Addition, subtraction and
multiplication are again obvious, but division with quotient and remainder is not possi-
ble. Fortunately, we can replace division by a similar process, called pseudo–division. If
a(x) = amxm+· · ·+a1x+a0 and b(x) = bnxn+· · ·+b1x+b0, with m ≥ n, then there exists
a unique pair of quotient q(x) and remainder r(x) such that bm−n+1

n ·a(x) = q(x)b(x)+r(x)
where r is either the zero polynomial or the degree of r is less than the degree of b.

Good algorithms are needed for computing the greatest common divisor (gcd) of
polynomials. If we are working with polynomials over a field, we can use Euclid’s al-
gorithm, which takes two polynomials f1(x), f2(x) and computes a chain of remainders
f3(x), . . . , fk(x), fk+1(x) = 0, such that fi is the remainder of dividing fi−2 by fi−1. Then
fk(x) is the desired greatest common divisor. For polynomials over the integers we can
replace division by pseudo–division, and the Euclidean algorithm still works. The problem,
however, is that although the inputs and the final result might be quite small, the interme-
diate polynomials can have huge coefficients. This problem becomes even more pronounced
if we deal with multivariate polynomials. As an example, consider the computation of the
greatest common divisor of two bivariate polynomials

f(x, y) = y6 + xy5 + x3y − xy + x4 − x2, g(x, y) = xy5 − 2y5 + x2y4 − 2xy4 + xy2 + x2y

4

with integral coefficients. Consider y to be the main variable, so that the coefficients of
powers of y are polynomials in x. Euclid’s algorithm yields the polynomial remainder
sequence

r0 =f,

r1 =g,

r2 =(2x − x2)y3 + (2x2 − x3)y2 + (x5 − 4x4 + 3x3 + 4x2 − 4x)y+

x6 − 4x5 + 3x4 + 4x3 − 4x2,

r3 =(−x7 + 6x6 − 12x5 + 8x4)y2 + (−x13 + 12x12 − 58x11 + 136x10 − 121x9 − 117x8+

362x7 − 236x6 − 104x5 + 192x4 − 64x3)y − x14 + 12x13 − 58x12 + 136x11−
121x10 − 116x9 + 356x8 − 224x7 − 112x6 + 192x5 − 64x4,

r4 =(−x28 + 26x27 − 308x26 + 2184x25 − 10198x24 + 32188x23 − 65932x22 + 68536x21+

42431x20 − 274533x19 + 411512x18 − 149025x17 − 431200x16 + 729296x15−
337472x14 − 318304x13 + 523264x12 − 225280x11 − 78848x10 + 126720x9−
53248x8 + 8192x7)y − x29 + 26x28 − 308x27 + 2184x26 − 10198x25 + 32188x24−
65932x23 + 68536x22 + 42431x21 − 274533x20 + 411512x19 − 149025x18−
431200x17 + 729296x16 − 337472x15 − 318304x14 + 523264x13 − 225280x12−
78848x11 + 126720x10 − 53248x9 + 8192x8.

The greatest common divisor of f and g is obtained by eliminating common factors p(x) in
r4. The final result is y+x. Although the inputs and the output are small, the intermediate
expressions get very big. The biggest polynomial in this computation happens to occur in
the pseudo–division of r3 by r4. The intermediate polynomial has degree 70 in x.

This problem of coefficient growth is ubiquitous in computer algebra, and there are
some general approaches for dealing with it. In the special case of polynomial gcd’s, we
could always make the polynomials primitive, i.e., eliminate common factors not depending
on the main variable. This approach keeps intermediate remainders as small as possible,
but at a high price: many gcd computations on the coefficients. The subresultant gcd
algorithm can determine many of the common factors of the coefficients without ever com-
puting gcd’s of coefficients. The remainders stay reasonably small during this algorithm.
In fact, in our example the integer coefficients grow only to length 4.

The most efficient algorithm for computing gcd’s of multivariate polynomials is the
modular algorithm. The basic idea is to apply homomorphisms to the coefficients, com-
pute the gcd’s of the evaluated polynomials, and use the Chinese remainder algorithm to
reconstruct the actual coefficients in the gcd. If the input polynomials are univariate, we
can take homomorphisms Hp, mapping an integer a to a mod p. If the input polynomials
are multivariate, we can take evaluation homomorphisms of the form Hx1=r1

for reducing
the number of variables. In our example we get

gcd(Hx=2(f), Hx=2(g)) = y + 2, gcd(Hx=3(f), Hx=3(g)) = y + 3.

So the gcd is y + x. Never during this algorithm did we have to consider big coefficients.
Decomposing polynomials into irreducible factors is another crucial algorithm in com-

puter algebra. A few decades ago only rather inefficient techniques for polynomial fac-
torization were available. Research in computer algebra has contributed to a deeper un-
derstanding of the problem and as a result has created much better algorithms. Let us

5

first consider univariate polynomials with integer coefficients. Since the problem of co-
efficient growth appears again, one usually maps the polynomial f(x) to a polynomial
f(p)(x) by applying a homomorphism Hp, p a prime. f(p) can now be factored by the
Berlekamp algorithm, which involves some linear algebra and computations of gcd’s. Con-
ceivably we could factor f modulo various primes p1, . . . , pk and try to reconstruct the
factors over the integers by the Chinese remainder algorithm, as we did in the modular
gcd algorithm. The problem is that we do not know which factors correspond. So instead,
one uses a p–adic approach based on Hensel’s lemma which states that a factorization of f
modulo a prime p can be lifted to a factorization of f modulo pk, for any positive integer k.
Since we know bounds for the size of the coefficients that can occur in the factors, we can
determine a suitable k and thus construct the correct coefficients of the integral factors.
There is, however, an additional twist. If f(x) can be decomposed into irreducible factors
f1(x), f2(x) over the integers, it could well be that, modulo p, these irreducible factors can
be split even further. So after we have lifted the factorization modulo p to a factorization
modulo pk for a suitable k, we need to try combinations of factors for determining the
factors over the integers. For instance, x4 + 1 is a polynomial that is irreducible over the
integers, but factors modulo every prime. Theoretically, this final step is the most costly
one and it makes the time complexity of the Berlekamp–Hensel algorithm exponential in
the degree of the input. Nevertheless, in practice the algorithm works very well for most
examples.

In 1982 Lenstra, Lenstra and Lovász developed an algorithm for factoring univariate
polynomials over the integers with a polynomial time complexity. Kaltofen extended this
result to multivariate polynomials. The overhead of this algorithm, however, is extremely
high.

To integrate a rational function A(x)/B(x), where A, B are polynomials with integral
coefficients, we could split the polynomial B into linear factors in a suitable algebraic
extension field, compute a partial fraction decomposition of the integrand, and integrate
all the summands in this decomposition. The summands with linear denominators lead to
logarithmic parts in the integral. Computations in the splitting field of a polynomial are
very expensive; if n is the degree of the polynomial, the necessary algebraic extension has
degree n!. So the question arises whether it is really necessary to go to the full splitting
field. For instance,

∫

x

x2 − 2
dx =

∫

1/2

x −
√

2
dx +

∫

1/2

x +
√

2
dx =

1

2
[log(x −

√
2) + log(x +

√
2)] =

1

2
log(x2 − 2).

The example shows that although we had to compute in the splitting field of the denom-
inator, the algebraic extensions actually disappear in the end. A deeper analysis of the
problem reveals that instead of factoring the denominator into linear factors it suffices to
compute a so–called square–free factorization, i.e. a decomposition of a polynomial f into
f = f1 · f2

2 · . . . · f r
r , where the factors fi are pairwise relatively prime and have no multi-

ple roots (square–free). The square–free factorization can be computed by successive gcd
operations. Now if A and B are relatively prime polynomials over the rational numbers,
B is square–free, and the degree of A is less than the degree of B, then

∫

A(x)

B(x)
dx =

n
∑

i=1

ci log vi,

6

where the c1, . . . , cn are the distinct roots of the resultant of A(x) − c · B′(x) and B(x)
w.r.t. x, and each vi is the gcd of A(x) − ci · B′(x) and B(x). In this way we get the
smallest field extension necessary for expressing the integral.

The problem of integration becomes more complicated if the class of integrands is
extended. A very common class is that of elementary functions. We get this class by start-
ing with the rational functions and successively adding exponentials (expf(x)), logarithms
(log f(x)) or roots of algebraic equations, where the exponents, arguments, or coefficients
are previously constructed elementary functions. Not every elementary integrand has an
elementary integral, e.g.

∫

ex2

dx cannot be expressed as an elementary function. How-
ever, there is an algorithm, the Risch algorithm, that can decide whether a given integrand
can be integrated in terms of elementary functions, and if so the Risch algorithm yields
the integral. The case of algebraic functions is the most complicated part of the Risch
algorithm. For a thorough introduction to the algebraic integration problem the reader is
referred to the paper by M. Bronstein in the Journal of Symbolic Computation, Vol.9.

The discrete analog to the integration problem is the problem of summation in finite
terms. We are given an expression for a summand an and we want to compute a closed
expression for the partial sums of the infinite series

∑

∞

n=1 an. That is, we want to compute
a function S(m), such that

m
∑

n=1

an = S(m) − S(0).

For instance, we want to compute

m
∑

n=1

n · xn =
mxm+2 − (m + 1)xm+1 + x

(x − 1)2
.

For the case of hypergeometric functions, Gosper’s algorithm solves this problem. There
is also a theory of summation similar to the theory of integration in finite terms.

Gröbner bases are an extremely powerful method for deciding many problems in the
theory of polynomial ideals. As an example, consider the system of algebraic equations

2x4 + y4 + 8x3 − 3x2y − 2y3 + 12x2 − 6xy + y2 + 8x − 3y + 2 = 0
8x3 + 24x2 − 6xy + 24x − 6y + 8 = 0
4y3 − 3x2 − 6y2 − 6x + 2y − 3 = 0.

(1)

Every root of these equations is also a root of any linear combination of these equations,
so in fact we are looking for zeros of the ideal generated by the left hand sides in the ring
of polynomials in x and y over Q. The left hand sides form a specific basis of this ideal.
The goal is to compute another basis for this same ideal that is better suited for solving
the system. Such a basis is a Gröbner basis with respect to a lexicographic ordering of the
variables. In our example we get the following Gröbner basis, which we again write as a
system of equations.

y3 − y2 = 0
yx + y = 0

3x2 + 2y2 + 6x − 2y + 3 = 0.
(2)

The solutions of (1) and (2) are the same, but obviously it is much easier to investigate
the solutions of (2). The system contains a polynomial depending only on y, and the zeros

7

are y = 0 and y = 1. Substituting these values for y into the other two equations, we get
the solutions (x = −1, y = 0) and (x = −1, y = 1) for the system of algebraic equations.

Other problems in the theory of polynomial ideals that can be solved by Gröbner
bases include the ideal membership problem, the radical membership problem, the primary
decomposition of an ideal, or the computation of the dimension of an ideal. Most computer
algebra programs contain a Gröbner basis package.

Representation of expressions

Dynamic data structures are necessary for representing the computational objects of
computer algebra in the memory of the computer. For instance, during the execution
of the Euclidean algorithm, the coefficients in the polynomials expand and shrink again.
Since the goal of the computation is an exact result, we cannot just truncate them to the
most significant positions.

Most computer algebra programs represent objects as lists. An integer is represented
as a list of digits. For more complicated objects, the choice of representation is not that
clear. So, for instance, we can represent a bivariate polynomial recursively as a polynomial
in a main variable with coefficients in a univariate polynomial ring, or distributively as
pairs of coefficients and power products in the variables.

recursive representation: p(x, y) = (3x2 − 2x + 1)y2 + (x2 − 3x)y + (2x + 1)
distributive representation: p(x, y) = 3x2y2 − 2xy2 + x2y + y2 − 3xy + 2x + 1

For both these representations we can use a dense or a sparse list representation. In
the dense representation, a polynomial is a list of coefficients, starting from some highest
coefficient down to the constant coefficient. So the dense recursive representation of p is

((3 −2 1) (1 −3 0) (2 1)).

For the dense distributive representation of p we order the power products according to
the degree and lexicographically within the same degree. So p is represented as

(3 0 0 0 −2 1 0 1 −3 0 0 2 1).
x2y2 x3y x4 y3 xy2 x2y x3 y2 xy x2 y x 1

If only few power products have a coefficient different from 0, then a dense representation
wastes a lot of space. In this case we really want to represent the polynomial sparsely, i.e.
by pairs of coefficients and exponents. The sparse recursive representation of p is

((((3 2) (−2 1) (1 0)) 2) (((1 2) (−3 1)) 1) (((2 1) (1 0)) 0)),

and the sparse distributive representation of p is

((3 (2 2)) (−2 (1 2)) (1 (2 1)) (1 (0 2)) (−3 (1 1)) (2 (1 0)) (1 (0 0))).

For different algorithms, different representations of the objects are useful or even
necessary. The multivariate gcd algorithm works best with polynomials given in recur-
sive representation, whereas the Gröbner basis algorithm needs the input in distributive
representation. So in general, a computer algebra program has to provide many different

8

representations for the various algebraic objects and transformations that convert one form
to another.

References

1981. Knuth, D.E. The Art of Computer Programming, Vol. 2, 2nd ed., Addison-Wesley,
Reading, Massachusetts.

1983. Buchberger, B., Collins, G.E., Loos, R. (eds.) Computer Algebra — Symbolic and

Algebraic Computation, 2nd ed., Springer-Verlag, Wien–New York.

1988. Davenport, J.H., Siret, Y., Tournier, E. Computer Algebra — Systems and Algo-

rithms for Algebraic Computation, Academic Press, London.

1989. Akritas, A.G. Elements of Computer Algebra, Wiley, New York.

Journal of Symbolic Computation. Published by Academic Press, London.

F. Winkler

9

