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Abstract

Grobner bases have been used in various ways for dealing with the problem of geometry theorem
proving as posed by Wu. Kutzler and Stifter have proposed & procedure centered around
the computation of a basis for the module of syzygies of the geometrical hypotheses. We
elaberate this approach and extend it to a complete decision procedure. Alse, in geometry
theorern proving the problem of constructing subsidiary (or degeneracy} conditions arises. Such
subsidiary conditions usually are not uniquely determined and obviously one wants to keep
them as simple as possible. This problem, however, has not received encugh attention in the
geometry theorem proving literature. Our algorithm is able to construct the simples! subsidiary
conditions with respect to certain predefined criteria, such as lowest degree or dependence on &
given set of variables.

The work of Wu Wen-tsiin [Wu 1878], {Wu 1984} has sparked a lot of interest in auto-
mated geometry theorem proving. He has developed a decision algorithm for a certain class
of geometry problems. The class of problems he considers consisis, intuitively speaking, of
those geometry problems that can be translated into algebraic equations. The statements
that can be expressed in the geomeiry considered by Wu {(Wu's geometry, for short} are
those whose hypotheses and conclusion can be expressed as polynomial equations in the
coordinates of the points occurring in the geometric construction. This, of course, after
some coordinate system has been fixed. The ground field, i.e. the field from which these co-
ordinates are taken, has to be an algebraically closed field; this even if both the hypotheses
and the conclusion can be described by polynomials whose coeflicients lie in a smaller field.
Basically, Wu's geometry allows to talk about incidence, parallelism, perpendicularity, co-
circularity, congruence, etc., but not about “betweenness”, because no order predicate is
available. Kapur [Kapur 1986a] shows that the satisfiability of any quantifier—{ree formula
involving elements of the ground field, variables ranging over the ground field, the function
symbols +, —, x, the predicate symbol = and Boolean connectives is equivalent {o the
satisflability of a finite set of polynomial equations.

We give a formal specification of the geometry theorem proving preblem. Let K be
a field, K the algebraic closure of K, and R the polynomial ring in the indeterminates
Ti,...,3, over A, i.e. R = K[z1,...,2,]. Whenever we speak of polynomials we mean
elements of R. In [Wu 1984] Wu poses the following problem:
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Pwy:

given:  polynomials fi,..., fm,f

decide:  does there exist a polynomial s such that
(1) (vé € E') (i) = = fm(8) =0 A 5(8) £0 => f(2)=0)
an
() (3Fe KB )V (fiE)=...= fm(E) =0 A 3(8) #0)7

If s0, find such an s.

The polynomial s is supposed to describe the subsidiary condition of the geometric state-
ment or the degeneracy condition of the geometric figure under consideration, e.g. s(z) # 0
might state that a triangle does not collapse into a line segment. Sometimes it seems nat-
ural to use a finite number s4,...,3, of subsidiary conditions, replacing s(E} in Pw, by
51(%) # 0 A ... A s,(2) # 0, thus getting a modified problem. However, it can easily be
seen that a single subsidiary condition s is sufficient. The factors of s satisfy the modified
problem, and if s;,...,s, satisfy the modified problem, then their product s; ... - s,
safisfies Py, .

Wu's decision algorithm for this problem has been partially implemented by himself
and by Chou {Chou 1985]. Many interesting theorems have been proved by these imple-
mentations,

Different approaches to geometry theorem proving, based on the computation of
Grébner bases [Buchberger 65), [Buchberger 85], have been reported. In [Chou,Schelter
1986] Grdbner bases over the field generated by the independent variables of a geomet-
ric construction are employed. Kapur {Kapur 1986a,b] describes a refutational theorem
prover, based on Rabinowitsch’s trick for proving Hilbert’s Nullstellensatz. Kutzler and
Stifter [Kutzler,Stifter 1986a,b] describe various ways of applying Grobner bases to this
problem, one of which is centered on the computation of a basis for the module of syzygies
of the geometrical hypotheses and conclusion. We consider this idea and develop it into a
full decision procedure for Pw,.

Of course it would be of interest to keep the subsidiary condition in Pw, as simple
as possible. Referring to his approach Kapur {Kapur 1986b] claims that “conditions found
using this approach are often simpler and weaker than the ones reported using Wu’s method
or reported by an earlier version of Kutzler & Stifter’s paper as well as Chou & Schelter
based on the Grébner basis method.” QOur algorithm GEQ is able to compute the “simplest
possible” subsidiary conditions by giving a complete overview of the possible subsidiary
conditions. Reasonable criteria for “simplest possible” might be “of as low a degree as
possible” or “involving only certain variables”.

Every set of polynomials F generates a polynomial ideal ideal{ F), consisting of all
““=linear combinations of elements of F with coefficients in R. If F is a finite set {Fi .. [ Fm},
then we write ideal(fy,..., fm) for the ideal generated by F. F is a basis for ideal(F).
Every polynomial ideal (in R} admits a finite basis, and certain finite bases are called
Grébner bases [Buchberger 1965,1985]. The radical of a polynomial ideal I, radical([),
consists of all polynomials f such that some power fP is in [. radicel({) is again a
polynomial ideal. For a given sequence G = (gi,...,gn) of polynomials we say that
another sequence of polynomials § = (s;,...,5,) is a syzygy of G iff Y 1., 8:9;: = 0. The
set of all syzygies of a given sequence G form a module over R, the module of syzygies.
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Lernma 1: Let P = (fi,..., fm, f) be an instance of Py,.
(i) Those polynomials s € R, which satisfy part (1) of the instance P of Py, constitute
an ideal Np in R.
(ii) Forevery s € Np thereexist s1,...,3, € R and k € N, such that (s, ... 8, 8FFETT)
is a syzygy of (fi,.. . fm,f)ide sy fodoo dam fr+ b fFHf =0
(i) If (81,...,8m,8% - f*1), k € N, is a syzygy of (fi,.- 1 fim, [}, then s € Np.
(iv) If wetet

S = {1 (3171 6ms5) @ 53539y of (frrerr four ) for some a3, 5m),
then Np = {s € R|s* f¥! € §p for some k > 1}.

Proof: (i) Suppose both s; and s; solve part (1) of P. Now let 3,15 be arbitrary poly-
nomials, and let 2 € X' be such that f;(3) = ... = fm(2) and (181 + tp89)(8) =
t1{Z) - 81(Z) + t2(&) - 52(&) # 0. Then either s,(&) # 0 or 5,(Z) # 0. W.lo.g. assume that
8;:(8) # 0. But then f(Z) = 0, since 3, is a solution of part (1) of P. So also {387 + 2284 is
a solution of part (1) of P.

(ii) Since s € Np, we know that s f vanishes on every common zero of fi,..., fr in K.
That, however, means that s f is in the radical of ideal(f;,..., fm), and a power of s - f,
say 3% f¥, ke N, isin ideal(fy,..., fm). Therefore, for some 81,...,8m, € R,

S fid ot Sm o fm k8™ fE =0,
ie. (s15.00,8m,8% f¥7 ) is a syzvgy of (fi, o0, fmy F)
(i) sy Fid ot sy fm +5* - f*=0,s0forevery z € K~
(@)= ... =fm(8) =0 A s{8) #0 == f(z)=0.
(iv) By combination of (i) and (i), n

1t is well known how the Grébner basis algorithm can be used to compute a finite basis
for the module of syzygies of a finite sequence of polynomials [Buchberger 1985], [Winkler
1986]. So for every instance P of Pu-, one can compute a finite basis for the ideal Sp.
What is left to do is to extract Np from Sp.

Definition: Let f be a polynomial and I a polynomial ideal. Then the radical of I at f
is defined as radical(l, f) = {s | s* f*=7 € I for some k € N}. n

For any polynomial ideal J and polynomial f, radical(], f) is an ideal. Furthermore,
by Lemma 1 we clearly have Np = radical(Sp, f) for any instance P = (fy,..., fm, f) of
Pyry. So extracting Np from Sp really means computing a finite basis for radical{Sp. ).
In order to compute such a finite basis for radical(l, f), we use the fact

[ radical{l, [} = radical(I) M ideal(f).

The well known climination property of Grobner bases {Trinks 1978], [Buchberger 1685]
aliows to compute a finite basis of the intersection of two ideals 1,J as

InJ = ideal((t - NI UtJ)OR.

So we get the following algorithm for computing redical{7, f):
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Algorithm RADICAL {in: polynomiais f1,..., fm, f,
out: B, a finite basis for radical{ideal{f;,..., fm). [));

(1) Let I = ideal(f1,..., fm). Compute a basis C for radical(I) in R;

(2) Compute a Grébner basis C' for ideal{(t — 1)C'U{¢f}) in R[t] with respect to a term
ordering which orders primarily according to the exponent of ¢;

(3) The elements of C’, which do not depend on t, are a basis for radical(l) N ideal( f)
= f -radical(l, f). Call this set of polynomials C";

(4) Set B={g{g=h/f forsome he C"} =

The only problematic step in RADIZAL is (1), the computation of a basis of the
radical of J. An algorithm is given in {Kandri-Rody 1984]. Kandri-Rody’s algorithm
requires the computation of Grobner bases and characteristic sets, and factorization of
polynomials over algebraic extensions of the ground field K, which is generally considered
a complex problem.

Now we have the machinery for constructing a finite basis for Np, the set of all
solutions of part (1) in Pw,, and hence we have a complete overview of the solutions of
{1). The remaining question is, whether there is a solution of (1), which also satisfies (2).

Lemma 2t Let P be an instance of Pw,, B a finite basis for Np.
(i} If there is a polyomial in Np which satisfies (2), then there is a polynomial in the
basis B which satisfies (2).
(ii} If B is a Grobner basis for Np with respect to the term ordering <, B' is the set of
those b € B satisfying part (2) of P, and ¢ = min{lpp(h) | b € B'}, then for every
solution s of P, lpp(s) > ¢.

Proof: (1} Let P = {f1,..., fm,f) and B = {b;,...,b,}. Assume that no basis polyomial
b, 1 <1 < n, satisfies (2), i.e.

(V&€ K'Y (fi(8) = ... = fm{8) = 0 == by(2) = 0) foralll <i<n.
Then also for every linear combination s = Y I, h;b; we have
(¥ € B') (f1(8) = ... = fm(3) = 0 = 5(2) = 0),

so no s € Np satisfles (2).

(it) Let s be a solution of part {1) of P. s € Np, 50 s is reducible to @ w.r.t. B. Let C C B
be the set of elements of A nsed in this reduction. Then [pp(h} < Ipp{a) for every b « (7,
i no b g C satisfles part (2} of P, then neither does s. L

Lemma 2 {ii} states that by choosing the term ordering < appropriately, one can
compute solutions of Py, satisfying certain additional consiraints. A Grébner basis for
Np with respect to a graduated ordering contains a solution of lowest degré&™d¥ P if any
such solution exists. A Grobner basis for Np with respect to a lexicographic ordering
£y < ... < Ty < ... < T, contains a solution depending only on z;,...,T,, H such
a solution exists. The variables x,,...,z,, could be the “independent” variables (see
[Kutzler,Stifter 1986b}) of the geometric construction. So ane can ask the question whether
there is a nondegeneracy condition depending only on the independent variables. The two
orderings can, of course, be combined by ordering the power productsin z,,... 2., by some
ordering <1, e.g. according to the degree, and also the 'power products in zpey,..., 2, by
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some ordering <z. Then a term ordering < can be constructed by

Uy < f3ln i Uy gty V (ug =1y Auy <y t1),

where ui1,?; are power products over =:,...,T, and us,f; power producis over
Cm41y. .« Tn. This ordering will lead to a subsidiary condition of lowest degree involving
only the independent variables @q,...,z,,.

" 7In t®etr report [Chou,Yang 1986] Chou and Yang consider the problem statement™™™
Py, and claim: “The algebraic problem in this formulation is well defined. However, the
polynomial s sometimes has nothing to do with nondegenerate conditions in geometry. To
make things worse, this formulation is unsound from the geometric point of view.” They
go on to stress their point by an exampie. We will deal with this example and the criticism
of Py, in Example 2 below.

Algorithm GEQ (in: polynomials f1,..., fm,f,
out: 3, a solution of the instance P = (f;,..., fm, f) of Pw.,
if such a solution exists,
or “no”);

(1) Let I = ideal(fy,..., fm). Compute a finite basis for Sp, the ideal generated by the
last component of the syzygies of {f1,..., fm,f). Call the algorithm RADICAL to
compute a finite basis B for Np = radical(Sp, f);

(2) Check the polynomials b in B for b & radical(l). This can be done by a Grébner basis
computation |Buchberger 1985). If a basis polynomial b is found which is not in the
radical of I, then set 3 = b and siop. Otherwise output “no”. =

The aigorithm GEO is complete for Py, t.e. if a given instance P of Py, has a
solution, then GEQ finds one.

Example 1: We use the decision algorithm GEQ to prove that

“if P; and P, are two points on a circle and M is the midpoint of Py and P, then
the line through M and perpendicular to Py Py contains the center of the circle”.

So the hypotheses of the given instance P of Py, are Pi(zy,91)

fir 2l +yf —2f -9 -
(P, and P, are points on a circle with center {0.0)) AN~

far a{zy — 1) + b(y2 — 1) U
(<Z) is perpendicular to P, P,) - J)z(g.g y2)

and the conclusion is

Fooalyy 4+ y2) — 6o + 22)
(the line y = Em contains A, the midpoint of P; and Fy)}

First we compuie a basis for the ideal Sp, i.e. the third component of the module
of syzygies of {fy. f2, f). A Grébrer basis for ideal{f:, fo, f) in Qa,b,z;, 20, y1,32] w.r.t
the lexicographic ordering with e < b <z, <2y <y < yp 15

1 1 1 1
{fl: fh fa f3 = aby} - 552372 - —azu‘Sz - "bz:l!] + =

2
2 2 5% =1h
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so the syzygies derived from the reduction of the S-polynomials of these basis elements to
0 constitute a basis for the module of syzygies of {f1, f2, f5, f). For the module of syzygies
of (fi, f2, f) we get [Buchberger 1985] the basis

(_bayZ +y1;$1 - mZ):

(—a,z3 + 21,92 =~ 1),
(0, ayz + ayy — bzy — bz, ~byy 4 by) —~ azy + azl),
(2abyy — b2y — a’zqy — b'2; + 6231,'111% - ayf + azi — az?: —by§ + byf - b:z:% -+ bm?).

So Sp = tdeal(s; — z1,32 —¥1)-

Next we apply the a.lgoﬁthm RADICAL to Sp and f. 8p is radical. For
computing Sp N ideal(f) we determine a Grobner basis for ideal((z — 1)Sp,zf) in

Q{ar b: T1,T2,Y1,Y2, 2'], getting

Tp2 ~T12 ~ Ty + Ty,

Y22~ Y12 — Yo + V1,
ayzz + ayrz — bz z ~ boy 2,
1 1 1 i
ay1z — bayz -+ Ea.yg - ~2vay1 - §bzz + —2—bm1,
azyyy ~ az1yy + ey — exiyy — bzf + bel = (v, —z1) - f,

ays — bzayz — b1y, — ayl + bzay + bayy = (y2 —w1) [

Intersecting this basis with Q{a,b,z),2,,¥;,y2] and dividing by f we get the basis {z, —
z1,y2 — ¥} for radical(Sp, f}. This completes step (1) of GEQ.

Neither z; ~ @, nor yo — y; is in the radical of ideal(f1, f2), so both are solutions of
the geometric problem instance P.

That means the theorem holds if either the z—coordinates or the y—coordinates of the
two points P; and P, differ from one another, i.e. P; and P, do not collapse to a single
point, ]

Example 2: This is the example used in [Chou,Yang 1986] to support the claim that the
polynomial s computed as a solution of Py, may have nothing to do with a subsidiary
condition for the geometric problem.

The goal is to prove that
“every triangles is isosceles”,

which, of course, is not a geomeiric theorem. Chou & Yang observe, however, that there is
a formulation of this problem as an instance of Py, which admits a subsidiary condition
3.

The aigebraic formulation they use is the following: let ABC be a triangle, and BE
the altitude from B. Show that AB = CB. As coordinates for the points they choose
A = (0,0}, B = (y1,0), C = (34,¥5), and E = (y5,73). Now the hypotheses can be
translated inte the algebraic equations
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h1mysy5+(yz-y1)y4 = {} BE L AC
hy = —y2ys + ysys = 0 ' Eison AC
and the conclusion into the equation
9=-¥i-yi+2y, =0 AB = CB.
C
E
A B

Chou & Yang observe that s = y# +y2 — y;y, satisfies both conditions in Py, In fact,
Kapur's theorem prover confirms the “theorem” under the subsidiary condition s. Chou
& Yang now state that “Thus under this formulation we can prove that “every” triangle
is isosceles” and they take this as evidence of their claim that Pw, is “unsound”.

In our oppinion, the controversy stems from the fact that the dependent variables
Y2.: Y3 are not explicitly excluded from the subsidiary condition. If one wants to consider
only such subsidiary conditions, which do not jnvolve the dependent variables (which is
reasonable from a geometric point of view), then this can be achieved by a suitable ordering
of the power products, e.g. a lexicographic ordering based on

<y <ys <y <yz.

indep. var. dep. var,

Now the algorithm GEQis able to detect that there exists no subsidiary condition involving
only the independent variables Y1, ¥4, ¥s. Actually also Kapur [Kapur 1986b] mentions the
possibility of recognizing that there is no such subsidiary condition in a remark following
Theorem 2.

Let us apply the algorithm GEO to the geometric problem in the formulation above,
where Ry, hy are the hypotheses and g is the conclusion. In step (1) we get

{bl = Yal¥s — Ysla.

by = yive + vl ~ iy,
by = yi +y2 — yiy,

ba = ysys + yay2 = 1y b

as & basis for Sp, the ideal generated by the last component of the svevgies of (h) hy. g}
Sp is radical, so we just have to compute the intersection Sp M ideal{g) and divide hy g-
This leads to the basis {by,b2,b3,b4} for Np.

In step (2) we detect that bs ¢ radical(hy, hy ), but there exists no possible subsidiary
condition involving only the independent variables Vi V4, Ys- B
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