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Abstract

If algebraic varieties like curves or surfaces are to be manipulated by computers, it is essential to be
able to represent these geometric objects in an appropriate way. For some applications an implicit
representation by algebraic equations is desirable, whereas for others an explicit or parametric
representation is more suitable. Therefore, transformation algorithms from one representation to
the other are of utmost importance.

We investigate the transformation of an implicit representation of a plane algebraic curve into
a parametric representation. In the course of the transformation algorithm the coefficient field has
to be extended algebraically. If the known parametrization algorithms are used uncritically, the
algebraic extensions get so high that any computation becomes practically impossible. Our goal is
to keep the degree of the necessary algebraic extension as small as possible.

Introduction

An algebraic variety V , the main object of study in algebraic geometry, can be represented in
various different ways, for instance as the set of zeros of polynomial equations

V = {(x, y) | 2x4 − 3x2y + y2 − 2y3 + y4 = 0, x, y ∈ C},

or as the set of values of rational functions

V = {(φ(t), χ(t)) |φ(t) = −
18t4 + 21t3 − 7t− 2

18t4 + 48t3 + 64t2 + 40t+ 9
,

χ(t) =
36t4 + 84t3 + 73t2 + 28t+ 4

18t4 + 48t3 + 64t2 + 40t+ 9
, t ∈ C}.

We call the first representation implicit and the second explicit or parametric.
The representation of choice is of course determined by the operations one wants to perform

with the variety. For determining whether a given point is a point of the variety, or for computing
singular points of the variety, the implicit representation is more desirable than the parametric one.
On the other hand, the parametric representation lends itself very easily to the determination of the
curvature, to tracing of varieties, and in particular to visualizing them on a computer screen. The
intersection of varieties can be determined rather easily if one of the varieties is given implicitely
and the other one explicitely. For this reason it is essential to be able to switch between different
representations.

In /3/ the problem of computing the implicit equations from a given parametric representation
is treated. Recently the application of the Gröbner basis method to the implicitization problem has
been further investigated in /5/. The reverse problem, namely computing a rational parametrization
from the given implicit equations, is a classical problem in algebraic geometry, see for instance
/8/. In /2/,/4/ the problem of parametrization for space curves is reduced to the problem of
parametrization of plane curves. In this paper we will deal only with the problem of parametrizing
plane curves.
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Theoretically the problem of parametrization of plane curves is solved, and it is known that
the parametrizable curves are exactly the curves of genus 0. In /8/ also an algorithm is suggested
for computing a rational parametrization. Instead of a pencil of degree d− 2, as in /1/, one could
also use pencils of degree d − 1 and d in the parametrization algorithm. In fact, these pencils
are more attractive from a computational point of view. The determination of simple points on
the curve introduces a lot of algebraic numbers. If they are not controlled, the computation soon
becomes too inefficient. We show that a pencil can be passed through a set of points on the
given curve without having to compute these points explicitly. It turns out that if F is a field in
which the coordinates of the singular points of the curve C can be represented, then a rational
parametrization of C can be found in an extension field of degree deg(C) over F. Our conjecture,
however, is that for a curve of odd degree we need no algebraic extension of F. In this paper we
can only state the results of our work. For details on the methods and proofs we refer to /7/.

Let K be an algebraically closed field of characteristic 0. We will consider curves in the affine
and projective planes over K. If the curve C is defined by f(x, y) = 0 then the associated projective
curve C∗ is defined by F (x, y, z) = 0, where F is the homogenization of f .

The irreducible affine curve C defined by the irreducible polynomial f(x, y) ∈ K[x, y] is rational

iff there exist rational functions φ(t), χ(t) ∈ K(t) such that

(1) for almost all (i.e. for all but a finite number of exceptions) t0 ∈ K, (φ(t0), χ(t0)) is a point
on C, and

(2) for almost every point (x0, y0) on C there is a t0 ∈ K such that (x0, y0) = (φ(t0), χ(t0)).

If φ, χ satisfy the conditions (1) and (2), (φ, χ) is a rational parametrization of C.

The notion of rationality for affine curves can be extended in a natural way to a notion of
rationality for projective curves. This is achieved by introducing a third rational function ψ(t) and
postulating the conditions (1),(2). In fact, a parametrization of C can be immediately obtained
from a parametrization of the associated curve C∗ in the projective plane and vice versa.

With this terminology we can state the problem of parametrization.

Parametrization problem:
given: an irreducible polynomial f(x, y) ∈ K[x, y] defining an irreducible affine algebraic plane

curve C
decide: the rationality of C

find: (if C is rational) rational functions φ(t), χ(t) ∈ K(t) such that (φ, χ) is a rational
parametrization of C. ⊔⊓

In the sequel we exclude the case where the degree of the polynomial f defining the curve C
is 1, i.e. where C is a line. Obviously the parametrization of lines does not present a problem.

A singular point P of multiplicity r on the affine curve C defined by f(x, y) is an ordinary

singular point iff the r tangents to C at P are distinct. Otherwise P is called non–ordinary. The
property of a singular point P of being ordinary or non–ordinary is called the character of P . An
important result about singularities is the fact that if C is an irreducible projective or affine curve
of degree d having multiplicities rP at points P , then (d− 1)(d− 2) ≥

∑

P∈C rP (rP − 1). In the
special case of an irreducible projective curve C∗, defined by F (x, y, z) = 0, having only ordinary
singularities one can characterize the rationality as follows. If r1, . . . , rn are the multiplicities of
the singular points of C∗, C∗ is rational if and only if (d − 1)(d − 2) =

∑n
i=1 ri(ri − 1). In the

general case, for characterizing the rationality of a plane curve one usually introduces the concept
of neighboring points. If we include also the neighboring singular points, then the above equation
is a criterion for the rationality of a curve C.

A parametrization algorithm

Let us assume that the irreducible projective curve C∗ of degree d defined by F (x, y, z) = 0 is
rational. If C∗ has a (d−1)–fold point, then it is rational and a parametrization can be determined



by cutting C∗ with lines passing through this (d− 1)–fold point. By Bezout’s theorem there will
be exactly one additional intersection point depending on the slope of the line, yielding the desired
parametrization. This idea may be generalized. In the general situation one can also construct a
pencil of curves such that for almost every curve in the pencil all its intersection points with C∗,
except one, are predetermined. Moreover, all the predetermined intersection points are the same
for every curve in the pencil. Thus, if one computes the intersection points of a generic element of
the pencil with C∗, the expression of the unknown intersection point gives the parametrization of
the curve by means of the parameter defining the pencil. Here we discuss only pencils of degree d.

Let us assume that D∗ is a generic representative of a pencil of curves of degree d. Then in
general D∗ has d2 intersections with C∗. We postulate that D∗ satisfies the properties:

(1) every r–fold singular point (including the neighboring ones) on C∗ is an (r − 1)–fold point
on D∗,

(2) there exist 3d− 3 simple points on C∗ that are also simple points on D∗,
(3) C∗ and D∗ do not have a common component.

In this way, we force D∗ to have some specific common points with C∗. In the sequel, we will refer
to these points as the fixed common points of C∗ and the pencil. The intersection multiplicity of C∗

and D∗ at the singular points P of C∗ (including the neighboring ones) is at least
∑

rP (rP − 1) =
(d − 1)(d− 2), where rP is the multiplicity of P on C∗. So by condition (2) we fix just so many
simple intersection points of C∗ and D∗ as to leave at most one intersection point undetermined.

LEMMA 1: The pencil of curves D∗ of degree d satisfying (1) – (3) can be effectively computed
and the coefficients of the pencil are polynomials in one free parameter. Almost every curve in the
pencil intersects C∗ in one additional point and for almost every simple point Q on C∗ which is
not one of the fixed common points there exists a curve in the pencil intersecting C∗ at Q. ⊔⊓

Having determined the pencil D∗, we want to compute a formula for the unknown intersection
point of an arbitrary curve in the pencil with the given rational curve C∗. By resultant compu-
tations we will derive the rational parametrization from this formula. In the sequel we denote by
Resv(p, q) the resultant of the polynomials p and q w.r.t. the variable v.

Let t be the independent parameter of D∗. Let us also suppose that Pi = (λi, µi, ρi), 1 ≤
i ≤ n, are the singular points of C∗, where Pi is a point of multiplicity ri on C∗, and that
Qi = (λ̄i, µ̄i, ρ̄i), 1 ≤ i ≤ 3d − 3, are the fixed common simple points of C∗ and D∗. Let
r̄i := ri(ri − 1) +

∑

P∈N(Pi)
rP (rP − 1), 1 ≤ i ≤ n, where N(Pi) is the set of neighboring points of

Pi w.r.t. C∗. Let C be the affine curve associated with C∗, i.e. C is defined by f(x, y) = F (x, y, 1).
Let h(x, y) = H(x, y, 1) be the dehomogenization of the defining polynomial of the pencil D∗.

THEOREM 2: With the notation introduced above there exist nonzero polynomials
m1(t), m2(t), n1(t), n2(t) ∈ K[t] such that

Resx(f, h) =
∏n

i=1(ρiy − µi)
r̄i ·

∏3d−3
i=1 (ρ̄iy − µ̄i) · (m1(t)y − n1(t)),

Resy(f, h) =
∏n

i=1(ρix− λi)
r̄i ·

∏3d−3
i=1 (ρ̄ix− λ̄i) · (m2(t)x− n2(t)). ⊔⊓

THEOREM 3: Let C,C∗, D∗, F,H, f, h be as above. If (u(t)x − v(t)) and (ū(t)y − v̄(t)) are the
factors of Resy(f, h) and Resx(f, h) depending on t, respectively, then

(

x(t) = v(t)/u(t), y(t) =

v̄(t)/ū(t), z(t) = 1
)

is a parametrization of C∗ and
(

x(t) = v(t)/u(t), y(t) = v̄(t)/ū(t)
)

is a
parametrization of C. ⊔⊓

So we arrive at the following algorithm for computing a rational parametrization of an irre-
ducible affine rational curve.

Algorithm PARAMETRIZE
The input is an irreducible affine rational curve C of degree d, defined by the irreducible polynomial
f(x, y). The output is a rational parametrization of C.

(1) Determine the singularities of the projective curve C∗ associated with C, including the neigh-
boring ones, and their multiplicities. Determine 3d − 3 simple points on C∗. Determine the



pencil D∗ as it has been described above. Let H(x, y, z) be the polynomial defining the pencil,
h(x, y) = H(x, y, 1).

(2) Compute S1(y) = Resx(f, h) and S2(x) = Resy(f, h).
(3) Remove the factors corresponding to the common points of C∗ and D∗ from S1(y) and S2(x),

as described in Theorem 2.
(4) Solve the linear system of equations S1(y) = 0, S2(x) = 0, where x, y are the unknowns. Let

(R1(t), R2(t)) be the solution.
(5) Return the parametrization (R1(t), R2(t)). ⊔⊓

Of course we are interested in parametrizations which need only few, if any, algebraic numbers.
Let F be a field of characteristic zero in which all the field operations can be carried out effectively
and in which the singularities of the curve C can be represented. The remaining problem then is
the selection of the simple common points of the curve C∗ and the pencil D∗. We propose to use
whole conjugacy classes of simple points in order to keep the necessary algebraic extension as low
as possible.

LEMMA 4: Let q ∈ F[s] with deg(q) = n ≤ a, {β1, . . . , βn} the roots of q, and a1, a2, a3, b1, b2, b3 ∈ F.
(a) The points {(a1 + b1βi : a2 + b2βi : a3 + b3βi)}i=1,...,n are on D∗ if and only if q(s) divides

H(a1 + b1s, a2 + b2s, a3 + b3s).
(b) If {(a1 +b1βi : a2 +b2βi : a3 +b3βi)}i=1,...,n are common points of C∗ and D∗, then q(a2−a3y

b3y−b2
) ·

(b3y − b2)
n divides Resx(f, h) and q(a1−a3x

b3x−b1
) · (b3x− b1)

n divides Resy(f, h). ⊔⊓

The algorithm constructing the classes of conjugate common simple points works as follows.

Algorithm SIMPLE
The input to SIMPLE is an irreducible rational curve C∗ defined by the polynomial F (x, y, z).
The output consists of three distinct whole classes of conjugate simple points on C∗, each class
containing d− 1 points. One algebraic number β of degree at most d has to be introduced.
(1) Choose b1, b2 ∈ F such that for every singular point (ρ1 : ρ2 : ρ3) of C∗ we have b2ρ1−b1ρ2 6= 0

(i.e. b1, b2 cannot be the first two coordinates of a singular point of C∗). Compute an
irreducible monic factor of the univariate polynomial F (b1, b2, s), say q(s). Now, since b1, b2
are not the first two coordinates of a singular point of C∗, P = (b1 : b2 : β), with q(β) = 0, is
a simple point on C∗.

(2) Choose λ1, λ2, λ3, µ1, µ2, µ3 ∈ F, such that
(a) λiµj − λjµi 6= 0 for i 6= j,
(b) Ress(q̄i(s), q̄

′

i(s)) 6= 0 for i = 1, 2, 3, where q̄i(s) = F (λis + b1, µis + b2, s + β) and q̄′i
denotes the derivative of qi w.r.t. s.

(3) For i = 1, 2, 3 set qi(s) := q̄i(s)/s ∈ F(β)[s].
(4) Now {(λiβi + b1 : µiβi + b2 : βi + β)}qi(βi)=0, i = 1, 2, 3, are three distinct whole classes of

(d− 1) simple points each on C∗. ⊔⊓

THEOREM 5: A parametrization of a curve of degree d can be found in an extension of degree d
over F.

Proof: Use algorithms PARAMETRIZE and SIMPLE. ⊔⊓

EXAMPLE: Applying the algorithms PARAMETRIZE and SIMPLE to the implicitely given curve
at the beginning of this paper and choosing (2/9, 4/9) as the simple point in step (1) of SIMPLE,
we get the associated parametrization. ⊔⊓

A number theoretical problem

These considerations allow to keep the algebraic extension of the field small. But even the
bound given in Theorem 5 might be far to pessimistic. J. Schicho, a Ph.D. student at RISC-LINZ,
has given the following reduction of the problem of finding a parametrization with few algebraic
numbers to a number theoretical problem.



Let C be an affine rational curve of degree d. Let it have k singularities P1, . . . , Pk, including
the neighboring ones, with multiplicities s1, . . . , sk, respectively. Since the genus of C is 0, we have

∑k
i=1 si(si − 1) = (d− 1)(d− 2). (1)

Let S be the linear system of curves of degree a (≤ d) that have Pi, 1 ≤ i ≤ k, as an ri–fold point.
The dimension of the system S is

dim(S) = t = a(a+3)
2

−
∑k

i=1
ri(ri+1)

2
. (2)

S has
∑k

i=1 risi intersections with C. Thus,

t ≤ ad−
∑k

i=1 risi, (3)

because there is a curve in S with at least t+
∑k

i=1 risi intersections with C, and the number of
intersections cannot be greater than ad by Bezout’s theorem. We are particularly interested in the
case where equality holds in (3). Suppose

t = ad−
∑k

i=1 risi ≥ 1. (4)
Then we define a subsystem R of S intersecting C at t − 1 simple points. R has dimension 1.
All the intersection points of R and C, except one, are fixed. The pencil R can now be used
to parametrize the curve C along the lines described in the previous chapter. In order to avoid
algebraic field extensions, t should be as small as possible. So we arrive at the following number
theoretical problem:

Pencil selection problem:
given: nonnegative integers d, k, s1, . . . , sk satisfying the condition (1),
find: t, a(1 ≤ a ≤ d), r1, . . . , rk that solve (2) and (4), where t is as small as possible. ⊔⊓

If d is odd and the curve C has at least l = (d− 3)/2 double points, say P1, . . . , Pl, then there
exists a solution to the pencil selection problem with t = 1, namely a = d−2, t = 1, r1 = . . . = rl =
2, ri = si−1 for l+1 ≤ i ≤ k. So for curves of this type no algebraic extension is needed. If d is even
and the curve C has at least l = (d/2)−2 double points, say P1, . . . , Pl, then there exists a solution
to the pencil selection problem with t = 2, namely a = d − 2, t = 1, r1 = . . . = rl = 2, ri = si − 1
for l+1 ≤ i ≤ k. So for curves of this type only an algebraic extension of degree d is needed. This
bound on the field extension coincides with Theorem 5.

The conjecture, based on computer aided searches for solutions to the pencil selection problem,
is that for every curve of odd degree a solution with t = 1 can be found, and for every curve of
even degree a solution with t = 2 can be found.
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