AUTOMATED THEOREM PROVING
IN NONLINEAR GEOMETRY
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ABSTRACT

The method of Grisbner bases has been fruitfully applied to many problems in the
theory of polynomial ideals. Recently Grisbner bases have been used in various ways
for dealing with the problem of geometry theorem proving as posed by Wu. One
approach is centered around the computation of a basis for the module of syzygies of
the hypotheses and conclusion of a geometric statement. We elaborate this approach
and extend it to a complete decision procedure.

In geometry theorem proving, the problem of constructing subsidiary (or
degeneracy) conditions arises. Such subsidiary conditions usually are not uniquely
determined, and obviously one wants to keep them as simple as possible. The question
of constructing simplest subsidiary conditions has not yet been solved satisfactorily.
We show that our algorithm is able to construct the simplest subsidiary conditions
with respect to certain predefined criteria, such as lowest degree or fewest variables.
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0. INTRODUCTION

The work of Wu Wen-tsiin [WUL,WU2] has renewed the interest in automated
geometry theorem proving. He has developed a decision algorithm for a certain
class of geometry problems. The class of problems Wu considers (Wu's geometry,
for shott) consists, intuitively speaking, of those problems that can be translated
into algebraic equations over some ground field K, the number system associated
with the geometry. For the relationship between axiomatic geometries and number
systems we refer to [HIJ. Basically, Wu's geometry allows us to talk about
incidence, parallelism, perpendicularity, cocircularity, congruence, and so forth,
but not about “betweenness,” because no order predicate is available.

Often a geometric statement is true only in a “generic” sense, that is, after certain
degenerate situations have been ruled out. Such degenerate situations typically
occur, for example, when triangles collapse to a line segment or circles to a point,
and they are usually not explicitly mentioned. An automatic procedure for proving
geometry statements has to be able to deal with the problem of such degeneracy or
subsidiary conditions, which means it has to be able automatically to find suitable
subsidiary conditions that make the staternent a theorem, if such conditions exist
at afl.

Wu has given a decision procedure for solving the geometry theorem proving
problem. His procedure also finds a subsidiary condition, if such a condition exists.
Wu’s decision algorithm has been partially implemented by himself and by Chou
[C1]. Many interesting theorems have been proved by these implementations,
inciuding Simson’s Theorem, Pascal’s Theorem, the Butterfly Theorem and
Feuerbach’s Theorems (see [C2]). Wu'’s algorithm is based on the computation of
characteristic sets of polynomial ideals, as introduced by Ritt [RI].

Different approaches to geometry theorem proving, based on the computation
of Grébner bases [B1,B2] for polynomial ideals, have been reported. In [CS]
Gribner bases over the field generated by the independent variables of a geometric
construction are employed. Kapur [KP1,KPZ] describes a refutational theorem
prover, based on Rabinowitsch’s trick for proving Hilbert’s Nullstellensatz, Kutz-
ler and Stifter [KS1,KS2] describe various ways of applying Grobner bases to this
problem, one of which is centered on the computation of a basis for the module of
syzygies of the geometrical hypotheses and conclusion. This method is not com-
plete. However, we are able to extend it to a complete decision procedure.

As we have mentioned above, an automatic procedure for geometry theorem
proving must be able to find subsidiary conditions. Of course it would be of interest
to keep the subsidiary condition as simple as possible. Referring to his approach
Kapur {KP2] claims that “conditions found using this approach are often simpler
and weaker than the ones reported using Wu’s method or reported by an earlier
version of Kutzler & Stifter’s paper as well as Chou & Schelter based on the
Grobner basis method.” However, no algorithm for computing the “simplest”
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subsidiary condition has been reported up to now. Our algorithm is able to compute
the simplest subsidiary condition by giving a complete overview of the possible
subsidiary conditions. Reasonable criteria for simplest might be “of as low a degree
as possible” or “involving only certain variables.”

The structure of this paperis as follows. In Section 1 we give a shortintroduction
to the theory of Grobner bases, reviewing definitions and basic facts as far as they
will be necessary for the geometry theorem proving problem. In Section 2 we define
the geometry theorem proving problem. We derive a complete decision procedure
GEQ, which is also able to compute the simplest subsidiary condition for a given
instance of the geometry theorem proving problem. Finally, in Section 3 we
demonstrate how GEOQ can be applied to concrete geometry problems.

1. THE METHOD OF GROBNER BASES

We define the notion of a Gribner basis for a polynomial ideal as intreduced by
Buchberger {B1,B2].

Let K be a field and K{xy,..., x,] (or K{X] for short) the polynomial ring over K
in the indeterminates xi,..., X.. Let [xt,..., xn] = [X] denote the monoid of power
products in x,..., x». We start by choosing a term ordering <, that is, a linear
ordering on [X] that makes [X] an ordered monoid and with x} - x§ as the least
element. With respect to <, every nonzero polynornial f& K[X] contains a highest
power product, which is called the leading power product of f, Ipp{f). The coeffi-
cient of Ipp(f) in fis called the leading coefficient of f, Ic{f). The polynomial that
results from fby subtracting the leading power product multiplied by the leading
coefficient is called the reduction of f, that is, red(f) = f— lc(f) Ipp(f).

Every nonzero polynomial f gives rise to a reduction relation —» y on K[X] in
the following way: g1 ~ r g2 if and only if there is a power product 1 with a nonzero
coefficient & in g1, that is, g1 = au + i for some polynomial 4 that does not contain
u, such that Ipp(f) divides u, that is u = Ipp{Hu’ for some «’, and

g1 =~ i?:%‘}" u' red(f) + b
If Fis a set of polynomials, the reduction relation modulo F is defined such that g1
— 7 g2 if and only if g — 5 g2 for some f € F. In this case g is reducible to g;
modulo F. If there is no such gy, g1 is irreducible modulo F. For every set of
polynomials F the reduction relation — r is Noetherian, that is, every chain
fi = fp—>p - terminates. We say that g is a normal form of f modulo F, if f can
be reduced to g by a finite number of applications of ~»r and g is irreducible
modulo F. Normal forms are usually not unique.

If F is the basis of a polynomial ideal 7, then obviously f -»r 0 implies f € 1. In
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general, however, the implication in the reverse direction does not hold. A nonzero
polynomial f might be irreducible modulo ¥ and still f € 1.

DEFINITION 1.1. Let I be an ideal in K[X]. A finite set of polynomials Gis a
Gribner basis for I'iff (G) = I {(ie., G generates and fE [ « f > 0, forall fE
K[XL. :

There are many equivalent definitions for Grobner bases. The interested reader
may consult [B2]. More importantly, however, every ideal / in K[X] has a Grisbner
basis, and a Gribner basis for I can always he computed starting with some basis
Fofl

Grobner bases are an extremely powerful tool in commutative algebra. We
mention some applications, insofar as we will need themin the subsequent chapters.
For further applications we refer to [B2,WB,WI]. The “main problem” of polyno-
mial ideal theory, namely the question whether f € I for a polynomial f and a
polynomial ideal , can easily be solved once a Grébner basis G for I has been
computed: Reduce f to its unique normal form medulo & and check whether this
normal form is 0. The identity [ = J for two ideals I and J can be checked
algorithmically by computing Grobner bases Gy and Gy for I and J, respectively,
and then checking whether every basis element in Gy is in J and vice versa, The
membership problem for the radical of an ideal [, that is, f € radical{/)? can be
solved by computing a Grobner basis G for (Z, z(f—1)), where z is a new variable,
and checking whether G contains a constant (see [WI}).

The computation of a Grobner basis is an important step in solving a system of
algebraic equations. The following elimination property of a Gribner basis with
respect to a lexicographic ordering of the variables has been observed by Trinks
[TR]. It means that the ith elimination ideal of an ideal ! with Grobner basis G is
generated by the basis elements in G that depend only on the first { variables.

LEMMA 1.2. LetIbeanideal in K[X] and G a Gribner basis for [ with respect
to the lexicographic ordering < with x; < xz < - =< x, Then, for { 57 =n,

INKxy, ...,x]=(GNK[xt ..., x]),
where the ideal on the right-hand side is formed in K[x;,..., xi.
Given bases for the ideals [ and J, bases for ({ U Jy and IJ, the ideal generated
by all products of elements of I and J, can easily be determined. In general, however,
computing bases for I M J and I/ is a hard problem, which can be solved by the

Grobner basis algorithm,

LEMMA 1.3. Givenbases for the ideals 7 and J in K[ X}, bases for the following
can be computed:
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@ind,

() 17,
(c) radical(l).

Proof. (a) For a new variable z, we have
10 J=((z = DIV 2J) N KIX].

From bases for fand J we immediately get abasis for ((z— 1)/ U 2J). The intersection
with K[X] can be computed by Lemma 1.2.

(by For two ideals / and J, the set I.7 is defined as {h € K[X] | hg €1 for every
g € J}. IJ is again an ideal, and it can be computed as follows: If J = (f), then
compute a basis {g1, ....gx} of I N (f by (a). {g1 /..., gu/f ] is a basis for (/). In
the general case J = (fi,..., fin}, we have

LJ = [(TWE().

f=1

(¢) For anideal I, the set radical(/) is defined as {4 € K[X] | "€ [ for some m
€ N}. radical(!) is again an ideal, and it is called the radical of I. The zero-dimen-
sional case of computing radical(l) is treated in {KL,KR,KMH] and the general
case in [KA,GI]. Basically, it amounts to a primary decomposition of the ideal /
and collecting the associated prime ideals. B

DEFINITION 1.4:  Let <fi,....fn> € K[X]". <g1,..8m> € K[XT" is a syzygy of
fisenn frn iff Tk figi = 0. For a subset M of K[X]™, <g1,....gm> is a syzygy of M iff
itis a syzygy of every element of M.

For a finite set M C K[X]™, the syzygies of M are the solutions of a homogeneous
system of linear equations with the components of M as coefficients. A (finite) set
M C KX} generates a module over K[X], and on the other hand, as a consequence
of Hilbert’s basis theorem, every submodule of KIX]" has a finite basis, The set of
syzygies of a subset M of K[X]" is equal to the set of syzygies of the module
generated by M over K[X], and it forms again a module over K[X]. The Grobner
basis algorithm can be used to compute a basis for the module of syzygies of M.

LemMMA 1.5: For every finite subset M of K{X]™ a basis for the module of
syzygies of M can be computed.

Proof. See [B2] for the case M| = 1 and [WI] for the general case. An
alternative approach via extending the notion of a Grobner basis to modules is taken
in{GA}and [MM]. B
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2. GEOMETRY THEOREM PROVING:
A DECISION PROCEDURE

We consider a geometry whose associated number system is the algebraic closure

K of afield X, that s, the geometric objects lie in K™ for some n € N. The statements
we allow have to be expressible in the form

(V€KY [Alx)=0 A = Afulx)=0=>fx)=0], (2.1)

for some polynomials fi...., fm, fin Klx1, ..., xe] = K[X]. The f1,..., fim are called the
hypothesis polynomials or hypotheses for short and f is called the conclusion
polynomial or just the conclusion. Basically, this enables us to talk about incidence,
parallelism, perpendicularity, cocircularity, congruence, and so forth, but not about
“betweenness,” because no order predicate is available.

As an example let us consider the geometric theorem (in R?): For every triangle
ABC the lines orthogonal to the sides of the triangle and passing through the
midpoints of the associated sides have a common point of intersection. Before we
can express this theorem algebraically, we have to place the triangle in a two-
dimensional coordinate system (Figure 1). Without loss of generality we can
assume that A is placed at the origin, A = (0,0), and that the side AB is parallel to
the x-axis, B = (a, 0). No restriction is put on C, C = (b,c).

The equations for fi, £, and fare

filxy) = x - Vaa,
Ffolx,y) = B{x - ¥ab) + c(y - Y4c),
fxy) =(a - b)(x - Vafa + b)) - ¢y ~ 14c).

In order to prove the theorem, it suffices to show that f vanishes on the variety of
(fif2) < R(a,b,c)lxy), or in other words that f € radical{fi,2}). By the method
described in Section 1, this problem can be decided by computing a Grobner basis
for (fi,f5,2(f - 1)) in B(a,b,c){x,y]. The computation can be carried out completely
over the field Q{a,b,c), vielding the Grobner basis {1}. Sefis indeed in the radical
of (fi f2) and the theorem is proved. A geometry theorem prover along these lines
is described in [CS].

An important step in this approach is the transition from the question whether
a polynomial f vanishes on the variety of an ideal 7 to the problem whether fis in
the radical of [. That is only possible if the varieties are defined over an algebraically
closed ground field. So, for instance, one cannot decide geometric statements in
real space but only in complex space. Theorems in real geometry can only be
confirmed, but not disproved. For actually deciding statements in real geometry
one has to consider the theory of elementary algebra and elementary geometry,
based on real closed fields. This theory has been shown to be decidable by Tarski
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[TA] and has become known as Tarski algebra. Tarski's decision procedure has
recently been improved in [CO], [BKR], and [GR].

Often a geometric theorem is true only after certain degenerate situations have
been ruled out by a nondegeneracy or subsidiary condition.

EXAMPLE. As an example we take the following geometric statement: If Py
and P are two points on a circle and M is the midpoint of Py and Py, then the line
through M and perpendicular to P1P; contains the center of the circle (Figure 2).

The hypotheses of the given instance P of Pw, are

fi deyi-xb-y
(P} and P; are points on a circle with center (0,0)), and
Froalxy - x1) + bly2 - y1)

((g) is perpendicular to PtPz), and the conclusion is

£ alyr+y2) = b(x1 + x2)

[the line y = &%4x contains M, the midpoint of Py and P;].

By a Grosbner basis computation, it turns out that f & radical(fi f2). And indeed,
if Py = Py, the perpendicular line is not uniguely determined. So the statement is
not a theorem, although we have the strong “feeling” that by excluding a few
degenerate cases (like Py = P) it might become a theorem. 8

As for the hypotheses and the conclusion, we require that the subsidiary
condition be expressible by a polynomial, this time by a polynomial inequation of
the form s(x1,...x.)= 0. So the problem becomes to decide whether for given

Fioeeo ff and s in K[X],
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(Vx €KY [filx) = =fulx) = 0 A 5(x) 2 0= flx) = 0]. 2.2)

Moreover, as we have mentioned above, in a geometry theorem proving setting it
is reasonable to require that a subsidiary condition be determined algorithmically.
So we arrive at the following formal specification of the geometry theorem

proving problem posed in [W2]. Let X be a field, K the algebraic closure of K.

PROBLEM Py,  Forgiven: polynomialsfi,..., fin, fin K{X], decide whether there
exists a polynomial s & KTX] such that

(1) (VxEKY (ilx) = wfulx) =0 as(x)= 0= flx)=0),
2) €KY (ilx) = =fulx) =0 A s(x)=0).
If so, find such an s.

Part (2) in Pw, guaraniees that the subsidiary condition does not exclude all
points on the variety of fi,...,fim. Sometimes it seems natural to use & finite number
$1,..-,5 Of subsidiary conditions, replacing s(x) in Pw, by s1(x} = O A~ A sy(x) = 0,
thus getting a modified problem. However, it can easily be seen that a single
subsidiary condition s is sufficient. The factors of s satisfy the modified problem,
and if 51,..., s» satisfy the modified problem, then their product 57...5, satisfies
Py

In [W2] Wu describes a decision algorithm for Pw., which has been partially
implemented by himself and by Chou [C1]. Wu’s algorithm is based on the
computation of characteristic sets of polynomial ideals, as introduced by Ritt [RI].
In [KP2] itis shown (Theorem 2) that by a Gribner basis computation a subsidiary
condition can be computed if one exists. In this paper we solve Pw, by computing
a basis for the ideal containing all the solutions of part (1), thus also getting amethod
for computing the simplest subsidiary condition,
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THEOREM 2.1 Letfi,....fn f be the parameters of an instance P of Pyx.

(i) Those polynomials s € K[X], which satisfy part (1) of P, constitute an
ideal Np.

(i) Np = radical{f1,....fiu): ().

(i) Np = radical(Sp):(f), where

Sp = (51<81,00y8m, 8> 18 & syzyEY Of <1, fnf> fOr some si,...,8m )

Proof: (i) Suppose both 51 and 52 solve part (1) of P. Now let £1,72 be arbitrary
polynomials, and let x € K" be such that fi(x) = = = fiu(x) = 0 and (1151 + £257)(x)
= 1(x)s1{x) + f2(x)s2(x) =0. Then either s1(x) = or s2(x) » 0. Without loss of
generality, assume that s1(x) = 0. But then f{x) = 0, since 51 is a solution of part (1}
of P. So also 7151 + f252 is a solution of part (1) of P.

(ii) If 5 € Np, then sf vanishes on every common root of fi,...f, in K. That,
however, means that sf € radical(fj,...,fm and therefore s € radical(fi,...fim):(f).

On the other hand, if s € radical{fi,...,fin):(P), then sf € radical(f1,...fn). So f
vanishes on every common root of fi,...fin on which s does not vanish, that is,
5 & Np.

(iii) If s € Np, we know from (ii) that sf € radical(fi,..., ), that is, for some k
& N, and for some 5i,...,5m & K[X],

S+ S + skf" =0,

that is, s € 8§p and also s*f* &€ Sp. So sf € radical(S,) and therefore s €
radical{Se):(f).

On the other hand, let s € radical(Sy):(f), that is, sf & radical(5,). Then e
Sp for some k = 1. Also s**If* € Sp, that is,

Sifi + 0+ S + S 20,
So sf € radical{fy,..., fm) and s Eradical{fy,..., fr):() = Np. B

Theorem 2.1 gives two methods for computing the set of solutions of part (1)
of Pwy. By Lemma 1.3 a basis for the radical can be computed, and by Lemma 1.5
a basis for the module of syzygies can be computed. Characterization (ii) is very
similar to the one developed in [KP2], Theorem 2. Characterization (iii) is the
complete version of the heuristic approach of [KS1,KS82].

Since a radical has to be computed anyway, one might argue that the charac-
terization (ii) is definitely better than the characterization (iii), because it does not
involve the computation of syzygies. However, in the examples we considered we
found that usually Sp is simpler than the ideal generated by the hypotheses, so the
radical computation for Spis less costly. In any case we have a complete overview
of the solutions of part (1) of Pw,. The remaining question is whether there is a
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solution of (1) that also satisfies (2). If possible, we want to compute a simplest
such condition.

THEOREM 2.2: Let P be an instance of Pw,, B a finite basis for N».

(i) If there is a polynomial in Np that satisfies (2), then there is a polynomial in
the basis B that satisfies (2).

(ii) K B is a Griosbner basis for Np with respect to the term ordering <, B is the
set of those b € B satisfying part (2) of P, and ¢ =min{Ipp(b)lb € B'}, then for every
solution s of P, t <Xlpp(s).

Proof. (i) Let fi,....fm, fbe the parameters of the instance P of Py, and B = {by,...,b,}.
Assume that no basis polynomial b;, 1 = = r, satisfies (2), that is,

Vx €KY (filx) =" =fu(x)=0=>b{x)=0) foralllsis=r
Then also for every linear combination 5 = Z/.; A:by, we have
(V€K™ (filx) = = fiulx) = 0 = 5(x) = 0),

SO N0 § & Np satisfies (2).

(i) Let s be a solution of part (1) of P, 5 € Np so sis reducible to QO w.r.t. B. Let
C € B be the set of elements of B used in this reduction. Then lpp(b) < Ipp(s) for
every b € C. If no b € C satisfies part (2) of P, then neither does s. B

Theorem 2.2(ii) establishes that simplest subsidiary conditions can be computed
by choosing the term ordering < appropriately, namely, such that sy is simpler than
sz if and onty if Ipp(s1) < 1pp(sz). For instance, a Grishner basis for Np with respect
to a graduated ordering contains a solution of lowest degree of P, if any such
solution exists. A Grobner basis for Np with respect to a lexicographic ordering
X=X, = x, contains a solution depending only on xi,...%m, if such a
solution exists. The variables xy,....x, could be the “independent” variables (see
[KS2]) of the geometric construction. So one can ask the question whether there is
a nondegeneracy condition depending only on the independent variables. The two
orderings can, of course, be combined by ordering the power products in xi1,...,%m
by some ordering <, for example, according to the degree, and also the power
products in Xm+1,.3n by some ordering <a. Then a term ordering < can be
constructed by

uig <tz i up <oty v (Hr =12 A U1 =<1 1),

where w1t are power products over xi,...4 and wpty power products over
XmetnosXne This ordering will lead to a subsidiary condition of lowest degree
involving only the independent variables x1,.... .

In their report [CY]} Chou and Yang consider the problem statement Py, and
claim: “The algebraic problem in this formulation is well defined. However, the
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polynomial s sometimes has nothing to do with nondegenerate conditions in
geometry. To make things worse, this formulation is unsound from the geometric
point of view.” They go on to stress their point by an example. We will deal with
this example and the criticism of Py, in Section 3.

Combining Theorems 2.1 and 2.2 we get the following decision algorithm
for Pwu: '

Algorithm GEQ

in: polynomials fi,.../fm, f € K[X],
out: 5, a solution of the instance P =< fi,....f. f > Pwa,
if such a solution exists, or “no”;
(1) Compute a finite basis B for Np using either one of the characterizations
of Theorem 2.1.
(2) Check the polynomials b in B for b ¢ radical(l), where I = (f1,....fm). If B
is a Grisbner basis with respect to the term ordering < and b is the element
of B with the least leading power product satisfying b € radical(/), then b
is the simplest subsidiary condition. Set s = b and stop. Otherwise output

113 3

ne.

3. EXAMPLES

First let us consider the example of Section 2. We use the decision algorithm GEO
to prove the following:

If PiandP, are two points on a circle and M is the midpoint of PrandP; then the
Jine through M and perpendicular to PP, contains the center of the circle (Figure
3.

The hypotheses of the given instance P of Pw, are
fo A+yt-x~¥
(P and P are points on a circle with center (0,09),

foalxz = x1) + blyz2 = y1)

{ %) is perpendicular to PiPy) and the conclusion is
b P

£ alyr + yn = blx) + x2)

[the line y = bhx contains M, the midpoint of PiandP2].
First we compute a basis for the ideal Sp, that is, the third component of the module
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Pi{z1,91)
) — —
s
- Pa(z2,y2)
Figure 3.

of syzygies of {fi,2./). A Gribner basis for ideal{fi,f2,f) in Qla.b.x1,x2,y1,y2] wrt
the lexicographic ordering witha < b < x; <xp <y < y<is

(Aot 5 = aby - 1ab%x; - VaaPxs - Vab*xy + Voa®xy ).

From the Grobner basis we immediately get a basis for the module of syzygies of
<fi,f2/5/>. By an algorithm described in [B2] this syzygy basis can be transformed
to a basis of the syzygies of <f1,f2f>:

(=by2 +y1.x1 ~x2), {(-axz+xny2 - y1),
{0,0}’2 +dy — bxy - bxy,~by» + by) — axy + axl),
(2aby| ~ B*x; — a*xy - b*xy + aPxy, ays - ayt + axh - axd, - by + byt - bxd + bx}).

So Sp=(x - x1,y2 - ynand € = {x2 = x1.y2 = y1].
Sp is radical. For computing Spiradical(f), we apply Lemma 1.3 and first
compute a basis for Sp{\ideal(f). A Grobner basis for ((z - 1)Sp U {zf})is

XoZ—X1Z— X2+ X1, YaZ=YiZ=Ya+Yi,
ayaz + ayiz — bxaz - bxiz,  aniz - bz + Vaay - Vaay, — Vabx + Vobx,

axayz — ax1yz + axzyi — axyy - b3 + bt = (x2 - x1)f,

ay} - bxayy - bxiys — ayt + bxayy + bxiyt = (32 - y1)f.

Intersecting this basis with Q {a,bx1,02,y1.y2] and dividing by £, we finally get the
basis B = {x2 — x1,y2 — y1} for radical(Sp):(f) = Np.
Neither x3 — x1 nor y2 - y1 is in the radical of ideal(fi,f2), so both are solutions
of the geometric problem instance P, and they are solutions of lowest degree.
That means the theorem holds in C? (and therefore also in R?) if either the
x-coordinates or the y-coordinates of the two points Py and P differ from one
another, that is, P; and P2 do not collapse to a single point.
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Figure 4.

For further demonstrating the usefulness of computing a simplest subsidiary
condition, we consider an example used in [CY] to support the claim that the
polynomial s computed as a solution of Pwy may have nothing to do with a
subsidiary condition for the geometric problem.

The goal is to prove: every triangle is isosceles, which, of course, is not atheorem
in complex geometry. Chou and Yang observe, however, that there is a formulation
of this problem as an instance of Py, that admits a subsidiary condition s.

The algebraic formulation they use is the following: Let ABC be a triangle, and
BE the altitude from B (Figure 4). Show that AB = CB. As coordinates for the points
they choose A = (0,0}, B = (3,0), C = {y4,y5), and E = (y2,y3). Now the hypotheses
can be translated into the algebraic equations

By =ysys+ (2= y)ya =0, BE LAC,
Fiy = =y2ys + yaya = 0, Eison AC,
and the conclusion into the equation
g=-Y4-yi+21ys=0, AB=CB.

s = y% + y% — yiy2 satisfies both conditions in Pw.. In fact, Kapur’s theorem prover
confirms the “theorem” under the subsidiary condition s. Chou and Yang now state,
*“Thus under this formulation we can prove that “every” triangle is isosceles” and
they take this as evidence of their claim that Py, is “onsound.”

In our opinion, the controversy stems from the fact that the dependent variables
v2,y3 are not explicitly excluded from the subsidiary condition. If one wants to
consider only such subsidiary conditions, which do not involve the dependent
variables (which is reasonable from a geometric point of view}, then this can be
achieved by a suitable ordering of the power products, for example, a lexicographic
ordering based on

Vi S ¥ <Y <Yy < Y
T t— e, e

independent dependent
variables variables
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Now the algorithm GEQ is able to detect that there exists no subsidiary condition
involving only the independent variables yrysys. Actually also Kapur [KP2]
mentions the possibility of recognizing that there is no such subsidiary condition
in a remark following Theorem 2.

Let us apply the algorithm GEO to the geometric problem in the formulation
above, where h1,iiz are the hypotheses and g is the conclusion. We get

o (b1 = yay3 - ysya. by =yiy2 + Yiv2 - yvi,

by = Y34y~ yiya, bs =Ysys + yayz — yivs)

as a basis for Np.
In step (2) we detect that by & radical(hy,h2), but there exists no possible
subsidiary condition involving only the independent variables yi,y4,ys.

Note added in proof.  In his recent Ph.D. thesis [KU] B. Kutzler has reformu-
lated the geometry theorem proving problem. In his formulation one does not have
to search for subsidiary conditions and the problem is a pure decision problem,
Nevertheless, for certain applications (as, for example, incorrectly stated theorems)
the “finding” problem is still of importance.
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