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Zusammenfassung

Die Dissertation besteht aus drei Kapiteln.

Im ersten Kapitel wird das Problem der indefiniten Summation rationaler Funktio-
nen behandelt, in Anlehnung an meine Arbeit [Pir95] und an [PSb], die in Zusamme-
narbeit mit Volker Strehl entstanden ist. Im Rahmen einer geeigneten algebraischen
Sperzifikation wird die Struktur der Losungen beschrieben. Mit Hilfe eines kombinato-
rischen Analogons zur Gosper-Petkovsek Darstellung fur rationale Funktionen stellen
wir einen Algorithmus vor, der, unter bestimmten Randbedingungen, eine optimale
Losung liefert. Ferner vergleichen wir diesen optimalen Algorithmus mit den anderen,
in der Literatur bekannten Methoden.

Im zweiten Kapitel werden parallele Implementierungen beschrieben. Im ersten
Abschnitt berichten wir iiber eine Zusammenarbeit mit Kurt Siegl [PSa], die sich
mit der Implementierung zweier im Kapitel 1 angegebenen Algorithmen im paralle-
len Computer-Algebra System ||[MAPLE|| (“parallel Maple”) befafit. Im Vergleich zu
den sequentiellen Implementierungen erreichen wir einen Speedup-Faktor von bis zu
7. Im zweiten Abschnitt wird ein paralleler Algorithmus beschrieben, der lineare Glei-
chungssysteme uber rationale Zahlen mit Hilfe der p-adischen Arithmetik 16st. Die
Implementierung entstand in Zusammenarbeit mit Carla Limongelli [LP96]. Aus sys-
tematisch durchgefuhrten Experimenten hat sich herausgestellt, dal die Implemen-
tierung mit p-adischer Darstellung rationaler Zahlen zu einem Speedup-Faktor fuhrt,
der vergleichbar zu den ublichen modularen Methoden ist.

Das dritte Kapitel ist dem umbralen Kalkul gewidmet und ist aus einer Zusamme-
narbeit mit Giorgio Nicoletti entstanden. Durch eine moglichst weitgehende Reduk-
tion auf lineare Algebra erhalt man eine neue Beschreibung des Kalkiils, durch welche
die einfache, kombinatorische Natur der algebraischen Zusammenhange hervorgehoben
wird. Die durch Reduktion bzw. Abstraktion erzielte Verallgemeinerung schliefit auch
nicht-polynomiale Klassen mit ein.
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Overview

This thesis is divided into three chapters: the first two chapters are closely related to
each other, since they both treat algebraic and algorithmic aspects of the problem of
symbolic summation of rational functions. The third one is independent of the first
two, and is devoted to an algebraic and combinatorial study of the umbral calculus.
Here we give a short summary of the results.

In the first chapter we consider the problem of indefinite summation of rational
functions. This problem mainly consists in inverting the forward difference operator A
over the field of rational functions K(z), i.e., in finding for any a € K(z) a g € K(z)
such that a(z) = AB(z) := f(x + 1) — B(x). In the case where no such rational j
exists, one is interested in a “minimal correction” v € K(z) of a, for which there is a
G with a — v = Ap.

We propose an algebraic framework for the problem and, since the solutions (53, %)
are not unique, we are particularly interested in describing the structure of all possible
solutions in dependence of the input «a. In this context the structure of the rational
functions can be combinatorially modeled by sequences of integers; which makes the
description more intuitive.

We propose an algorithm that computes a solution (3, v), where also the denomi-
nator polynomial of 3 is optimal, in a sense that will be explained in Chapter 1. This
method is based on a combinatorial analog of the Gosper-Petkovsek representation of
rational functions for sequences. This part of the chapter reports on joint work with
Volker Strehl [PSb].

In addition, we describe other known algorithms (of Abramov, Moenck and Paule,
resp.) for computing a solution of the rational summation problem and their imple-
mentation in the computer algebra system Maple, as reported in [Pir95]. We compare
the algorithms to our optimal one.

Finally, we give some examples of combinatorial identities due to Ramanujan which
can be proven by rational summation methods.

In Chapter 2 we describe parallel implementations of symbolic computation algo-
rithms. The first part is devoted to the parallel implementation of Abramov’s and
Paule’s algorithm from Chapter 1, respectively. They are implemented in the parallel
computer algebra system ||MAPLE|| (speak: “parallel Maple”) on a workstation cluster
and are also described in the joint work with Kurt Siegl [PSa].

The second part reports on joint work with Carla Limongelli [LP96]. We describe
a parallel implementation of a solver for systems of linear equations over the rational
numbers. The parallelization is based on the truncated p-adic representation of ra-
tional numbers. Our comparisons and experiments show that p-adic representation is
a suitable tool for parallelizing the algorithm for rational numbers, compared to usual
modular techniques.

The third chapter is devoted to umbral calculus and is based on joint work with



Giorgio Nicoletti.

Umbral calculus originally denoted some manipulation techniques for sequences
and goes back to mathematicians as, for instance, Sylvester and Lucas. In short, they
considered a sequence (a;);ey of numbers as a sequence of powers (a');cy. After doing
the computations on the polynomials in the symbol a, they interpreted the exponents
as indices again, carrying on the result to the sequence situation. One used to call a
the umbra associated to the sequence.

Consider, for instance, the Bernoulli numbers (B;);en, which satisfy the recurrence

n—1
Z(’?)Bi:o (n>1) and By=1.
Z |

=0

Following Lucas in Chapter XIII of [Luc91], we write B® for B; and the recurrence
becomes the more concise form (B + 1)” — B® = 0. Similarly, to the Bernoulli poly-
nomials By (z) = Z?:o (?) B,_;x® we can associate the umbral expression (B + x)".
See, among others, the survey on elementary and mnemonic uses of umbral calculus
by Guinand [Gui79].

One of the most interesting aspects of umbral calculus is that it can be applied to
many sequences of polynomials, which are fundamental or useful in several branches of
mathematics, like, among others, finite differences calculus, probability theory, combi-
natorics and invariant theory.

Although such symbolic methods apparently worked, there was no solid theoretical
Jjustification of this fact. Several authors tried to give a formally correct, axiomatic
treatment of the subject, but in our eyes the first successful attempt in this direction
has been done by Rota [RKO73, RR78], where he makes use of the unifying concepts
from linear algebra. In principle, one considers a sequence (a;)ien as the evaluation
of a linear operator I on the basis (2');en of the vector space K[z], or on another
suitable basis. This way (a;);en can be seen as the coordinates of I with respect to
a pseudobasis of the dual (K[z])* = K[[z]], equipped with an appropriate topology.
In this model the so-called sequences of polynomials of binomial type and the shift-
invariant operators play a particular role. For a fundamental treatment of this subject
we refer to [RKO73], while a neat introduction is given in [CNP85].

So, umbral calculus reduces to the study of particular bases of the space K[z],
invariant under certain operators.

As Rota himself suggested, this structure can be made more clear using the concept
of coalgebra. Several authors have already followed this path.

In this thesis we present a description with less requirements to the structure of the
underlying set, which does not need to be a polynomial ring. We consider a general
vector space V of countably infinite dimension over a field of arbitrary characteristic,
and certain endomorphisms. In principle, this is already enough to develop the whole
structure, and there are examples of spaces which fit into this scheme, and are not
isomorphic to the polynomial one, especially for nonzero characteristic.
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Our aim is to show the simplicity of the underlying algebraic structure and to derive
several well-known umbral facts in a more natural, but also more abstract way. In ad-
dition, this framework helps to clearify the connection between sequences from umbral
calculus and recursive matrices [BBN82]. Such matrices are particularly important
because they describe inverse relations over arbitrary sequences.






1

Summation of Rational Functions

1.1 Problem description

Let K be a field of characteristic 0. As usual, K(z) denotes the field of rational functions
over K. Elements o = a(z) € K(z) are written as quotients @ = f/g, where f and
g # 0 are polynomials in 2 over K. This representation is called reduced if ged(f,g) = 1
and if g is monic. Usually, but not always, we will assume that elements of K(z) are
represented in this way. A proper rational function is an element o = f/g € K(z) such
that deg f < deg g, where the constant polynomial 0 has degree —1. The constant 0 is
the only proper rational function which is constant. The proper rational functions form
a K-sub-algebra of K(z), denoted by R. By polynomial division, K(z) = K[z] ® R.

The shift operator F and the (forward) difference operator A on K(z) are defined
as usual:

E Kz =K : a)-afz+l)
A=E-I K@) oKz :a@)-=a+l)—a)

Note that F is a [K-algebra isomorphism, A is K-linear and has the constant functions
as its kernel. If restricted to the sub-algebra R, F is still a K-algebra isomorphism,
and A then is injective, since 0 is the only element in its kernel. Indefinite summation

of rational function essentially asks for inverting the linear operator A. Inverting A on
Bum+1(z)

T where

polynomials is trivial, since, for instance, it is known that A='2™ =
By, (%) is the sequence of Bernoulli polynomials.

So we can restrict our attention to the algebra R. This also has the advantage that
A~'a is uniquely determined - if it exists! As is well known, the latter is not always
the case: A is not surjective on R. E.g., for any j > 0, there is no g € K(x) such that
ApB = 1/x7. More generally: if f/¢° € R is a rational function in reduced form, with
g irreducible, then it does not belong to AR. In view of this phenomenon one has to

make a choice between the following alternatives:

o Asking for a decision procedure for the existence of A~'a € R, and giving an
algorithm to construct such an element in the case of a positive answer. First
approaches and algorithmsin this direction were presented by Abramov in [Abr71]
and by Gosper in [Gos78].

e Enlarging the domain of functions under consideration (e.g. by adding polygamma
functions), so that at least every a € R has an inverse with respect to A. The

5



approach presented by Moenck in [Moe77], for instance, goes in this direction. A
general method in analogy to Risch’s integration method is described by Karr in

[Kar81, Kar85].

e Considering a “refined” rational summation problem: given a € R, construct
B € R which is as “close” as possible to what we expect A~'a to be, this means,
making vy = a — Af € R as “small” as possible. In particular this requires: for
a € AR one should get the true inverse, i.e.; ¥ = 0, and in general, if the same
procedure is applied to the difference «, this should not lead to any improvement.
This problem has apparently been first stated by Abramov in [Abr75].

Here we will concentrate on the last alternative. As a reasonable measure of “small-
ness” we will take the degree of the denominator polynomial in the reduced presentation
of ~.

Definition 1.1 For a = f/g € R in reduced form, we define
|| e ||:=degyg
and in particular || 0 ||= 0.

Note that || . || induces a metric on R.
The rational summation problem can the be stated as follows.

Rational Summation Problem. Given a € R, determine 8 and 4 in R such that
a = Apg+7, where || v || is minimal.

Thus one asks for an element of AR which is closest to a with respect to the || . ||-
metric. Naturally, we will say that « is summable if « € AR, i.e., if there exists a pair
(8,7) with ¥ = 0. In this case we say that the indefinite sum over a has a rational
closed form, since we can express any finite sum as

Y alk)=pb+1) - Bla)

i.e., as a rational function in the boundaries a and b, when no pole of a falls into [a, b].

In the following sections we introduce a suitable algebraic framework for the problem
and develop an approach to the solution of the problem.

Our aimis to study first the structure of the denominator polynomials of all possible
solutions (3, 7), in order to make clear how different solutions are related to each other
(see Section 1.4).

Then these observations lead us in Subsection 1.4.5 to an “Ansatz” for the denom-
inator polynomials. Substituting these candidates into the equation @ = Ag + v, in



analogy to Hermite-Ostrogradski’s strategy for rational integration the numerators of
8 and v can be determined by coefficient comparison.

In addition, the Ansatz we compute i1s optimal, in a sense that will be specified in
Subsection 1.4.4.

In Subsection 1.5.1 we give a combinatorial analog of the Gosper-Petkovsek repre-
sentation of rational functions. We will show from this combinatorial representation
that such an optimal Ansatz can be computed from the Gosper-Petkovsek represen-
tation of Fa/a. A more algebraic motivation of this fact will be given in Subsection
1.5.3, by means of the concept of Greatest Factorial Factorization, introduced by Paule
in [Pau93, Pau9s).

Section 1.6 is devoted to the description of several algorithms known in literature
for the rational summation problem. We compare them with our approach, particularly
with respect to the optimality of the solutions computed.

To conclude, in Section 1.8 we present some applications of identities involving
rational functions, which can be proven by means of rational summation.

The content of this chapter is partly due to a joint work with Volker Strehl, see
[PSb].

1.2 Localization

For any monic irreducible polynomial g € K[z] let R, denote the sub-algebra of rational
functions f/g' € R, where i > 0. By partial fraction representation

R=PR,
g

where @g runs over all monic irreducible polynomials. Clearly

ifoz:Zozg , where ay € Ry, then || a||:Z||ozg [
g g

When dealing with the shift operator F and the difference operator A, one has
to consider E-orbits, i.e., shift-invariant subspaces of R. For any monic irreducible
polynomial ¢ € R we put

Rig) = DR
i€
Here [g] denotes the class of monic irreducible polynomials shift-equivalent to g, i.e., the
polynomials Eig(z) = g(z + i) for i € Z. Note that if the polynomial g is irreducible
over K, then sois E'g for any i € Z. In the following the notation @[g] and Z[g] will be
used to indicate direct sums or elements of direct sums over a system of representatives
for the shift-equivalence classes (or, for shortness, shift-classes) of monic irreducible



polynomials. Thus

R = @R[g]

lg]

a=) o and ag =) apg

9] i€Z

with

It is clear that any equation
a=AF+7 (x,B8,7€R)

localizes to
afg] = Abg + gl

for any monic irreducible polynomial g. And since
lall=>" llag |
lg]

we can state

Proposition 1.1 If (8,v) € R? is a solution for the rational summation problem for
a € R, then for each monic irreducible polynomial g the pair (Bg), V) € 'R,[Qg] s a
solution of the rational summation problem for ay), and conversely.

This shows that for solving the problem and for answering the uniqueness question
it suffices to study the “local” situation in the components R,. And in particular:

Corollary 1.1 a € R is summable if and only if apg € Ry is summable for each
(shift-equivalence class of ) monic irreducible polynomial(s) g.

1.3 The spectrum and basic operators on sequences

Before considering the structure of the 8 and « part of the localized summation prob-
lem, let us introduce a bit of notation.

Definition 1.2 Given q € K[z] and a monic irreducible polynomial g, we define the
spectrum of q with respect to g as the doubly infinite sequence

(¢,9) = (ai)iez , where E'g" || ¢

i.e., a; is the marimal integer, such that E'g% | q. For a = p/q € R in reduced form
we define the spectrum of o with respect to g by (a,g) :=(q,9).




Note that {«, g) = (a;);ez means

Og] = ZaEig = ZEZ S

a;
i€7 1€Z g

with respect to the canonical decompositiop of apg, where the f;/g% are in reduced
form. Denote by g* the polynomial [[;., E'g” for any sequence a with only nonneg-
ative, only finitely many nonzero components.

The sequences (a,g) are non-negative integer sequences with finite support, but
for reasons that become evident later on, we have to consider more general classes of
sequences as well.

The spectrum of a polynomial (or of a rational function, resp.) can be graphically
represented in the following way. For a spectrum (g,9) = (ai)iez, as for any non-
negative integer sequence (a;)iez, we just draw a sequence of stacks with a; boxes at
the i-th position. We use this pictorial representation in order to make the concepts
and proofs more understandable.

For example, consider the polynomial ¢ = (z — 2)z(z + 1)3(z + 3)%*(z + 4). Then,
the spectrum (g, ) is represented in Fig. 1.1. In the picture, the stack at position 3
has two boxes, as (z + 3)? || ¢.

[ |

Figure 1.1: Spectrum {((z — 2)z(x + ])%(1‘ + 3)2(1‘ +4),x)
In the following we will consider doubly infinite sequences a = (a;);cz and we need
the following operators acting on them.

Definition 1.3 Naturally, the arithmetic operations “+” and “~” are defined coordinate-

wise. Analogously for the infimum “A” and the partial order relation “<” we have:

A ((ai)iez, (bi)iez) »anb = (min{a;, b;})iez
a<b < VieZ : a <

We define a shift and a delta operator on sequences:

€:(ai)iez —eca = (ai-1)ien
d:(as)iez—da = (a;—ai—1)iez =(1—¢)a
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The inverse of the § operator is the summation operator o given by

o (ai)iez — oa:= (ngi aj)iEZ
Note that o a is only defined for sequences a where ngz' a; is finite for alli € Z. In
particular, this holds if a has finite support.

Two further operators, which are also only defined on appropriate subspaces, are
the left-to-right ( right-to-left, respectively) mazimum operators.

- —
po(ai)iez = pa = |maxa;
isi i€T
. ~
po:(ai)ien > pa = | maxa,
izi ien
Let us consider an example for the sequence with finite support a := (a;)iez =

(...,0,0,1,0,1,2,0,...). In Figure 1.2 and 1.3 we show the corresponding action on a
of the operators defined above.

[ 1] [ 1]

o [

a ca ga

Figure 1.2: Examples for the operators ¢ and o on sequences.

— —
pa pa

Figure 1.3: Examples for the left-to-right and right-to-left operators on sequences.
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1.4 The structure of the local solutions

Following Proposition 1.1, we first concentrate on the the local solution of the rational
summation problem with respect to a given monic irreducible polynomial g.
Any arbitrary element a € Ry can be written as

_ i fi
a_ZEgal

1€Z

where the sum actually is finite. The strategy will be to introduce local transformations
in order to reduce any pair of non-zero summands above to the form

) K3 ] P Je
SE Y
where || B L + 1L ||> || B7 L .

Applying such transformations stepwise, and summing up the partial § parts, we
eventually get a decomposition of the form a = A 3 + v with v = E7(f/g°) for some
J, and we will show that v is minimal with respect to the metric || - ||. So, (8,7) is a
solution of the rational summation problem.

In addition, since the solutions are not unique (we can get one for each i), the
structure of the g part is studied with respect to the corresponding v part.

1.4.1 Local transformations
We start with a simple observation:

For each d € 7 the operator Ay = E? — I is divisible by A = A:

2 d—1 3
Ayj=Fl_ = A-([+_1~2+E_j---+1~7 d) de>0
—A(ET'+ET?+ 4+ EY) ifd<O0

which means that A, f
A= :A(—d—> € AR
(,7) A g [9]

for each f/g® € Riy. Thus the sum of any two terms E'(f1/g?) and Ei(fy/g") with
i # j, appearing in the canonical decomposition of some o € R[4], may be transformed
according to either of the two identities (assuming d = j — i > 0):

(Tr—1) Eif—i-l— Ejf—z = FE (f—i+ f—i) +AET 44 [)Elf—z
g g 9* g g
(Tr.-r) Eif—l—i—Ejf% = EJ'<ﬁ+f;§>_A(E—d+...+E—1)Ejf_1
9° 9 9 g g°
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In Figure 1.4 we show, as an example, the spectrum of the rational functions in-
volved in transformation (77, r).

From the point of view of the spectrum of the v part, transformation (7Tr-1)
reduces two stacks to the leftmost one, while (771, r) pushes the leftmost onto the
rightmost. Notice that up to a shift £/=% (or £i~7) the first terms on the right are the
same, namely a shift of

S + 2 = ic where ¢ < max{a, b}. (1.1)

9" 9" g
If these rational functions are written in reduced form, then ¢ = max{a,b} if a # b.
Note that for ¢ as in (1.1) we have that the transformations reduces the metric || - ||
on the v part, since

h

; f fi  f
| Er 4 BV 22 ||= (a+b) -deg g > c-degg =|| v + = |
g g g g

On the other hand, by Lemma 1.1 below, the denominators of the second terms on
the right sides are precisely given by (Ei+d=1gb) ... Figh or (Bi=dga)... Ei=1g% This
observation will be relevant in the study of the g part of a solution in Subsection 1.4.3.

Ji f2
E—1g2 E3g3

Figure 1.4: Local transformation (71, r) for

1.4.2 The structure of the vy part

We first need two technical lemmas, making precise what we said in Section 1.1 about
rational functions of the form f/g*.

Lemma 1.1 Let a € Ry, be given by

I4+m

o= Z EZL
i=l

g%
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where all fractions are in reduced form. Then the reduced denominator of « is precisely
(Elgal)(El+1gal+1) . (El+mga1+m)

Proof. Straightforward consequence of the fact that all Eig% are pairwise relatively
prime. N

Lemma 1.2 Let a € R be of the form a = f/g? for a monic irreducible g. Then «
does not belong to AR.

Proof. Assume that there i1s § € R such that a = AB. If we look at the canonical
decomposition of 3 with respect to g

§= ZE”’

ZZU

with f;, and f;, nonzero, then we have

ip+1

A[)) ZEZ i

i=ig

where f{ = —fi, # 0 and f], ; = fi, # 0. By Lemma 1.1, this gives a contradiction
to the assumption that the denominator of AZ has the form E7¢7. 1

Consider now an arbitrary element a € Ry, say

()z:Z:Eli

a;
€D g

with all fractions in reduced form.

Let us start with (fg,v) = (0,«). Then we apply one of the transformations
(Tt»r) and (Tp1) to a pair of summands, say to those corresponding to the first
indices i and j such that i < j and f; # 0 # f;. We may apply any of (T, r) and
(Tr- 1), for instance (71, r), and this gives us a decomposition

a:A(E—(j—i)+...+E—l)Ej__ﬂ+Ei1<fz ) Z Fl fl

a;
g 9° 15541

51 7

Applying iteratively one of the transformations to the new 4 part and summing up the
B parts one eventually produces a pair (3,7v) such that « = A@ 4+, where 3,7 € Ry,
and where in particular v is a shift of

Z = = with a <max{a; ; | € Z}
lEZ
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Note that computing such (3,4) needs the application of at most & — 1 local trans-
formations, if k£ is the number of nonzero summands in the canonical decomposition
of a. The pair (8,7) is a solution of the local summation problem, as the following
consideration shows.

If 4 vanishes, then « is summable.

If v does not vanish, then consider any two decompositions

where a, (1) () ¢ Rig, (i =1,2) and where the ~) cannot be reduced any further
by local transformations. Recall that solutions of the rational summation problem are
of that kind. Assume that

7(1):Eif—i , 7<2>:Ejf_z
g g

for some i, j, f1, f2,a,b. Hence

A(BD) — )y = 4 _ 40 = Eif;i N Ef_1
) )
If i = j, then the r.h.s is of the form E' (fa/g" — f1/9°) = E'(f/g¢°), which — by
Lemma 1.2 — is possible only if the r.h.s. vanishes, i.e.,if a = b and f; = f5.
If i # j, then one local transformation step leads to a similar situation, and by the
same argument one concludes that @ = b and f; = f5.

We point out explicitly that, at each step, one may apply any of the two transforma-
tions (Tp k) and (Tg— ). Different choices will produce, however, different solutions,
i.e., the denominator polynomial of the 4 part will have the form E7¢? for different j’s,
while the exponent a is independent of the shift m.

In order to make things clear, let us assume that we have a solution (8,7) with
v = f/g®. Then for any j > 0 in Z we have, by (Tr—r), that

—A(E™7 +...+E—1)Eﬂ'i (1.2)
9° g gt '

This means that another solution of the problem would be

a=A <5_ (B4 ..+ E‘l)Ejia> + Eiia
g
and analogously for j < 0 applying (Tr—1.).
In Figure 1.5 we give a pictorial example for such a transformation.
This corresponds to choosing a different representative E'g in the shift class [g]. As
a consequence:
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I [

Figure 1.5: Transformation of the gamma part of a solution

Proposition 1.2 Let a € Ry, then either a € ARy (i.e., a is summable), or else
there exist unique 3 € Ry, f and a such that

Oz:A[))-I-La

where v = f/g® is reduced. Furthermore, a is bound by the highest exponent arising in
the spectrum (a, g).

The uniqueness of the 8 part follows from the injectivity of A on R.
In the following section the structure of the 8 part in dependence of the chosen
representative will become clear.

1.4.3 The structure of the g part

Again, consider a monic irreducible g and an arbitrary a € R, such that

a:ZaEig:ZEi'%

1€Z i€

where all fractions are in reduced form. Applying local transformations in a similar
way as in (1.2) one can bring each E®f;/g% into the form AS; + f; /g% . More precisely,
one may apply (Tr»r) if i <0 and (Tr—1) if i > 0.

Then the rational part § of the solution (7, ) consists of the sum of all 3;. In terms
of spectrum, each §; has the shape of a block, as depicted in Figure 1.4, from the i-th
position to the first, if i < 0, or from the origin to the (i —1)-th, if ¢ > 0. Since the sum
behaves on the spectrum like the coordinate-wise maximum (up to cancelation due to
the numerators), the structure of the denominator of 3 is easy to describe.

More formally, we have:

0 - i fi | Jo i
= Y By -|-ZEJgaJ_

a; aqg
ico Y g §i>0
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- Z(ngz,_AZES a'l) ga0+Z(fJ +AZFt )
<0 >0 t=0

where

g = —zEszfz P (13)

s<0 iSs t>0 J>t

(1.4)

ZEAA

If we write a = (a;)iez = {a,g) and b = (b;)iez = {3, 9) then it follows that the
s-th exponent b, is bound by (;_Ia)s if s < 0 and by (e_lﬁa)s if s > 0. To determine
where equality holds, consider the s-th component of 3, i.e.,

E.S

z<s

where we assume s < 0, since the case s > 0 is completely analogous.

Then cancelation, this means b; < (;_Ia)s, may happen only if the maximal exponent
(za) arises more than once in the sum.

In partlcular this can not happen if there is a jump in the spectrum at position s,
ie., as = (ua) and (5/1&) 0, and in such cases we have b, = (ua)

Summarizing, we have

for s < 0 in general

=lx=l
B
\-/l'a

Y

b s for s < 0 with |[{¢; i <s,a; = (ﬁa)s}| = 1 in particular
k]

A 1 IA

—~ e~~~
=)
|
—_

a), for s > 0 in general
a), for s >0 such that |{i; i >s,a; = (e

|
=1

-1 /_fa)s}| = 1 in particular

™

This reasoning can be extended without effort to the case where we take a different
representative FJg of the class [g]. The spectrum of the denominator polynomials of 3
and v for different representatives FE7g is described in the following:

Proposition 1.3 Given a as above and j € 7. Then in general there is a solution
(8,7) of the rational summation problem with

vy =
zEZ
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and the denominator polynomial of § is a divisor of g® = HiEZ E'g?i, where

a :{(/_ja)e fors <
’ (e_lﬁa)s fors > j
Furthermore we have
pahclpa<a
with equality holding if and only if
min{ a, = max(a, g) } < j < max{ a, = max(,g) } (+)

Since ;_I aA e_lﬁ a does not depend on j, it can be seen as a lower bound for the
spectrum of 3, up to cancelations due to the numerator of a. So, a “natural” Ansatz
for the denominator of 3 is thus the polynomial

gza/\e_“ﬁa

We will show that this candidate is “optimal” in the sense that no smaller guess can
be done without considering the possible cancelations due to the numerator. In other
words, one can always find a different numerator polynomial such that no cancelation

— -
occurs and gH ane™' la ig indeed the true denominator of g.

The structure of the spectrum of § for a specified v part is made clear by an
example in Figure 1.6. There we describe the result for two choices of the representative
polynomial in the shift equivalence class [¢], denoted by an arrow in the picture on the
left part. Assume that we want a 5 with a denominator polynomial of the form EJg°.
Then we fill up with “multiplicity boxes” the gaps on the left side of the j-th position
in order to get the left-to-right maximum. Analogously, on the right side boxes are
added in order to fill up to the right-to-left maximum. Then the j-th stack, which gives
the contribution to the denominator polynomial of v, is deleted and the right part of
the structure is shifted by one to the left.

The spectrum of 3 is then shown in the out-most right part of Figure 1.6.

1.4.4 Optimality

We now show that the “Ansatz” suggested above for the denominator polynomial of 3
is optimal in the following sense:

Proposition 1.4 Given a = p/q € R, the Ansatz for the denominator polynomial of
8 in a solution of the rational summation problem given by

[t A iilasg) (1.5)
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T (a,9) (8,9)
Figure 1.6: Examples of the structure of (3, g) by varying

is optimal in the sense that it is the smallest possible candidate without taking into
account the numerator polynomial of a. In other words, it s the smallest “Ansatz”
which s suitable for all rational functions in R with denominator polynomial q.

Proof. Since we know from Proposition 1.3 that the polynomial in (1.5) is a lower
bound for the denominator polynomial of any 3 part of a solution, we only need to
prove that it is a sharp bound. This means, it is sufficient to prove that there exists a
polynomial p such that the 8 part of a solution of the summation problem for & = p/q
has precisely the denominator proposed above (and not a proper divisor of it).
By localization, we may restrict our attention to a single shift-equivalence class [g].
Let us construct such an & € Ry, & # 0, written as

- i
QZZEZgT,
i€

where the sequence a = (&, g) satisfies property () above for j = 0, i.e., a proper choice
of the representative g € [g] has been made. Consider a as fixed, and the sequence
(fi);jez vet to be determined.

Let now b = ﬂa A e_lpa (we assume b # 0, otherwise the summation problem

for @ would have the trivial solution § = 0,y = «).
From property (%) we know

bs:{(ﬁa)<i if s <0
(elpa), ifs>0

Consider now the sequence of polynomials

e ifi=k
TTl1=gUPk ifk<i<O
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where k = ming { a; #0 } = ming { b, #0 }.

It is easy to check that these polynomials satisfy the system of equations

S figt=1 (F<s<0)

k<i<s

Similarly, the family of polynomials

fi= 1 if j =1
TT 1=g70bs ifo< <
where [ = max; { a; # 0 } = max; { by # 0 } + 1, satisfies the system of equations

Sofigu=1 0 (0<t<l)

t<j<i

We put f; = 0if i < k or ¢ > [. Note that for all i € Z f; is prime to g% and
deg f; < deg g, so that

. ;i o Ji
G=-) BT+ ) B L ER
ico 9 >0 9
and is written in reduced form. Comparison with (1.3) shows that the g-part of @ =

Ap + v satisfies
s 1
p= Z E
k<s<t I

and thus (8, g) = b. In other words: gP is the true denominator of 3.
|

1.4.5 Concluding remarks

Summarizing, the rational summation problem for « has a solution (8, v) such that for
each shift-equivalence class [g] with af) # 0 we have, by proposition 1.3:

- 1
- The denominator of f,; divides gu<a,g> Aemt e, g)

- The denominator of 5[, divides gmax<a, 9)
provided appropriate representatives g € [g] have been chosen (i.e., representatives
satisfying (*) for j = 0).

With this information an algorithm for computing (3,7) may thus proceed as fol-
lows, following the Hermite-Ostrogradski strategy:
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- Given a € R, compute polynomials u, v:

— &
u = [ oM@ ne o, g)
g

v = Hgmax(a,g)
g

where the products run over an appropriately chosen system of representatives
for the shift-equivalence classes of monic irreducible polynomials (respecting (%)

for j = 0).

- Put 8 = a/u, vy = b/v, where a,b are polynomials with dega < degu, degh <
deg v with indeterminate coefficients.

- Determine the solution numerators a and b by solving

Fa a b
CEuty

Note that the solution (a/u,b/v) will not necessarily be reduced, but in general
this “Ansatz” is the optimum one can do (in keeping u and v as “small” as possible)
without taking properties of the numerator of a into account.

In Subsection 1.6.4 we present an algorithm, which computes a solution (4, %) fol-
lowing this method. The computation of the polynomials u and v is based on the
Gosper-Petkovsek representation of rational functions, as V. Strehl suggested. This
relationship is described in the next section.

We finally remark that our results about the denominator polynomial v can be
rephrased using the notion of dispersion, as introduced by Abramov in [Abr75]:

Definition 1.4 The dispersion dis(g) of a polynomial q is defined by
dis(g) = max{h € 7; deg(ged(g, E" 1)) > 0}

Clearly: v (as above) and all the variants, obtained by shifting the contributions
from the shift-equivalence classes freely (see Section 1.4.2) are polynomials with dis-
persion zero.

As a consequence, as has been remarked earlier in [Abr75], solutions of the rational
summation problem can be characterized as follows:

Proposition 1.5 Let a € R, then (3,7) € R? is a solution of the rational summation
problem for a if and only if

a=AfB+~ and dis(denom(y)) =0

The existence of a solution (7,7) follows from Section 1.4.2, where it was also shown
how two distinct solutions are related. The latter question has first been answered by
Paule in [Pau95].
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1.5 The Gosper-Petkovsek representation of rational functions

The following representation of rational functions is at the basis of Gosper’s classical
decision method for indefinite hypergeometric summation:

Proposition 1.6 For any rational function o € K(z) there are polynomials p,q,r €
K[z] such that

E .
a==L. L ged(q, E'r) =1 for alli> 1
p FEr

Petkovsek showed in [Pet92] that a presentation of a € K(z) as

a=c- % : % with ged(g, Eir) =1 foralli>1 , ged(p,r)=1=gcd(p,q)
with monic polynomials p, ¢, r € K[z] and ¢ € k is unique. In the following we will refer
to this as the Gosper-Petkovsek (in short, GP) representation of rational functions.

Note that the usual algorithms for computing p, ¢, (and c¢), as outlined in [Gos7§]
and [Pet92], are based on resultant- and gcd-computations, together with a search for
integer zeros of polynomials. In the following, we will look at this representation from
two different point of views. The first one, which goes back to V. Strehl, is related to the
decomposition of rational functions according to shift-equivalence classes of irreducible
polynomials. This is not meant as an algorithmic approach, but it gives a combinatorial
view of this classical result which turns out to be useful for the rational summation
problem. The second one motivates the use of the Gosper-Petkoviek representation
for the rational summation problem using the concept of GFF (Greatest Factorial
Factorization), introduced by Paule in [Pau95].

1.5.1 Combinatorial Gosper-Petkoviek representation

Note first that the Gosper-Petkovéek representation localizes perfectly (because it is a
purely multiplicative statement). We may split « into a product alo] . alor]l ) where
the g; are irreducible polynomials belonging to distinct shift-equivalence classes, and
where each factor al9:] accounts for the contribution of factors from the class of g; to
a. If we have a (unique) local representation

Glol _ B 4
pi Emr

with the appropriate ged-conditions satisfied, then the (unique) Gosper-Petkovsek-
triple (p, q,r) for a results from multiplication™:

P=pP1Pe ,» 9=q1""qk , T =T1"""Tk

*The role of the scalar factor ¢ in Petkovéek’s assertion is irrelevant for our purpose.
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If we look now at the local situation for any irreducible polynomial g, then ald9l may
be represented by a doubly infinite sequence of integers

(ai)iEZ = <fs g> - <hag> for a = f/h

where “—” is the component-wise difference of sequences.

Let us say that an integer sequence (a;);ez is a rational sequence if there are only
finitely many nonzero terms. If all terms are nonnegative, and again only finitely many
different from 0, then it is a polynomial sequence. Adopting this terminology, the
Gosper-Petkovsek representation boils down to the following combinatorial assertion,
where § and ¢ are operators on sequences as before and 0 is the all-zero sequence.

This combinatorial equivalent of the Gosper-Petkovsek representation is illustrated
by an example below.

Proposition 1.7 (Combinatorial Gosper-Petkovsek representation) Let a be any ra-
tional sequence. Then there are unique polynomial sequences p, q, and r such that
a=-dp+q—e¢r
where .
PAqQq=0,pAr=0, qAdr =0 forall j > 1
In addition, if f = o a then p,q and v are determined by
- . o
q=d0uf, ex=—dpuf, p=(ufApf)—f
Proof. We define f:= o a and
q=086puf, er:=—dpuf
Wgthen have q > 0, since ;_I f is non-decreasing, and q is a polynomial sequence, since
(0 p£); > 0 implies (0 f); = a; > 0.
Similarly, r > 0, since Zf in non-increasing, and r is a polynomial sequence since
(8 1 £); < 0 implies (§£); = a; < 0.
Now obviously
(87i€); > 0and (§ uf); <0 impliesi < j
so that q A ¢/ r = 0 holds for all j > 1.
Consider now

pi=pf+puf—f—me=(p—id)fA(p—id)f=(ufApuf)—f

where myg denotes the sequence which has value my := max;ez fi everywhere (note that
this value is well-defined since § f = a is a rational sequence). Again, it is easy to check

that p is a polynomial sequence, and we have in addition
5p:§ﬁf+5ﬁf—§f:q—er—a

as desired.
We now have to show that p Aq =0 and p Ar = 0 hold. Note that
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-if g = (Jﬁf)i # 0, then necessarily f; = (/_1> f); and thus p; = (; f); —mg <0,
which means p; = 0, since p is a polynomial sequence.

- ifr; = —(JZf)jH # 0, then necessarily f; = (‘ﬁ f); and thus p; = (,1_1> f); —mg <
0, which means p; = 0, since p is a polynomial sequence.

So far the existence part of the proposition has been established. For the uniqueness
part, let p, q, r be any polynomial sequences such that the assertion of the lemma holds.
We will show that these are identical with the corresponding sequences defined above.

Let 19 € 7Z be an index such that both

(0 q)iy =moq and (cer);, =0

hold. Note that the condition: “q A e/r = 0 for all j > 1”7 guarantees the existence of
such an index. We then have

(cer);=0 foralli<iy , (0q); =msq forall j > ig
For i < iy we now have
fi=(ca)i=—pi+(0cq)
hence f; < (¢ q);, and the “orthogonality” of p and q implies that f; = (¢ q); whenever

q; # 0 holds. Both facts together imply
(/_,Z f); = (cq); foralli<ig
Similarly, for j > iy we have
fi=(oa)j =—pj +moq—(cer);

hence f; < m,q — (cer);, and here the “orthogonality” of p and r implies f; =
My q — (0 er); whenever r; £ 0. Here these two facts imply

(ﬁf)J =myq— (cer); forall j >

We conclude, in particular, that f;, = mg g, hence mg = mg q, and consequently
/_ff: oq and ﬁf: ms—oer

which implies

q:5/_ff and er:—&jﬂf
Finally
Sp=—6f+q—cr=206(—f+puf+ puf
and

p=—f+ uf+ uf—myg
follows. N
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An Example

As an example, we determine the Gosper-Petkovsek representation of the rational func-
tion a given by
(2 —=3)(x—2)%(z + 2)(x +5)?
(o — (e + )Pz +3)?

The rational sequence a associated to «a with respect to the irreducible polynomial
g=uwlis

a=((z-3)(z -2z +2)(z +5)% ) — ((z - 4)(z + 1)’z + 3), z)

According to the proposition, we compute the following sequences, where the posi-
tion of the index 0 is indicated by underlining.

a = ... 0 -1 1 2 00 -3 1 -2 0 2 0
f=ca = 0 -1 0 2 2 2 -1 0 -2 -2 0 0
uf 0 00 2 2 2 2 2 2 2 2 2
q=0uf = 0 0 0 2 00 00 0 00 0
uf = 2 222 22 00 0 000
er=—5uf = 0 0 00 00 20 0 000
(i —id)f = 0 1 00 00 3 2 4 4 2 2
(h —id)f = 2 32000 10 2 2 00
p = ... 0 10000 10 2 200

From this it follows that the Gosper-Petkovsek representation of « is given by
p=(r—4)(z+1)(z+ 3)2(1' + 4)2, q=(z— 2)2, r=xz’
One easily verifies that

Ep g _(e=3)(r+2)(z+4)°*(«+5)" (#-2)" _
p Er (z—4)(z+1)(z+3)%(z+4)? (¢+1)?

[0

and that ged(q, E'r) = 1 for all i > 1 and ged(p,r) = 1 = ged(p, q).

1.5.2 Relevance for Rational Summation

The proof of the proposition shows that the Gosper-Petkovsek representation of rational
functions provides an algorithmic way to compute the polynomials u and v from Section
1.4.5.

Let s/t € R be in reduced form and g any irreducible polynomial. We apply
Proposition 1.7 to the rational function apg = #[/ Ft[g. Let t := (t,g), then we have
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a = (tg,9) — (Ftyg,g) = t — ¢t and this implies f = ¢a = t. Consider now the p, q
and r from the Gosper-Petkovsek representation of apg as in Proposition 1.7 and the
corresponding polynomials p, ¢, r. Since f =t and p = —t + /_I t+ ; t — myg, we have
(p-t,9) = /_I t+ H t — my¢ and this is ;_I tA }7 t, the common part of the right-to-left
and the left-to-right maximum of t. This is not yet what we need for the Ansatz, viz.,
;_I tAe ! :1] t (cf. Proposition 1.4). In order to arrive there, note that the sequences
are the same from —oo to the position of the first right-maximum of t. To the right
of that, say at position i, j t contributes exactly (Z t);, — (:E t);4+1 multiplicity-boxes
more than ¢* H t, but this is precisely r;, since r = —¢~! 5H t. As a consequence, r
is precisely what we have to delete and p 4+ t — r is the spectrum we are looking for.
So, the polynomial p - t/r is the requested optimal Ansatz for the denominator of 3.

In Figure 1.7 we show an example of this decomposition. On the left part is the
spectrum t, while on the right part we draw the spectrum of pt, where the crossed
boxes correspond to r.

[ X

(t,9) (p-t,9)

Figure 1.7: Spectrum of ¢t and p - t.

In other words,

p-tg)=(rg) = ptt_r _ .
—t+pt+put—mg+t+etipt
Ht+pt—me+emt—jt

dt+e it —mg = ptAe it

Since this holds for any irreducible g, for the Gosper-Petkovsek representation
(p,q,r) of @ = t/Et we have that u = pt/r is globally optimal for all shift equivalence
classes. On an algorithmic level, this means that the optimum denominator polyno-
mial u can be obtained directly from an algorithm computing the Gosper-Petkovsek
representation. In particular, no factorization with respect to shift-equivalence classes
is necessary and no explicit choice of a representative for each shift-class is necessary.

Similarly, we show that also the denominator v can be obtained from the Gosper-
Petkovsek representation of a. Consider again ap, as above and let j be the smallest

index such that ¢; = my, then from q = (5;7 t it follows that j is the largest index such
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that ¢; # 0. Let us define a sequence qt = (g} )icz by

L J0 if i

and the polynomial q[‘g] by q[Z] = gq+. Since Zigj ¢; = mg, the denominator vy = q[Z]
is optimal with respect to the shift class [g].
From this it follows that the denominator v = ¢t := H[g] q[;] is optimal with respect
to s/t for solving the rational summation problem, in the sense of Subsection 1.4.4.
Summarizing, we have:

Proposition 1.8 For any a = s/t € R an optimal choice of denominators u and v
for the B and v part of a solution of the rational summation problem for « s given by

p-t
Uu=—
r

and v=q"

where (p,q,r) is the Gosper-Petkovsek representation of t/Et.

In Section 1.6.4 we describe the algorithm in more detail.

1.5.3 An algebraic description via GFF

The use of the Gosper-Petkovsek representation of rational functions for the rational
summation problem can also be algebraically motivated in the framework presented by
Paule in [Pau95] for hypergeometric telescoping.

The fundamental concept introduced by Paule is the Greatest Factorial Factoriza-
tion (GFF) of polynomials, in analogy to the square-free factorization.

Definition 1.5 We say that the tuple (p1,...,pr), pi € K[z], is a GFF-form of a
monic polynomial p € K[z] if the following conditions hold:

(GFF1) p= [pi]t- - [pe]¥,
(GFF2) each p; is monic, and k > 0 implies deg(px) > 0,
(GFF3) i < j = ged([pi]', Ep;) = 1 = ged([pi]', E7/pj).

Here [p;] indicates the i-th falling factorial of p; defined as
i—1
[pi]* == ]___[ E~*p;
k=0

It can be shown that such a GFF-form is uniquely determined by p, and we write
GFF(p) = (p1,...,pk).

Intuitively, the GFF-form of a polynomial p gives information about the maximal
chains in the shift structure of p. If py is the last component of GFF(p), then [px]&
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collects the maximal chains of length k in p. Then [pg_1]=L collects the chains of
length k& — 1 in p/[ps]%, if there are any, and so on.

Again, the GFF concept localizes. This means, w.l.o.g. we only have to consider
factors of ¢ of the form E7¢' for a monic irreducible g. In Figure 1.8 we show an
example for GFF(t), where

1= (2= -2+ 1)@ + 22z +3)(z +5)°(x+6)

In each box we indicate the index of the corresponding chain to which the box
contributes.

1]
1]
2
3

1]
1
2

3] [2]2]

Figure 1.8: Example of GFF(#)

The GFF-form of ¢ can be then read off the picture:

bi= [ = D)+ 1) +5)7L (e — D& +2)(x + 62 [z + 32

Let now fr be a hypergeometric term, i.e, a term such that the quotient fry1/fx
can be expressed as rational function in k (note that, in particular, rational functions
themselves are hypergeometric). Then Paule, using the GFF concept, shows the well-
known fact that a hypergeometric solution gx of

Je = gk41 — gk

is given by

where u is a polynomial solution of ¢- Fu—r-u = p and (p, ¢, r) is the Gosper-Petkovsek
representation of the quotient fri1/fr.

In our context, fi is a rational function fr = a(k) for @ = s/t € R in reduced form.
This means that a solution § of a summable « = AS has the form

reu reou s
[)) = o= A
p p 1
Using results from [Pau95] we show that the denominator of this 3 is precisely the
optimal denominator we describe in Subsection 1.4.4.

From Section 5.2 in [Pau95] (cf. especially Lemma 5.2 ibid.) we have:
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Lemma 1.3 Let (p,q,r) be the GP-representation of the reduced a/b € R. Then for
GFF(p)=[pi]t- - [pn)® we have:

1. a=(Ep1)---(Epn) - q

2. b= (E°q)---(E~"*1p,) - Er
3.Vie{l,...,n}:ged([pilt, q) = 1
4o vie{l,... n}:ged([pilt,r) =1

First, we note that the denominator of # depends only on t. We have the following
straightforward lemma.

Lemma 1.4 Leta = s/t € R be in reduced form. If (p,q¢, 1) ts the GP-representation
of t/Et, then (s - pi,qs,rt) is the GP-representation of Ea/a.

Proof. Let (pt, qt, 7:) be the GP-representation of ¢/ Et. The nontrivial part is to verify
that
ged(spe,qe) =1  and  ged(spy, ) =1

but this is obvious since from properties 1 and 2 of the last lemma we know that g:|¢
and Er | Et 1

Therefore both, (p, q,r) and (s - p, ¢¢, rt), are GP-representations of Fa/a. Conse-
quently, by uniqueness,

Ty - u e - u

s s
p 1 s-pr 1 pt -t
and since r¢|t, the denominator polynomial of 2 is a divisor of p;t/r;, as proposed in
Subsection 1.5.2.

Note that this reasoning is still valid for the refined rational summation problem,
where we look for a solution (3,v) of @ = s/t = AS + 5. In fact, since we know
that the denominator of the v part corresponding to an optimal choice is a divisor of
t (cf. Proposition 1.2), we have that, in general, (o — ) has the same denominator as
a. From the fact that the Ansatz for the denominator of 8 does not depend on the
numerator of a;, or (a — %), it follows that the Ansatz for the denominator of 3 stays
the same.

We now present an alternative proof of the fact that the spectrum of p;t/r; has the
form described as optimal in Subsection 1.4.4.

Let GFF(t) = [t1)t - [tm]™, then, by the fundamental Lemma in [Pau95] the
reduced form a/b of ¢/FEt is given by

Ft

t t
~ ged(t, Et)

= 4 (E"Y%) - (ET™F ), b
“7 ged(t, BY) (B ) )

= (Et1)(Ets) - (Etm),



29

a
a a
a a b a
a b a bla b |

Figure 1.9: Example with respect to a/b=1t/Et

In other words, a contains the left ends of each component of the GFF, while b
gives the (shifted) right ends.

In Figure 1.9 we show the contributions to a and b in the previous example.

The structure of p; follows then from Lemma 1.3. From now on we follow the
notation of Lemma 1.3 for a/b = t/Et, so (p,q,r) is the GP-representation of a/b. In
the following we describe how to read off p,q and r from the multiplicity-box diagram
of ¢.

Namely from properties 1 and 2 it follows that the chains in [p;] are, in some sense,
enclosed between shift components of ¢. So, all factors in a which do not have a factor
of b on the left must contribute to ¢, since no chain in p can come from that side. In our
example (z — 2)(z — 1)(z + 1)?|q. Analogously, all b-boxes which have no a-box at the
same level on the graph to the right must contribute to Er, so (m+‘2_)(:r+6)2(13+7) |Er.
In other words, r consists at least of those factors which give rise to a jump in the right-
to-left maximum of (¢, g). We will see that this indeed exhausts all divisors of ¢ and
Er, respectively, in other words equality actually holds.

Furthermore we know that ged(q, E/r) = 1 for all j > 1, so all factors of ¢ must
be on the left of each factor of Er. Consider now a b-box which has an a-box on the
right, like, for instance, (z — 1) in our example. This can not contribute to Er since,
otherwise, the corresponding a-box on the right, that is (¢ 4+ 1) in the example, would
contribute to ¢ and we would have a contradiction to ged(g, E/r) = 1 for all j > 1. For
this reason that b-box must be a left element of a chain in p, which then connects the
b-box to the corresponding a-box.

Since all a and b-boxes have to be assigned following these rules, these considerations
prove that p consists of all chains joining the shift components at same height of ¢, i.e.
p adds to ¢ what is missing to the ged of the left-to-right and right-to-left maximum.
In our example ¢ = (z — 2)(z — 1)(z + 1)%, Er = (z 4+ 2)(z + 6)?(z + 7) and

p=(z— 1)2332(13 +2)(x+ 3_)2(;1: + 4)3

This corresponds to filling up the gaps in the spectrum of ¢, i.e., {t - p,g) = ,Tf(t,g> A
1—
uit,g).

In Figure 1.10 we show the spectrum of ¢ - p.
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plp|p
p|p p|p
p|p p

Figure 1.10: Spectrum of p - ¢

From the known structure of r it then follows that

P 1 - _14+
<T;g> = u<tag> Ne 1u<tag>
This gives a different proof of Proposition 1.8, since p - t/r is precisely the optimal
denominator polynomial suggested in Subsection 1.4.4.

1.6 The Algorithms

The known algorithms for computing a solution (7, v) of the rational summation prob-
lem are based, in principle, on one of the following methods:

e Local transformations in a similar form like in Subsection 1.4.1 are iteratively
applied on the input function, producing a sequence (8, ~y;) which eventually
yields a solution.

e Candidates u and v for the denominator polynomials of § and =, resp., are com-
puted. Then the problems reduces to solving a polynomial equation by coefficients
comparison, i.e., to solving a system of linear equations.

The algorithms of Moenck and Abramov belong to the first kind, while the remain-
ing ones are based on the second method.

The algorithms are described in more detail in other published works, see the ar-
ticles cited in each subsection and [Pir95] for a description of an implementation in
Maple. So, here we restrict ourselves to an informal presentation using the notation
introduced above. Qur goal is to work out clearly the structural differences of the
various approaches. In particular, we want to stress the fact that only the algorithm
based on the observations of Subsection 1.5.2 computes a solution choosing optimal
candidates for the denominators of both § and ~.

In order to implement the methods, the field K should allow effective algorithms for
the field operations, and additionally we assume algorithms for finding integer roots of
polynomials over K. The latter requirement is for the computation of the dispersion.
We discuss in Subsection 1.6.6 a method for doing the computation if one is able
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to factorize polynomials over K. On the other hand we notice that all algorithms
described here work without factorization, using ged and resultant computations only.
All algorithms we discuss here have been implemented in the computer algebra system
Maple.

In addition, since all the algorithms need the computation of the dispersion of a
polynomial, we dedicate the Subsection 1.6.6 to this goal.

1.6.1 Moenck’s algorithm

Moenck in 1977 published an algorithm in [Moe77]. Paule in 1993 noticed in [Pau93]
that the Maple function sum, whose implementation is based on this algorithm, does
not always lead to a correct answer. We describe the method by an example and point
out in which way a gap in the description produced the error in the implementation.
Consider the rational function
243

_P_
R PR PR PR PR R

The shift structure of the denominator ¢ gives a decomposition into two classes, repre-
sented in the left part of Fig. 1.11.

- ~

—

Figure 1.11: Spectrum of ’I’Z(T + 2)%(1' + 3)2(.172 + 2)(1‘2 + 2z 4+ 3)2 and of its saturation

The first step in Moenck’s algorithm “fills up the gaps” in each class, i.e., we put
as many boxes on each line as we need to get a rectangle on it. This means that we
have to take all factors with the maximal multiplicity arising in that class. This way
we obtain the new denominator as in the right part of Fig. 1.11. This brings along a
new representation for the rational function as follows.

z(z+1)3(z+3) (22 + 2)(2? + 3)
23z 4+ 1)3(z +2)3(z + 3)3(2? + 2)%(2? + 22 + 3)?

Let us consider the two classes separately, i.e.,
q = 1‘3(1‘-|- 1)3(m+2)3(m+3)3 and g2 = (x2+2)2(1'2+2m+3)2

As we know, 1t is sufficient to find solutions to the problem for each shift component
separately. So, consider now the decomposition a = p1/q1 + pa/q2 (for some p1, pa).
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Next, we compute a partial fraction decomposition with respect to the first class

3

P P1 (l') _ P1j
5T—I*f+UWr+@WI+®3_E:@+Jﬁw+j+lﬁ~%w+m3 19

7j=0

where deg p; ; < deg(z+3)® = 3. Then one iteratively decomposes each summand into
the form A 8+ v with a remainder having smaller dispersion after each step.

For that any summand of the right-hand side of equation (1.6) and compute a
polynomial solution f, g to the equation

(z+ )+ ((z+3)° = (2 +5)°)g = p1; ()

This can be done by the Extended Euclidean Algorithm (the function gedex in Maple),
since (z + j)* and ((z + 3)® — (z + j)?) are relatively prime. Then one can verify that

P A —9 N Fg—g+7f
@tiP (2 +3)° (@+5)?(&+2?  (e+5+1)7 - (x+3)°

and one obtains a decomposition for the j-th summand. We iterate the procedure
till we obtain a remainder with dispersion zero (or zero itself), then we sum up all
sub-results finding a decomposition for a.

This method can be seen as discrete analogue to Hermite’s algorithm for the inte-
gration of rational functions (see [SM92]).

The problem in Moenck’s method lies in the computation of the shift saturation of
the denominator. In his work the definition of such a shift saturation does not make
sure that the classes are relatively prime. Using the printlevel facility one sees that
in Maple the denominator is decomposed into three classes ¢; = 2?(z + 2)%(z + 3)?,
g2 = x+2 and ¢3 = (22 + 2)?(2? + 2z + 3)?. From this it follows that, in this case,
the partial fraction decomposition of a can not be computed. As a consequence, if one
tries to get a solution by the function sum of Maple V.3 one obtains:

> sum ( (x"2+3)/(x" 2% (x+2) “3%(x+3) " 2% (x"2+2) * (x~2+2%x+3) "2) ,x) ;
Error, (in gcdex/diophant) wrong number (or type) of arguments
Furthermore, Moenck does not give any algorithm to fill up the gaps in the shift
structure of the denominator. This has been done by Paule, who needs such a saturation
in his algorithm too, see Section 1.6.3.

1.6.2 Abramov’s algorithm

The method of Abramov is based on iterated application of a reduction transformation,
eventually yielding a solution.

Consider now an arbitrary element o € R[4y, say
- g grit gritk
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for some i € Z, k > 0 and f; # 0 # fi+x. Then it is easily checked that

a=A (Ei+k—1 fi+k ) + Ezi 4ot pitk=1 (fi+k—1 + fi+k>

glite a; glitk—1 glite

this means that applying this transformation at most k£ times on the partial results we
get a solution & = AF + +, where the denominator polynomial of 4 has the form E’g?
for some a < max{a;,..., a5}

From an algorithmic point of view, we do not need any saturation of the shift
structure of the denominator, but we now isolate the rightmost boxes from the rest.
For instance,

B 2? +1 _5m4+5m3+15m2—x+8+ -5
Cz(z+ D)z +3) 24x(z+ 1)4 24(z + 3)

From this we get a decomposition a« = Af + v

5 ) —_151:4+5:173—91:2—1:—16 (1.7)

a=4 <_24(az+2) 24 z(x+ 1)z +2)

where the right summand of the right hand side has dispersion two, i.e. less than the
dispersion of «.

We then iterate the procedure on the remainder «, reducing the dispersion at each
step. At the end we obtain either a trivial remainder, and « is summable, or a remainder
with dispersion zero. We then only need to sum up the partial results 8. This way we
obtain the following decomposition

N 5 —152 4+ 52° — 922 — 2 — 16
“ = TUz+2)) 24 2@+ 1)z +2)
< 5 5 )_51‘34-333—4

CU(z+2) 24(z+1) 122(x + 1)
N 5 5 423 4+ 922 — 6z + 12 322 — 22+ 4
o 24(z+2) 24(z+1) 12z4 4z

If we look more closely at the spectrum of 4 after each step, as in Fig. 1.12, then we
see that we shifted the rightmost stack of boxes one place to the left at each iteration,
while the erased stack is included in the rational part.

Observe that we obtain a final result for v with the leftmost boxes in the shift
structure of the denominator. On the other hand, this corresponds to choosing a fixed
representative in [g] for the v part.

The modification we propose is based on the simple observation that in a similar
way the dispersion can be reduced erasing the leftmost, instead of the rightmost, boxes
of each component. This way we do not need to fix the stack corresponding to the
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r(x)

h(x)

[ ] [ 1] [ ]

Figure 1.12: Spectrum of the sub-results in Abramov’s algorithm

remainder as being the leftmost from the beginning on, but we can choose at each step
at which endpoints we want to erase/shift a stack of boxes.

As a strategy we propose to shift at each step the stack (right or left) of smallest
height, this means the stack which produces the smallest contribution to the degree of
the denominator of the rational part. The algorithm can be implemented in Maple by
the simple procedure given in Fig. 1.13.

The procedure call part(p,h,v,w) computes the h-part of p, i.e., the maximal
factor v of p such that only factors of h arise in v. A more detailed description of this
function in given in Subsection 1.6.4. The procedure abrsum takes three parameters,
the input function «, the dispersion d of «, and finally the symbol # when «a € K[z].

This modified approach has two main advantages in practice: (i) the decomposition
of the rational function is in general easier if the degree of one part is lower and (i:)
the degree in the denominator of the rational part h at the end is in general smaller
than by fixed choice of the remainder.

In [Pir94] we show that, for a certain class of rational summands, the denominator of
the rational part obtained in this way has minimal degree among all solutions. Already
in our small example we obtain with the usual Abramov algorithm a rational part with
denominator of degree 6, while the modification keeps the degree at 3, as we see in Fig.
1.14.

One can easily convince himself that, at least for single shift equivalence classes, this
modification of Abramov’s algorithm gives a minimal solution, in the sense that both
denominators of 3 and 4 have minimal possible degree. Note the difference with respect
to the optimal candidate denominator polynomials defined in Subsection 1.4.4, where
the numerator polynomials were not considered, while here the solution is minimal
with respect to all possible solutions for the given a (and not, more generally, over
all rational functions with a given denominator). In general, however, this minimality
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abrsum := proc( f, dis, x) local a,b,p,q,cp,vp,wp,vm,wm,u,newtf;
if £f=0 then RETURN(0) fi;
if dis=0 then RETURN (’Sum’( factor( f), x)) fi;
p:=numer(f); q:=denom(f);
cp:=gcd(q,subs(x=x+dis,q));
if cp=1 then RETURN(abrsum(f,dis-1,x)) fi;
part(q,cp,’vp’,’wp’); part(q,subs(x=x-dis,cp),’vm’,’wm’);
if degree(vm,x)>degree(vp,x) then
gcdex(vp,wp,p,x,’b’,’a’);
u:=subs(x=x-1,a/vp); newf:=normal(b/wp+u);
else gcdex(vm,wm,p,x,’b’,’a’); u:=—a/vm;
newf :=normal(b/wm + subs(x=x+1,a/vm));
fi;
u + abrsum(newf, dis-1, x);
end:

Figure 1.13: Maple implementation of the (modified) Abramov’s algorithm

property of the solution does not hold for a function a = p/q where ¢ decomposes into
several classes.

In our example the denominator ¢ of a consists of only one shift component. In the
case where ¢ splits into more than one shift component the procedure can be applied
in the same way. At each step, then, several factors from different shift components
are isolated at once.

1.6.3 Paule’s algorithm

Paule presents in [Pau93] (see also [Pau95]) an algorithm in analogy to Horowitz’s al-
gorithm, also called Hermite-Ostrogradski method, for integration of rational functions
(see, for instance, Geddes et al. in [GCL92]). He reduces the problem to the solution
of a system of linear equations. The idea consists in choosing an “Ansatz”, i.e., a can-
didate for the denominators of the rational solutions (3, ). The main difference to the
proposed optimal solutions will be that Paule makes a fixed choice of the representative
g in each class.

Let us explain the algorithm by an example: Consider again the rational function
with shift structure as in the left part of Fig. 1.15.

_ 2241
- z(z + 1)*(z + 3)

We need what Paule calls the shift saturated extension (SSE) of the denominator.
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Figure 1.14: Shift-structures in the modified Abramov’s algorithm

T

Figure 1.15: Paule’s Ansatz for o = z(z + 1)4(r +3)

This is an extension of the polynomial by some factors in order to let each stack of boxes
in the class have the maximal arising height. In [Pau93] and [Pir92] algorithms are
described, that compute such a saturation without knowing the complete factorization
of the polynomials. In the example, the SSE of the denominator leads to the following
representation of the rational function with shift structure like in the middle part of

Fig. 1.15:
s ;733(;13+2)4(;13-|-3)3(x2+ 1)
t zt(z 4+ D)*(z + 2)4(z + 3)*

We are looking for rational solutions @« = Af + v = A7/d + ¢/n, where Paule
proved that a solution exists for § = ged(¢, E~'t) and n = t/d. This means, one takes
as denominator for the bound only the factors corresponding to the rightmost boxes
in each component of the SSE and puts in the denominator of the summable part all
other boxes. In the right part of Fig. 1.15 one can see the decomposition in summable
and non-summable part of the SSE of the denominator.

Substituting the values for § and 5 in @« = A3+~ we obtain a polynomial equation.
In our example, § = z*(z+1)*(z+2)* and n = (z+3)*, so one has to find polynomials
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7 and ¢ s.t.
:133(33 + 2)4(;13 + 3)3(;132 +1)= *Er — (z + 3)47' + :134(33 + 1)4(;13 + 2)45 (1.8)

Since we know § and 7, we have bounds for the degree of v and ¢. Substituting
these polynomials with indeterminate coefficients into (1.8) and equating coefficients
of same powers of z we obtain a system of linear equations for the coefficients of 7 and
E.

The computation can be done by Maple. The solution then is # = 7/§ and v = ¢/n,

le.,

128 4 3362 4+ 91222 4+ 176423 4+ 20612* 4+ 149125 4+ 66125 4+ 16527 4+ 1828

p= 2z (z + 1) (z + 2)*

and

25 + 162 + 322
4(z + 3)4

It should be remarked at this point that in general the computed solutions 7/§ and
¢/n are not in reduced form. In other words, the Ansatz for the denominators is not
always minimal, as some factors may cancel. Although the denominator polynomial
n computed by Paule’s algorithm in the generic case is optimal, the degree of the
polynomial § is in general too big. This follows from the fact that always the right-
most divisors of the denominator of a are chosen to build the denominator of ~.

From a computational point of view it turns out that the solution of the system of
linear equations is the most time consuming task in the algorithm, taking over 80% of
the total time.

1.6.4 The algorithm with optimal Ansatz

Here we describe the algorithm based on the observations made in subsection 1.5.2, as
presented in [PSb].

For the computation of the Gosper-Petkoviek representation of a rational function
we follow the algorithm proposed by Petkovsek in [Pet92], which we include for com-
pleteness as Alg. 1. Here Resg(p, q) denotes the resultant of p(z) and ¢(z) with respect
to the indeterminate .

The computation of g7 described in Alg. 2 assumes an algorithm for computing the
dispersion. Several algorithms are known for computing the dispersion of a polynomial,
as we briefly discuss in Subsection 1.6.6.

Furthermore, we say that v is the partof pin ¢ for v, p, ¢ € K[z] if v | ¢, ged(p, ¢/v) =
1 and only factors of p arise in v. In this case we write v = part(p,¢). To make
things clear, let us consider an example where p is given by complete factorization
as p = pi*---po~, where a; > 0 and q is, by appropriate ordering of the factors,
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(p,q,7) + GP-Rep ()

Inputs:
a : a rational function € R.
Outputs:
p,q, 7 : Gosper-Petkovsek representation of «, i.e.
a=22. EL with ged(q, £'r) = 1 for all ¢ > 1 and ged(p, ) = 1 = ged(p, q).
v ” . . .
Begin

Step 1: Initialization
p < 1, ¢ + numer(a), r < denom(a)
Step 2:
for h € {h' € N; Resz(q,Ehl r) =0} do
d + gcd(q, E"r)
q < q/d
rer/Ehd
h —i
pep [licy E7d
endfor

return (p,q,r)
End

Algorithm 1: GP-Rep

given by ¢ = p* - ~p£"q5"++11 ~~~q5"++’" with 3; > 0. Then for v = part(p, q) we have

p = prelans) | pmaxtanon)

The computation of part(p,q) only needs repeated gcd-computations. Initialize
v1 < ged(p,q) and ¢1 « ¢/v1, then compute v; + ged(p, ¢;i—1) and ¢; + ¢;—1/v; for
i=2,3,...until v, = 1 for some n. Then all factors of p arising in ¢ are isolated and
we have part(p, )« viva - vn.

With this notation the algorithm for computing the polynomial ¢% is described in
Alg. 2. We obtain ¢t from ¢ by collecting all factors in a shift equivalence class at
its right end. This is done by, first, isolating the left-most factors with the help of
the function part, this means h = part(£~%q, q), where d is the dispersion of ¢. So,
the first partial value of ¢% is set to ¢t = E?h. The procedure then is iterated for
j=d,d—1,...,0 and eventually we get in ¢t all factors of ¢ shifted to the right of
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the corresponding class.

gt « plus(q)

Inputs:
q : polynomial.

Outputs:
qt : polynomial with (¢, g) = (g, g)* for all irreducible g.
Begin
Step 1: Initialization
d + dis(q), g « ¢, qt « 1
Step 2: Collect all factors at the end of each class

for j = d downto 0 do
h « part(E~7g,9)
g<g/h
gt <« ¢t Eih
endfor
return (¢%)
End

Algorithm 2: plus

In Alg. 3 we show the algorithm for solving the rational summation problem with
optimal bounds. Remark that Step 3 mainly reduces to the solution of a system of
linear equations over the constant field K.

1.6.5 Others

It has to be remarked that there are other algorithms which can be used for the
summable case, i.e., for computing solutions of the rational summation problem of
the form (3, 0), if they exist. In this case one may, for instance, apply Gosper’s method
for hypergeometric summation. In addition, 1973 Abramov proposed in [Abr71] a
different method for solving a = AS.

Malm and Subramaniam published in [MS95] a work on summation of rational
functions. Indeed, also their approach makes use of information provided by the Gosper
algorithm, i.e., the Gosper-Petkovsek representation.
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(8,7v) « Opt-Rat-Sum(«)

Inputs:
« : a rational function in R.

Outputs:
3,7~ : a solution of the rational summation problem for «
Begin
Step 1: Initialization
t < denom(c)
Step 2: (Optimal) bounds for the denominators of 3 and ~y
(p,q,r) < GP-Rep(t/Et)

U p?t
v « plus(q)
Step 3: Computation of the numerators of 3 and v
deg(u)—1 deg(v)—1

a Z aizi, b« Z bj.rj for indeterminates a;’s and b;’s

=0 7j=0

. . . a a
determine the a;’s and b;’s by coefficient comparison from o =F£— — —

uu

return (a/u,b/v)
End

b

v

Algorithm 3: Opt-Rat-Sum

We wish to point out, however, that the approach by Malm and Subramaniam
usually does not lead to an optimal solution of the rational summation problem in
the sense discussed in Subsection 1.4.4: the degree of the denominator polynomial u
generally 1s much higher than necessary, so that in the final step a linear system of size

bigger than necessary has to be solved. Let us illustrate our claim by an example:

In their article in 1995, Malm and Subramaniam compute:

l:A<g)+é’

g u v

where

g::1:3(.17—{—2)2(.1‘—{—3)(172—{—])(.1:2—{—4.17—{—5)2.



They obtain as denominator polynomials
UZIS(Z‘-I-1)3(I+2)3(.’L‘2+1)(1‘2+21‘+2) , v:(w+3)3(1'2-|-41'-|—5)2

so that they have to solve the equation with indeterminate polynomial a (b resp.) of
degree 12 (degree 6 resp.). They obtain actually polynomials of degree 12 (degree 5
resp.).

With our method from Subsection 1.6.4 we get a denominator polynomial u of
degree 9 only:

u:mQ(x-l-1)2(1*+2_)(m2+1)(m2+2m-|—2) , v:xS(x2+4m+5)2

The corresponding numerator polynomials for our solution are

1
@ = 555(4320 + 208962 + 56312 x? + 86758 2 + 97849 z*

+ 82419 2° + 48353 26 4+ 17367 27 + 2766 2°),

=500 (—600 4 5300 z + 13100 2% 4+ 10165 2 + 3484 z* 4 461 27

The reason for this non-optimality of the Malm-Subramaniam approach lies in their
strategy to artificially shift the maximal exponent in each shift equivalence class to the
rightmost position. Our refined algebraic analysis of the situation allows us to leave
the maximal exponents where they are, while we choose the numerator polynomial v
accordingly — this difference can be observed in the example above. In situations such
as given at the end of their article (see [MS95]) as an example, when the maximal
exponent in each shift equivalence class of the input denominator polynomial occurs in
the rightmost position, both methods will produce solutions of the same degree.

1.6.6 The computation of the dispersion

As we saw in the last sections, all algorithms for computing a solution of the rational
summation problem have the computation of the dispersion of a polynomial as a sub-
task.

From Definition 1.4 we know that for a polynomial ¢ € K[z] the dispersion dis(q)
is the maximal value of k such that ¢ and E*¢ have a nontrivial common factor.

One method for computing the value of dis(g) is based on well-known properties of
resultants and ged’s. In fact, ¢ and E*¢ have a non trivial common factor if and only
if the resultant Res, (g, E¥q) is nonzero.

From this it follows that dis(g) is the maximal integer root of Res;(q, E* q) as a
polynomial in the indeterminate k, i.e., it is the maximal integer k£ such that ¢ and
E* ¢ have a common factor.

Following this computation scheme, we just need the field K to allow algorithms for
computing the resultant and finding integer roots of univariate polynomials.
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On the other hand, if we work over a polynomial ring K[z] for which (effective)
algorithms for irreducible factorization, i.e., into irreducible factors over K, are avail-
able, then the task becomes almost trivial, as described in [Pir92]. Assume that the
irreducible factorization of ¢ is given, say, by ¢ = ¢7' - - ¢5*. Since we know that the
shift of an irreducible polynomial is again irreducible, the computation of the disper-
sion reduces to comparing all pairs (¢;, ¢;) of irreducible factors of ¢ and check for the
maximal arising shift such that E*q; = ¢;. This can be easily done looking at the
coefficients of ¢; and ¢;.

Let namely
m
q; = Z apx and 4 = Z bt
=0

m=n, b, = a, and bp_1=a,_1+ kna,

must hold. In other words, the only possible value for a shift is k = (bp,—1 — an—1)/nan,,
if this is an integer. If this is the case, then we can explicitly compute E*q; and check
if EFq; = q;.

An algorithm would then proceed by a decision procedure like the following: First
check if deg(q;) = deg(q;), then, if this holds, compare the leading coefficients of both
polynomials. If also this test succeeds, then a candidate for the shift k£ is computed
from ay, a,_q and b,_1, and finally E*q; is compared to 4.

This comparisons do not cost much time, so the most time consuming part is the
computation of a factorization in irreducible factors.

On the other hand, for commonly used coefficient domains like the integers and
the rationals the implemented algorithms in Maple turn out to be efficient enough to
overcome the resultant method in speed. This is motivated also by the fact that the
polynomial degree of the resultant involved is mainly quadratic with respect to the
degree of the original polynomial. Similarly, also the coefficients of the resultant are
expected to be significantly larger in magnitude than the coefficients of ¢.

Man and Wright discuss in some more detail in [MW94] the asymptotic behaviour
of both approaches, confirming the practical evidence that, at least when working over
rational coefficients, the implementations based on factorization are more efficient.

Nevertheless, it has to be noted that the computation based on resultants is more
general, since 1t can be applied on polynomial rings where no unique factorization is
possible too.
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1.7 Representing the v part by Polygamma functions

For the intentions of our study, a solution in the form o« = A+ is sufficient, where a,
(# and ~ are all rational functions in R. Introducing the so-called polygamma functions
one can find a decomposition ¥ = Ay for the v part of the solution.

Consider the Gamma function T'(z), i.e., the generalization of the factorial to the

complex numbers defined by
I'(z) = / e~ dt
0

for z having positive real part. Then the polygamma function ¥,, of order m, for m
positive integer, is defined as the m-th logarithmic derivative of I, viz.

™m

d
U, (z) = T log T'(x)

By T'(z + 1) = 2T'(z) we have

dm dm r+1
AT, (2) = dImAlogF( z) = . — log (F( ] )
T ey =
dzm 8l dzm-1g
_ (=i m = 1)t
= —

This allows us to give the following solution for the rational summation problem
for rational functions of the form a/(z — )™, where a and b are complex numbers:

a0
EENE _A<,(m_1)!\11m(., b)) (1.9)

in particular

> D™ (= b4 1) = Wi — 1)
=a m - — ¥m(? —
e monr Y - /
In view of the next section we explicitly remark that, considering now A acting on the
symbol n, it follows that AW, (c-n + d) is a rational function in n for positive integer

¢ and complex d. Namely we have, for ¥ = ¥;:

en—1 en4e—1

W(cn 4 d) = Z—+\Ifd+1) and  A¥(ecn+d)= Y k (1.10)

k=cn
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Assume now that for @ € R the pair (3,+) is solution of the rational summation
problem, and the full partial fraction decomposition of v = 7/§ is

PIPIE

031

then from equation (1.9) it follows that

is a solution such that a = A/§.

From a computational point of view the main problem is to factorize the denomi-
nator of v completely into linear factors. This is, in general, not possible.

However, M. Bronstein and B. Salvy presented in [BS93] an algorithm for computing
the full partial fraction decomposition of rational functions, involving no factorization
but only operations in K. We do not describe the algorithm in detail, one may look at
[BS93] for proofs, but we wish to point out in which sense their algorithm computes a
full decomposition.

Consider now a € R, with denominator § and full partial fraction decomposition

Z Z EE—

)0]1

Furthermore, let § = 6162 ---d™ be the square-free factorization of §. Then, for all
k=1,..., mthe algorithm computes polynomials (y 1, . . ., (x x and factors Ok - Jk,k
of §; in K[z] such that the following decomposition holds:

Combining the algorithm by Bronstein and Salvy with one of the algorithms for
rational summation presented in this chapter, we obtain, in the sense specified above,
a complete solution to the problem without using factorization in K[z]. For any @ € R
such an algorithm computes a solution in the form

A/HZZ > (=NFT 17(1?_:3_(771)) Uy_j(x—mn)

k=17=05, ;(n)=0

where 3, the Skd-’s and the (y ;’s are explicitly computed.
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1.8 Applications

In this section we present some applications for proving identities involving rational
summations.

E. Clarke and X. Zhao describe in [CZ94] a theorem prover based on Mathematica.
Among others, they give the identities listed below. as examples for problems that can
not be solved by symbolic computation decision procedures. The identities are taken
from Chapter 2 of Ramanujan’s Notebooks' .

Using the considerations in Section 1.7 we show that almost all of those examples
can be solved by rational summation methods in a deterministic way, without involving
theorem proving techniques. The proof of the identities reduces to testing equality of
rational functions.

Let us first define, following Ramanujan’s abbreviations, ®(x,n) and ¢(x,n) as

1
Pz, n)_l—i-ZZW and ¢(z,n) Z km—l—k?’x?’

1.8.1 Identities with finite sums

Here we consider several identities involving ®(, n) and ¢(x, n) with given 2 and n is
finite.

We exploit all details of a possible mechanical proof by rational summation methods
for the first 1dentity considered in Section 3.1 of Clarke and Zhao’s work:

n 1 n
B 9
1l;n+k G A )

In order to prove this identity we first solve the rational summation problem for
the ®’s and ¢’s involved, converting this expressions into polygamma functions. So we
get an equivalent identity lhs(n) = rhs(n), where lhs and rhs only involve rational
functions in n and polygamma functions. Then it is sufficient to prove that Alhs(n) =
Arhs(n) and to check the identity for an initial value. From Equation (1.10) we
know that this reduces to proving an identity of rational functions, which can be done
mechanically.

Let us express @(z,n) in terms of polygamma functions. Since —kz + k*2® =

kz(kz — 1)(kx 4+ 1) we have

n

i 1 1 1 1 1 1
pla,n) = Z—km+k3x3_Z<H+§km—1+§km+l>

E A( )+ \Il(k——)+ \Il(k+ ))

tB.C. Berndt, Ramanujan’s Notebooks, Part I, Springer-Verlag, 1985, pp. 25-43
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1 1 1 1
= - <‘Il(n—|-l)-|-_— <\Il(n——-|-l)-|-\11(n-|-—-|-1)>> +C
x 2 x x
where A acts on k and C' is a constant with respect to n.

Similarly,

n

Znik =Y AU(n+k)=U(2n+1) - W(n+1)
k=1 k=1

We substitute now into identity 1. and apply the A operator with respect to n.
With Equation (1.10) we get the equality of rational functions

1 1 1 n+1 n 1 1 1 1 1
Ml mi2 il _2n+3_2n+1+§<n+1+§<n+]§+n+%>>

which finds a straightforward verification. In Maple, for instance, this would reduce to
asking if simplify(1lhs-rhs)=0 holds, where 1hs is the left hand side of the identity,
and rhs the right hand side, respectively.

The proof is then completed by checking an initial condition, say the values of both
sides of the original identity for n = 1.

This way one can automatically prove all identities in Section 3.1 of [CZ94] which
involve only rational functions in k& as summands, i.e., all of them but identity 5. and
10. in their list. These are:

n—k n
2. =2 2 —
Zn—{—k ne(2,m) 2n+1

o~

k
"1 - 1
4, — | =P(4
( n+ )+<kz_%2n+2k+l) (,n)

9 n 1 2n 1
6- 26 =3 (;Hk) * (Zm)
=1 k=0
_ _ ®(2,n) !
200 n) = (2, 20) + =5+ G 1 2)
1 2n 1 4n+1 1
8. <I>(4,n_):§( 3 E)-I—( > E)
k=n+1 k=2n+1
®(2,n 2
9. 28(6,n) + % =®(3,n) + $(2,3n) + (6n + 1)(6n + 2)(6n + 3)
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A Maple session

As an example we show the Maple session for the automatic proof of identity 3. above.
Define the Delta operator applied on Psi(C*n+D)

> Delta:= proc(s)
> match(s=A*Psi(C#n+D),n,’1’);
> eval(subs(l,’A*sum(1/(k+D),k=C#*n..(Ckn+C-1))’));

> end:

The functions Phi and phi defined by Ramanujan
> phil:= (x,n) -> sum(1/(-k*x+k"3%x"3),k=1..n);

. 1
1:= _—
¢ (z’n)%;—kx%—k?’x?’

> Phi:= (x,n) -> 1+2*phil(x,n);
®:=(z,n) > 14+2¢1(x, n)

Proof of Identity 3.

> eq:= ’sum(1/(n+k),k=1..2%n+1)’ = ’Phi(3,n)’;

2n+1 1

eq = Z e =®(3, n)

k=1
Convert to polygamma notation
> eval(eq);

2 1 2 1 4
w@n+2y—wm+ﬁ):—gwm+1y+§wm+§)+§wm+§J+m@)

Apply the Delta operator on both sides of the identity

> map(Delta,lhs(eq));
1 n 1 N 1 1
3n+2 3n+3 4+3n n+1

> map(Delta,rhs(eq));

21+11+
“3n+1 3
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Check for equality
> simplify("-"");

0
Check the initial condition
> subs(n=1,eq);
2 1 5 1 7
v —U(2) = ——¥(2 — (= —W¥(= |
()~ ¥(2) = —2 v + L)+ L w() ()

> eval(");

1313

12 12

1.8.2 Identities with infinite sums

Several identities involving infinite sums listed in Section 3.2 of [CZ94] can be proven by
means of rational summation and limit computations. This can be done, for instance,
using the functions sum and 1imit implemented in Maple.

As a matter of fact, Maple can even find the right hand side of the identities.

1. ®(2,00) = 2log(2)

2. ®(3,00) = log(3)

3. ®(4,00) = glog(Q)

_ log(3) | log(4)
1. 9(6,00) = B2+ 25
-\ 1 _ log(2)
? ;(Q(Qk—l))S—z(Qk—l) 4
RS 1 _ log(3)  log(2)
a Z(S(?k—l))3—3(2k—1) T4 T3

b
1
—

Some infinite sums solved by Maple

> Phi(4,infinity);

N | o

In(2)



>

>

>

Phi(3,n);

2 1 2 1 4
'} 1 —} - " =) +In(:
3 (n+1)+ 3 (n+ 3)-+ 3 (n+ 3)-+ n(3)
limit(",n=infinity);

In(3)

sum(1/((3*(2%¥k-1))~"3-3*x(2*k-1)),k=1..infinity );
1 1
1 In(3) — 3 In(2)
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2

Parallel Implementations

2.1 Summation of rational functions

Both the algorithm of Paule and the algorithm of Abramov suggest the use of parallel
computation methods. The first one because solving a system of linear equations is a
classical parallel task. The latter for the possibility of solving the problem in paral-
lel along the localization to the different shift equivalence classes of the denominator
polynomial.

We implemented the parallel algorithm in ||[MAPLE||, speak parallel Maple, a par-
allel computer algebra system developed at RISC-Linz. Tt is our goal to show that,
in practice, ||[MAPLE|| offers a suitable environment for developing parallel algorithms
without technical knowledge about parallelism, and is based on the syntax of the se-
quential system Maple.

This section reports on joint work with Kurt Siegl, see [PSa].

2.1.1 The system ||MAPLE]||

The algorithms have been implemented in ||MAPLE|| (for an introduction to the system
see also [Sie93]) which is a portable system for parallel symbolic computation. The
core of the system is built on top of an interface between the parallel declarative
programming language Strand (see the description by Foster and Taylor in [FT89])
and the sequential computer algebra system Maple (see [CGGG83]), in the hope to
keep both the elegance of Strand and the power of the existing sequential algorithms
in Maple.

|[IMAPLE|| programs may run on different hardware, ranging from shared-memory
machines over distributed memory architectures up to networks of workstations, with-
out any modification or recompilation. All necessary communication is done automat-
ically by the system without any additional programming effort. Since ||MAPLE|| uses
implicit parallelism, 1t allows writing parallel programs without any expert knowledge
in parallel programming.

The ||[MAPLE|| system has two layers (Figure 2.1). The top layer is the parallel
declarative programming language Strand which controls the parallel execution of an
algorithm. For performing sequential tasks we may call arbitrary Maple functions or
sequences of Maple statements in the underlying Maple system over some interface
routines. The result i1s a parallel programming system with the full functionality of
Maple and parallel power of Strand.

51
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Strand Parallel Programming System

TIO-Interface TIO-Interface TIO-Interface
Maple Maple o Maple
Processor 1 Processor 2 Processor N

Figure 2.1: Structure of the ||MAPLE|| system

Usually, ||[MAPLE|| programs reflect this structure and consist of two parts. The
Strand code for the administration of the parallel tasks, and the Maple code for the
functions to be executed sequentially. On the other hand, ||MAPLE|| has a set of
pre-parallelized functions for some typical algorithmic structures, which allow us to
write parallel programs directly as Maple code, without the use of Strand, as in the
application presented here.

Here we use a function called peval, designed for algorithms following the divide
and conquer principle. The function may be used for a wide range of algorithms in
computer algebra, in particular for recursively defined algorithms.

The ||[MAPLE|| call peval( [ f1(x1), ...., fn(xn) ], recompose) requires two
arguments:

1. A list of unevaluated functions £f1(x1)...fn(xn). Each of these functions will
be evaluated on different processes/nodes in parallel. Note that the functions fi
might have more than one input parameter.

2. A composition function recompose which takes as input the results produced by
the parallel evaluations and produces the final output of the peval call. The
subresults are contained in parg[1],...,parg[n].

In particular, the functions £i(xi) do not need to represent the same computations
and may contain other peval statements, and so on.

As an example for the usage of the peval function we give a parallel version of the
well known Karatsuba algorithm for multiplying long integers in Figure 2.2.

Here we execute the recursive sub-multiplications in parallel as long as both integers
have more than 50 digits, otherwise we call the built-in sequential version.
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imult:=proc(x,y) local 1lx,ly,n,x1,x2,y1,y2;
1x:=length(x); ly:=length(y);
if (1x > 50) and (1ly > 50)
then # Parallel Karatsuba algorithm for large numbers
n:=round(max(lx,1ly)/2);
x1:=iquo(x,107n,’x2’);
yl:=iquo(y,10°n,’y2’);

peval([’imult’ (x1,y1),’imult’ (x2,y2), imult’ (x1+x2,y1+y2)],
'<u*10”~(2*n)+(w—u-v)*10°"n+v | n,u,v,w>’
(n,pargl1],pargl2],pargl3])
)
else # Built in algorithm for small numbers
X*y;
fi;
end;

Figure 2.2: Parallel integer multiplication

2.1.2 Paule’s Algorithm

As we already saw, the most important task in the implementation of Paule’s algorithm
is the solution of a system of linear equations, where the coefficients of the system
come from the field K considered (usually rational numbers, but also symbolic rational
functions). For this reason the main goal is to improve this part of the computation.

Solving a system of linear equations in general is a well-known task. In the sequen-
tial case, the Gaussian elimination algorithm will be used. But it turns out that the
equation solver known as Gauss Jordan algorithm allows a better parallelization. Here
we successively eliminate all elements of a column in parallel, which should give us a
nearly optimal speedup for larger matrices up to a high number of processors. See for
instance [GCL92] for these well-known elimination algorithms.

While with fixed-size coefficients the time required per element is constant, the
elimination time with symbolic entries will vary and generate unbalanced execution
times for individual rows, thus limiting the benefits of parallelism. Due to worse com-
plexity, the Gauss Jordan algorithm is usually slower than the Gaussian algorithm by
a factor of 3, so we need at least a speedup by 3 to compensate the algorithmic disad-
vantages. Additionally, an efficient execution with symbolic entries depends heavily on
a few small details which may improve the execution time up to factor of 50 and more:

1. The smallest element in the row with minimal total size should be selected as the
pivot element. In our implementation we used the amount of memory required
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for an element to determine its size.
2. Coefficients should always be simplified and normalized to integers.

3. Representing rows of the matrix as polynomials over a set of new variables will
give us access to the highly optimized polynomial operations available in Maple.

4. In a parallel environment, communication may be optimized by grouping several
rows together to form a computation block.

The effect of all these optimizations is shown by the following table comparing
several built-in Maple algorithms with our implementation on a relatively small matrix
with dimension 78.

Algorithm Time | Data Type Pivot Search

Gauss Jordan 139 min | Matrix none

Gauss 24 min | Matrix row pivoting

Solve (Gauss ) 4 min | Polynomials min element in min row
Our Gauss Jordan 13 min | Polynomials min element in min row
Parallel 2 min | Polynomials min element in min row

The table shows that by parallelism and a few other improvements the Gauss Jordan
method is able to beat a highly optimized Gauss elimination algorithm by a significant
factor using a couple of workstations.

We tested our algorithm on several rational functions with rational coefficients.
In Figure 2.4 we summarize the most important timings using a network version of
|[IMAPLE|| on a cluster of 12 Silicon Graphics (SGI) workstations. All computation
times are given in the form min:sec.

The first column shows the shift structure of the denominator, viz. 2,5,9 means
that the denominator of the input has three shift classes, respectively of dispersion
2, 5 and 9, respectively. The dimension of the system is given in the ninth column,
while the columns six and seven are the times needed by our parallel implementation
running on 12 processors or on a single processor. It should be remarked that among
the 12 processors only 11 are involved in the real computations, as the first 1s used as
manager.

The implementation using the built-in solver in Maple is reported in the eighth
column, while in the last we give the obtained speedup. The second column of the
speedup entries represent the speedup between the parallel implementation of Paule’s
algorithm on 12 processors and the sequential reference implementation.

2.1.3 Abramov’s Algorithm

The parallelization of the modified Abramov’s algorithm lies mainly in the decom-
position of the rational function with respect to the shift equivalence classes of the
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denominator. Let now a € R be given by the canonical form

=g+,

and let apg,) =pi/g; fori=1,...,s.

After this we apply the procedure on each of the summands p;/§; in parallel. In
the end we only need to sum up the results obtained by each parallel function call.

First we compute the decomposition of the denominator ¢ of @ = p/q, say ¢ =
G1---Gs as above. Remark that this computation is also done by our implementation
of Paule’s algorithm.

Then we apply the divide-and-conquer principle in parallel using the ||[MAPLE||
function peval, as in the following ||[MAPLE||-code.

abrpar:= proc(f,x) local fs;
fs:= shift_structure(f,x);
decompose(fs,x);

end:

decompose := proc(f,x) local f1, £2;
if nb_shift_comp(f,x)=1 then RETURN(abrsum(f,dis(f,x),x)) fi;
shift_par_frac(f,x,’f1’,’£2’);
peval([’decompose’(f1,x), ’decompose’ (£2,x)],
’sum_up’ (pargl[1],pargl2]));
end:

Figure 2.3: Parallel code for Abramov’s algorithm

The function shift_structure computes the shift structure of f = p/q, i.e. the
decomposition into shift classes of the denominator ¢ = §;---§s;. In decompose the
number of shift classes is checked. If ¢ has only one shift class, then the sequential
procedure abrsum is applied, computing a solution of the rational summation problem
for f.

Otherwise, if s > 2, then the function shift_par frac determines a decomposition

f=h+fo=1 4 P2
ql...qt qt‘l‘l...qs

where t = [§]. This is done by the extended Euclidean algorithm, computing py, ps
such that p1 - Geqy1 - §s +p2-G1 -+ G = p. Then decompose is applied in parallel to fi
and fy by a peval call. The function sum_up just combines the results, summing up

the summable and the nonsummable parts of the partial solutions.
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In this kind of parallelization the number of really concurrent processes is directly
related to the number s of shift components of ¢, in contrast to the solution of a linear
system.

The timings for the same examples used for Paule’s algorithm are given in columns
two to five of Figure 2.4.

The entries are analogous to those corresponding to the algorithm of Paule. From
the third and fourth columns follows the unexpected but interesting fact that the par-
allel implementation carried out on one processor is already faster than the sequential
algorithm. Note that the sequential implementation considers all classes at once, so it
does not need to decompose the rational function with respect to the shift classes of
the denominator.

As a result of parallel considerations, this observations imply that also a sequen-
tial implementation should compute the partial fraction decomposition along the shift
classes and apply the procedure on the single components (whenever efficient factori-
zation algorithms are available, as at least over the coefficient field (Y considered in our
examples).

2.1.4 Comparison

Summerizing the data in Figure 2.4, for our examples the implementation of Abramov’s
algorithm is faster, in both the sequential and parallel case.

Shift cl. Abr. Paule Speedup
12 P 1P Seq | Deg 12 P 1P Seq | Dim | Deg Abr./Paule

2,59 12 19  1:18 42 2:31 13:31 4:27 78 58 64 /17
53 1:16 3:38 53 7:58 56:42 16:06 92 67 4.0/ 20

25 45 2:49 50 18:10 143:54 38:59 111 50 6.7 /2.1

4,10,13 1:06 1:21 3:29 81 7:46 42:22 17:14 110 84 3.1/22
30 45 3:31 69 15:12 106:50 43:21 123 100 6.9 /28

2,2,7,12 15 21 59 28 1:59 10:36 2:48 65 44 39/14
9 13 28 33 1:38 5:31 3:11 69 44 3.0/1.9

1,5,10,11 9 18 48 44 9:14 34:10 11:48 89 44 4.8 /1.3
5 9 16 52 1:09 3:21 1:50 66 53 28 /15

3,3,7,12 8 21 1:17 33 10:03 73:16 26:11 99 57 89 /126
2,2,2,3,3,3 1:30 2:01 3:41 31 3:37 25:33 16:50 66 31 2.4 /4.6
1:16 1:59 6:33 46 17:55 164:44 17:12 84 46 51 /09

Figure 2.4: Timings

In the table one also finds the value of the degree in the denominator of the ra-
tional part computed by each algorithm. As to be expected from the consideration in
Subsection 1.6.2 our modification of Abramov’s algorithm often computes a result with
significantly smaller degree.

We remark that the system solver used in Paule’s algorithm would take considerable
advantage of having more processors available. Since the number of parallel processors
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used by Abramov’s algorithm is given by the input, the implementation does not take
any advantage of more processors available. This means that by an appropriate number
of processors, Paule’s algorithm would be faster in certain cases, e.g., for rational
functions with few shift classes, almost shift saturated structure, and corresponding to
a system of high dimension.

2.2 Solving a linear system by p-adic arithmetics

Let us restrict the field of coefficients K to the field of rational numbers @. Then the
p-adic representation of rationals gives a further possibility for parallelizing a linear
system solver.

We report on joint work with Carla Limongelli (see [LP96]), where we describe the
use of truncated p-adic expansion for handling rational numbers by parallel algorithms
for symbolic computation. As a case study we propose a parallel implementation for
solving linear systems over the rationals.

The parallelization is based on a multiple homomorphic image technique and the
result is recovered by a parallel version of the Chinese remainder algorithm. Using a
MIMD machine, we compare the proposed implementation with the classical modu-
lar arithmetic, showing that truncated p-adic arithmetic is a feasible tool for solving
systems of linear equations working directly over rational numbers.

The implementation leads to a speedup factor up to seven by using ten processors
in comparison to the sequential implementation.

p-adic arithmetic has been chosen for two main reasons:

1. p-adic arithmetic representation provides a unified form to treat numbers and
functions by means of truncated power series and it constitutes the mathematical
background for the definition of basic abstract data structures for a homogeneous
computing environment. A unified representation can be obtained when numbers
and functions are represented by power series and p-adic analysis offers an ap-
propriate mathematical setting in this sense [Kri85]. In [LT92] it is shown how
it is possible to treat numbers by truncated power series, together with the most
general p-adic construction methods in an integrated computing environment.

2. p-adic arithmetic is an exact arithmetic and its algebraic framework overcome the
problems of floating point arithmetic, essentially due to a lack of algebraic setting.
This last characteristic belongs to modular arithmetic too [Knu81, GK84], but
the difference is that while modular arithmetic works over the integers, p-adic
arithmetic operates on rational numbers. In [Lim93b] the advantages of working
directly over the rationals are shown. Moreover in [LT93, Lim93a] it is shown
that also algebraic numbers are representable in this arithmetic.

For the case study we choose the classical linear algebra problem of solving linear
systems, which is of relevance for rational summation too. For a positive integer n we
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want to solve a system of n linear equations for the n unknowns zq,...,z,
aj 1y +aiero+ ...+ aix, = by
(1271.1‘1 + (1272.’1‘2 + ...+ agynl‘n = b2 (2 1)
an,1-771+an,2172+ -~-+an,nmn = b,

where a; ;j and b; (i=1,...,nand j =1,... n) are rational numbers. We will denote

the system (2.1) by AZ = b.

The parallel implementation for solving linear systems is based on Gaussian elimi-
nation algorithm and the p-adic representation of rational numbers via truncated power
series with respect to a prime basis p. Our parallelization consists of applying the well
known Gaussian elimination method (see for instance [GCL92]) for several homomor-
phic images of the problem with respect to different prime bases, and recovering the
result by the Chinese Remainder Algorithm (CRA). The order of truncation r, as well
as the prime bases, is chosen in accordance with an a priori estimation of the mag-
nitude of the solution of the problem. This allows us to do error-free computations
directly with rational numbers. For a detailed treatment of p-adic arithmetic in the
context of symbolic computation, we refer to [GK84, Kri85, Lim93a]. Krishnamurthy
in [Kri93] proposes a similar method based on CRA, EEA (Extended Euclidean Al-
gorithm) and HLA (Hensel Lifting Algorithm), for inverting matrices with rational
entries. Dixon’s approach [Dix82] for solving systems of linear equations has been
studied in [Vil88b, Vil88a]. In this work we particularly want to stress the usefulness
of p-adic representation of rational numbers via Hensel codes, therefore we compare
our implementation with an equivalent parallel one which uses modular arithmetic.

In order to show that p-adic arithmetic provides an efficient tool for solving linear
systems over the rational numbers, we compared our implementation with one using
modular arithmetic and with a sequential implementation in the computer algebra
system Maple [CFG186]. Aspects of our parallel implementation are also presented in
[LP94].

The implementation was done in PacrLiB, a C-language library for parallel symbolic
computation [HT92], on a Sequent parallel machine with a MIMD architecture.

2.2.1 Basic notions of p-adic arithmetic

A nonzero rational number a = a/b can always be uniquely expressed as
c
e
a=--p
d

where e is an integer, p is a fixed prime number, and ¢, d, and p are pairwise relatively
prime integers. This representation is called the normalized form of a. Moreover Q)
will denote the set of rational numbers ¢/d such that ged(d, p) = 1. The function

I-llp: Q=R
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from the rational numbers () to the real numbers R, defined as
lafly = {27 e #0
P7l0 ifa=0

then is a norm on Q (see [Kob77]), called the p-adic norm. On the basis of this p-
adic norm, it is possible to define a p-adic metric on @, such that, given two rational
numbers « and f, their distance d(«, §) is expressed as:

d(a, B) =l = Bllp-

Then (Q,d) is a metric space. Let @, be the set of equivalence classes of Cauchy
sequences in (Q, d), then the system (Qp,+, ) forms a field called the field of p-adic
numbers, and (@, d) is a complete metric space.

The main characteristics of the field of p-adic numbers are:

1. the series
[ee]
27
i=0
converges to 1/(1-p) in (Qp, d);

2. every non zero rational number o can be uniquely expressed in the form:

(e}

o= aip’; a€Zy c€Z; |all,=p"% ac#0, (2:2)

i=e
where 7 represents the set of integer numbers.

The p-adic representation of a rational number « is then an infinite sequence of
digits (the p-adic digits) which are the coefficients of the series given in (2.2):

a=(ale_1...a_1 . aGoaiaz...).

Let us recall that the p-adic expansion of a rational number is periodic. Therefore
the p-adic representation can also assume the following form:

7
a = (llelle_l...ll_l .o aAg...Qp_m_1 llk_m...llk_lllk)

where the m + 1 rightmost digits are the period.
Let us now describe the procedure which computes the p-adic representation of a
given rational number a:

p-ADIC REPRESENTATION OF A RATIONAL NUMBER
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Input: p: prime number;
a € Q,a# 0, represented by its normalized form, o = ¢/d - p;
Output: the coefficients a., ac41, acq2, ... of the p-adic expansion of «;
Begin
e1/dy = c/d;
1:=0;
repeat

Aeyi =| ciy1/div1 |p;
Ci+2/di+2 = 1% (Ci+1/di+1 - ae+i) )
1:=141;
until the period is detected;
End

Here | ci/di |, = | ¢; | d7* |p |p is the least nonnegative remainder of ¢;/d; mod p,
where | di_l [, denotes the inverse of d; in Z,. We note that the hypothesis of primality
for p is necessary in order to ensure the existence and the uniqueness of | di_l |[p. From
now on we will consider p a prime number.

Example 2.1 We compute the p-adic expansion of the rational number 3/4, with
p =5 (in this case e = 0):

3 (&1 3
=.50 = = =
Ty 9 T
C1 3 -1
= =1 = = 314 = |12 |5 = 2;
ap |d1|p |4|5 | 3] ls |5 [ 125 ;
o _1(3 ) _ 1/} _ 1
ds Hh\ 4 5 4 4’
Co 1 _1
= | = = | —= = -1 - 4 =1
ai |d2 b = | 1 |5 [ [—=115] |5 |5 ;
e _ L1\ _1(5)_ 1
ds 5\ 4 T 5\ 4] T %
c3 1
= | — = | —— = 1.
as |d3 lp =1 4|5

In general this process will not terminate, but, since we are assuming that « is a
rational number, the p-adic expansion will be periodic. So, in this case, we just have
to continue the computation of the p-adic coefficients until the period is detected. In
our example the p-adic expansion of the number 3/4 is .211...= .2 1. |
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Arithmetic operations on p-adic numbers are carried out, digit by digit, starting
from the left-most digit a., as in usual base p arithmetic operations.

The division operation on p-adic numbers is performed in a different way with re-
spect to usual integer arithmetic. Starting from the left-most digit of both the dividend
and the divisor, we obtain the left-most digit of the quotient, and so on, in a way similar
to the other three basic p-adic arithmetic operations.

For automatic p-adic arithmetic computations, the length of p-adic digit sequences
might cause a problem. A natural solution is given by introducing a finite length p-adic
arithmetic on the so-called Hensel codes as we will show below.

Definition 2.1 (HENSEL CODES) Let p be a prime number. Then the Hensel code of
length v of any number a = (¢/d) - p® € Q is the pair

(manta, expa) = (. agar -+ -ar_1,€),

where the left-most r digits and the value e of the related p-adic expansion are called
the mantissa and the exponent, respectively.
O

Note that in particular

r—1
Z a; - pi = Zpr.
=0

Let Hl, » indicate the set of Hensel codes with respect to the prime p and the
approximation r and let Hy, ,(a) indicate the Hensel code representation of the rational
number o = (a/b) - p® with respect to the prime p and the approximation r.

The forward mapping is essentially the application of EEA to d and p" in order
to find | d=1 [,-. Since we isolate the p-part, we can restrict our attention to @ and
assume that d and p are relatively prime. Then we can solve the Diophantine equation
p"-x+d-y=1. Then y=|d~!|,» because

|p - z+d-ylpr=1 (modp")=[d-yl.

Theorem 2.1 (FORWARD MAPPING) Given a prime p, an integer r and a rational
number a = (¢/d) - p”, such that ged(c,p) = ged(d, p) = 1, the mantissa mant. of the
code related to the rational number «, is computed by the Extended Euclidean Algorithm
(EEA) applied to p" and d as:

mant, = c-y (mod p")

where y is the second output of the EEA applied to d and p".



62

Proof. See [Miog4]. 1

Let us note that the correspondence between the commutative rings (Q, +,-) and
(H,», +, -) is not bijective, since each Hensel code mantissa . agaq - - -a,_1 (= Z::_S a; -
P’ € Zpr) in H, ,, is the image of an infinite subset of the rational numbers. For this
reason we need to define a suitable subset of Q, such that the correspondence between

this subset and H, , is injective.

Definition 2.2 (FAREY FRACTION SET) The Farey fraction set I, . is the subset of

O such that: i
a/beQ:ged(a,b)=1

and

T 1
0<a<N, 0<b<NA, N:{ p2 J

I

» Will also be called the Farey fraction set of order N, as N = N(p, r).

Definition 2.3 The generalized residue class Q). is the subset of@ defined as follows:

Q% = {a/be Q such that |a/b|,r=k}.

From the last definition it follows that

Theorem 2.2 Let N be the largest integer satisfying the inequality
NI +1<p"

and let Q) contain the order-N Farey fraction x = a/b. Then x is the only order-N
Farey fraction in Q.

Proof. See [GK84]. 1

Also the backward mapping is carried out by EEA. In this case we have to solve
the following Diophantine equation: m -z 4+ p" -y = 1 for  and y. This means that

m y 1 1

PR 2
pr r z-p" e,

where by hypothesis z < p”, so that we compute an approximation of }%. In the
sequence of pairs (#;,y;) produced by the EEA the result then is found looking for
Yi € [Fpr.
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Theorem 2.3 (BACKWARD MAPPING) Given a prime p, an integer v, a positive in-
teger m < p" and a rational number c¢/d € F, , C Q, let m be the value in Zipr of
the Hensel code mantissa related to c/d, then the FEA, applied to p” and m, com-
putes a finite sequence of pairs (x;,y;) such that there exists a subscript j for which

zj/y; = c/d.
Proof. See [Mio84]. 1
From these considerations we can finally state the following theorem.

Theorem 2.4 Given a prime p, an approrimation r, an arithmetic operator ® in Q
and the related arithmetic operator ® over Hl, .. Then for any ay,as € Q, if

OZ](I)OZQ = a3, ag € Fpm;
there exists precisely one 8 € Hl, , such that

Hp (1)@ Hy r(a2) =

and furthermore § = H, ,(as).

On this basis, every computation over Hl, , gives a code which is exactly the image
of the rational number given by the corresponding computation over Q.

A general scheme of computation may consist in mapping on H, , the rational
numbers given as input to the computation and then performing the computation over
Hl, » . However, by Theorem 2.3, the inverse mapping can be performed only when the
expected result belongs to [, .

We note that the choice of order of truncation, as well as the choice of the base p,
are made in accordance with an a priori estimation of the magnitude of the solution
of the problem. In fact we must identify a suitable set of Farey fractions that contains
the rational solution; the choices of p and r are a consequence of this identification.

Such an estimate depends in general on the given algorithm /problem one is inter-
ested in. The computation of the estimate may turn out to be a difficult problem. Let
us mention some examples.

1. arithmetic over the rationals: Let us consider the computation of a®, where a € Q
and b € Z. The number of bits which are necessary to represent the rational result
is: b -log, a.

2. algebra of polynomials: For example, it is easy to compute in advance the maximal
coefficient which can be obtained by a polynomial multiplication. In fact: given
the polynomials 3" a; -2’ e ZT:O bj a7, if a = max{| a; |}1<i<n, b = max{]
bj [}1<j<m and ¢ = max{a,b}, then the greatest coefficient of the polynomial
result is smaller than max{n, m} - ¢2.
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3. linear algebra: For example, it is well known that the determinant det(A) of an
n-dimensional square matrix A, is bounded by n!-a”, where a = max{| a;; |
bo1<ij<n.

There is also a class of mathematical problems which are particularly well-suited
for being solved by p-adic arithmetic: these are problems which are affected either by
overflow during the computations or by ill-condition as we will see with the case study
that we are going to analyze and implement.

Below we will discuss in more detail a bound for the solutions of linear equation
systems over rational numbers.

For a detailed treatment of the algorithmic aspects of operations on Hensel codes,
as well for the treatment of pseudo-Hensel codes, we refer to Limongelli and Pirastu

[LP96].

2.2.2 Bounds for the Solutions

As we saw in the previous sections, the computation of a suitable bound for the size
of the solutions is a fundamental step of any p-adic algorithm. In our case we consider
systems of linear equations over rational numbers. This means that, for a given matrix
A€ Qunand b e Q", we need an integer m such that, if a solution vector ¥ =
(Z1,...,2n) € Q" of AZ = b , exists, then the denominator den; and the numerator
num; of each entry z; is bounded by m, viz.

|den;| < m, |num| < m (2.3)

For the case A € Z"*" and b € Z" such a bound m can be easily computed, for
instance, by Cramer’s rule. We have in fact

_ det(AZ)

17 et (A)

where det(A) denotes the determinant of A, and A; is the matrix obtained from A by
substituting the zth column by b. Now let @ be a maximal entry in a matrix M € Z"*"
then by induction on n one has det(M) < nla™. From this and (2.4) we obtain that
both numerator and denominator of any z; are bounded by m := n!a™, where a is now

a maximal entry in A and b. From this bound we determine a value for r, such that
the result is in F, , for a given prime p. From the definition it suffices that

nla"” < \‘ P IJ (2.5)

(2.4)

2

Considering the square of both sides of the inequality we obtain 2(nla™)? 4+ 1 < p".
This implies ]ogp(Q(n!a”)2 +1) <log, p" or, equivalently,

r > ]ogp('Z(n!a”)2 +1) (2.6)
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Hadamard’s inequality (see for instance [Mig83]) gives another bound for the de-
terminant

1/2

kel kel

det(A)? <JJ (D ai; (2.7)

i=1 \j=1

From this bound the following condition is derived in [GK84]

P I Do (2.8)
i=1

i=1 \ j=1

In practice both bounds are still conservative, since a smaller choice of p and r is
often sufficient. In the general case A € Q™*™ and be Q" the bound for the numerator
and denominator of the z;’s becomes nla”(®*1) This follows again from Cramer’s rule
by considering the equivalent system obtained from A by multiplying each row by the
common denominator of all entries in that row and of the i¢th entry in b, i.e., multiplying
by a number of magnitude of at most a™*t?!.

2.2.3 The Parallel Algorithm

The parallelization is based on the concurrent application of Gauss’ algorithm on several
homomorphic p-adic images of the problem.

The multiple homomorphic images technique [Kri85, Lip88] presents the following
characteristics:

1.

the image domains are simpler than the original domain so that the image prob-
lem can be solved more efficiently;

the forward mapping preserves the operations in every image domain as stated
in Theorem 2.4;

the transformation leads to several independent homomorphic image problems
each of which can be solved exactly, independently and in parallel as Figure 2.5
shows.

the correctness of the recovery step is assured by the Chinese Remainder Algo-
rithm that has been parallelized in [Lim93b, LL93] on the basis of the following
theorem taken from [Kri85] (the computation of each summand in (2.9) is done
in parallel).

Theorem 2.5 (Chinese Remainder Theorem) Let p1, ..., pr be k relatively prime

integers > 1. Then for any s1,...,sg(si < m;) there is a unique integer s satisfying
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k
5<Hpi::M
i=1

and s; = s mod p; ; the integer s can be computed using

fom
s= —)s;T; mod M, 2.9)
;(pi) (2.9
where T; 1is the solution of
M
(—)T; =1 mod p;.
pi’

Many computer algebra algorithms use the modular approach. There the input is
mapped into a homomorphic image, the computation is done in this image and the
CRA is performed in one iteration of a big sequential loop. This step is repeated
until enough image results have been computed to reconstruct the result in the original
domain*.

Since in the sequential approach the CRA is interleaved with the remaining algo-
rithm it is not possible to use a parallelized CRA for computing all necessary Chinese
remainderings in one step.

In the following we describe the parallelization algorithm on, say, k concurrent
processors, like in Fig. 2.5. Let us note that we have arbitrarily many virtual processors
available, which will be automatically mapped and distributed on the real processors.

We first compute k prime numbers p1, ..., pr at random and the corresponding code
length 7 according to the computed bound, such that the entries of the solution & are
expected to be in [Fy ,, where g is the smallest prime number such that g > p1---px
(Step 1.1, Fig. 2.6).

At this point k parallel tasks are started. Each of them computes the image of the
problem with respect to one prime in p-adic representation of the rational entries, i.e.,

-

Hy, ,(A) and H,, .(b) (Step 1.2, Fig. 2.6). By a certain abuse of notation we denote
by Hp, r(A) the matrix (@; ;) with @; ; = Hp, »(a; ;), and analogously for H,, , (E)

Then for each processor a sequential implementation of Gaussian elimination is
executed via p-adic arithmetic (Step 1.3, Fig. 2.6).

Note that an homomorphic image of the problem may not allow a solution, since,
for instance, the determinant of the matrix might be zero modulo the particular prime.
In this case the program detects that a prime cannot be used and computes, at random,
another prime. Then it applies the same algorithm on the new homomorphic image.
Although such a situation implies a considerably longer execution time for the Gauss’
algorithm, it turned out that this case did not often arise during our tests.

*One example for such an algorithm is the computation of the ged over polynomials with the TPGCDC
algorithm in SACLIB (see [C193]).
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InpPUT A,g
PRIME COMPUTATION 1
P1,P2,...,Pk
FORWARD MAPPING e N N
HENSEL CODES Hp, »(A), Hp, r(b) Hp, r(A), Hp, »(b)
1 1 1
(GAUSS ALGORITHM 1 1 1
4 1 1
SOLUTIONS #V = Hy, () #H = Hy, +(2)
SYNCHRONIZATION AW 3 Ve
5(1)7 N ’f(k)
e N
Ve + N
&0 & S
CRA (RECOVERY STEP) 1 1 1
UNIQUE SOLUTION 71 € Hy,» Zn € Hy,,
INVERSE MAPPING N 3 N
{
OuTPUT z
Figure 2.5: Parallel Computation Scheme
Gaussian elimination computes solutions #(*) € Hp, , for i = 1,... k. After col-

lecting all of the Z(!) we execute k concurrent calls of CRA that have to be applied to
codes with null exponent. In order to do it, we must multiply and shift the codes (Step

1.4, Fig. 2.6). We apply to each sequence of components .17(-1), R Jf‘g-k), obtaining the
component x; € Hy , of the solution vector # (Step 1.5).

From the assumptions made on the bound and on r, the list {f(l), . ..,f(k)} of
results obtained this way can be mapped back to a vector over the Farey fraction set
Z € Iy, by the EEA. From Theorem 2.4 we know that if the solution exists in [y ,,
then it is unique (Step 1.6).

After this, the result # only needs to be converted from the p-adic to the usual

representation by the backward mapping, applied in parallel on each component.

In the case of dense matrices with large dimension and size with respect to the
number of processors, also standard parallelization techniques for dense linear systems
could be applied.
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Input: n: degree of the linear system;
A = (aiy) € Q™" n-dimensional square matrix;
b= (a1,n41y---1annt1) € Q™ column vector;
P1, ---, Pk, k prime numbers;

-

Output: F=(zr1,...,7,) € Q": solution of AZ = g, if it exists;

Begin

1.1.

1.4.

End

(PRIME COMPUTATION)

Compute the maximal integer number a among the numerators and denominators of the
rational entries in A and E; compute the truncation order r, as shown in (2.6); compute
the number k& of necessary processors; compute g;

start k parallel tasks

1.2. (FORWARD MAPPING)
In each task apply the parallel mapping Hy, » to all the entries of A and bin order
to obtain the Hensel Codes;

1.3. (GAUSS’ ALGORITHM)
Compute Gauss’ algorithm in each domain H,, , in parallel in order to obtain the
k vectors solutions: #) = H,, ,(7),...,#% = H,, ()

end k parallel tasks

(SYNCHRONIZATION)
For each of the k domains, the exponents of the related codes must become zero (in
order to apply CRA);

start n parallel tasks

1.5. (CRA)
Apply parallel CRA to each k-tuple fl(-l), ceey xE
start k parallel tasks
(UNIQUE SOLUTION Z; FOR CRA)
end k parallel tasks

-

. o
and find n solutions £1 € Hy, ..p, ry ... Tn € Hpyopp v

1.6. (INVERSE MAPPING)
Apply the backward mapping to each of the solutions, obtaining & = (z1,...,zn);

end n parallel tasks

Figure 2.6: Parallel Algorithm
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Table 2.1: Comparison of sequential and parallel algorithm

Dimension Input Size Sequential Parallel Speedup
10 10 3064 692 4.4
15 10 9388 1792 5.2
20 10 27707 4421 6.2
20 20 57014 7563 7.5
20 30 69481 11196 6.2
25 10 61528 8751 7.0
25 20 108695 15813 6.8
30 10 119890 16893 7.0

2.2.4 Implementation and Experimental Results

As a parallel environment for our implementation we used PACLIB (see [H*92]), a
system developed at RISC-Linz for parallel computer algebra. PACLIB is based on
the SAcLIB library (see [CT93]), which provides several computer algebra algorithms
written in C. On the other hand, several other symbolic computation systems provide
a parallel implementation of a linear system solver. For instance, we discussed at the
beginning of this chapter a solver based on the Gauss-Jordan algorithm implemented in
the system ||[MAPLE||, that can also handle symbolic entries, and in particular rational
numbers.

We performed several tests of our implementation on randomly generated linear
systems on a Sequent Symmetry machine with 20 processors, a MIMD computer with
shared memory.

The parallel implementation is compared with the corresponding sequential imple-
mentation, where we apply sequentially the same mapping onto Hi,, , for the same
primes p; as in the equivalent parallel execution.

In Table 2.1 the execution times of both the sequential and the parallel implemen-
tation are reported in milliseconds. The input size is the maximal bit length of the
numbers. If the entries are rational numbers the numerator and the denominator have
a bit length bounded by this input size. Parallelizing the algorithm over 10 processors
we achieve a speedup up to 7.5, in comparison to the sequential algorithm.

We compared our implementation with an efficient modular parallel implementation
for systems over integers which makes use of a mixed method (Gauss and Cramer),
implemented in PACLIB. We consider two cases:

1. The input data are integers;

2. The input data are rationals. We present the case where only the vector b has
rational entries.
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Table 2.2: Comparison of modular, p-adic, and rational p-adic when length=10.

Dimension Modular p-adic Rational
5 321 218 278
10 692 619 718
15 1422 1719 1315
20 3210 3315 2995
25 5972 5756 5579
30 14309 12299 11107

In the first case, p-adic arithmetic is essentially reduced to modular arithmetic and
the backward mapping becomes almost trivial, so that no improvement is achieved.
Since the denominator of any component ; of the solution # divides det(A). So
Hyr(x;)  Hy,(det(A)) is an integer and no backward mapping is needed, since we have

M) Hy e (det(4)) /g

v det(4) (2.10)

where /- /4 is the signed modulo mapping to {—g;—l, Ceey g;—l} Remark that the
determinant det(A) is computed as a direct by-product of Gaussian elimination.

In the second, more interesting case, in order to do a fair comparison with the
modular algorithm, which accepts only integers entries, we have to study the size of
equivalent inputs for both algorithms. Let A € Q"> be again the matrix describing a
system over the rational numbers and let s be the maximal size among all denominators
of the entries in A and b. We must transform AZ = b to an equivalent system A'% = b
with integer entries. This means to multiply each row/equation by an appropriate
integer. It is easy to see that the smallest integer m; such that m;d;, m;b; are all
integers, is equal to the lem over all denominators arising in the jth row @; (resp. b;)
of A (resp. g) In the worst case, m; will be the product of all denominators (i.e.,
m < (n+ 1)s). In the comparison, one must take into account this fact, although the
average size of m will be usually smaller than this.

Here we are considering rational entries only in b. So, if s is the size of the entries
for the p-adic algorithm, the entries of the modular algorithm will be of size 2s.

In Table 2.2 we show the behaviour of the algorithms for fixed input length. For
the considerations stated above a length of 10 for integer entries means a length of 5
for the rational case.

In Table 2.3 the timings of some executions are shown, where the dimension of the
system is 20.

We also compare our sequential algorithm with the implementation available in

MapleV (see [CFG186]). MapleV implements a fraction free Gaussian elimination, so
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Table 2.3: Comparison of modular, p-adic, and rational p-adic when dim. =20.

Input length Modular p-adic Rational

5 1908 2024 1722
10 3007 2966 2903
15 3519 3957 3416
20 5760 5441 4421
25 7502 8785 7067
30 9845 11151 9037
35 11222 11734 10023
40 22406 21372 11023

the equations are converted to have integer coefficients and after each elimination step,
the greatest common divisor of the coefficients is divided out to minimize growth. The
timings in Fig. 2.7 show the behaviour of the algorithms.

As expected, the p-adic representation is at least as efficient as the modular one for
the case of integer coefficients and more efficient for the case of rational coefficients.

These experimental data confirm the expected behaviour of linear algebra algo-
rithms implemented via p-adic arithmetic as regards the heavy computational com-
plexity of CRA. In [Lim93b] it is shown that for problems with many large input data
the asymptotic running time of the p-adic algorithm is never dominated by the cost of
the recovering step.
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Figure 2.7: Comparison of MapleV and the sequential p-adic algorithm with dim. =20.
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On the Combinatorial Structure of

Umbral Calculus

3.1 Introduction

Umbral calculus essentially can be seen as the study of sequences of polynomials
(pi(2));cn Which satisfy a certain convolution properties, namely

P +y) =Y pi() pai(y) (for all n € V) (3.1)
or similarly

pn(z+y) = Z <1Z>pz(r) Pn—i(y) (for all n € N) (3.2)
2

Such sequences are called sequences of integer or binomial type, respectively. Most of
the well known polynomial sequences arising in combinatorics or in numerical analysis,
like for instance the Bernoulli or the Legendre polynomials, are strictly related to
sequences of integer type.

The convolution property of sequences of integer type suggests to make use of a
structure of coalgebra on the vector space K[z] of polynomials, say C = (K[z], A, ¢),
where the comultiplication A is defined in analogy to the substitution p, (z) — p,(z +

y), l.e.,
n n 1 n—i
Az" = ZZ: <2> ’r®x

and the counit ¢ is the evaluation at zero: € (p(z)) = p(0) (for a precise definition see
[JR79] and [NS82], we give a recall in Section 3.8). In this framework umbral calculus
is then the study of all linear bases of K[z] which behave like the standard one (xi)ieN
with respect to A, or, in other words, which satisfy (3.2). Such bases are in some sense
associated to so-called shift-invariant operators, i.e., operators which can be expressed
as formal power series in the usual differential operator d/dz.

This approach, presented in several articles (see, besides the works cited above,
also [CNP84, CNP86, CP84]), already gives an elegant linear algebraic description of
umbral calculus.

Our aim in this paper is to give a description starting with less assumptions on
the structure of the underlying set, in order to point out which requirements are really

73
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necessary for an umbral structure. Instead of the polynomial ring we consider a general
vector space V of countably infinite dimension over a field of arbitrary characteristic.
The analog of the differential operator on polynomials will be any sharply nesting
operator on V, as described later. In principle, this is sufficient to develop the whole
structure and shows, in our eyes, its simplicity in a more direct way.

In particular, this way one easily convinces himself that the structure of all so-
called non-standard umbral calculi (for instance, the g-analogs presented in [T181, Kir79,
Rom85]) is always the same.

In addition, our approach is completely characteristic free, so that not only polyno-
mials are included into the model. For instance, linear recurrent sequences over finite
fields fit into the presented framework as well.

A further aim of this work is to state clearly the connection between the sequences
studied 1n umbral calculus and the so called recursive matrices. As a matter of fact, in
the last years such matrices (also called Riordan arrays or convolution matrices) found
renewed interest (see [Knu93] and [Spr94]). We will derive several properties of the
two dimensional sequences defined by recursive matrices and show that they naturally
follow from the proposed description.

Future work will concentrate on the algorithmic study of recursive matrices, with
a particular attention to their relationship to inverse relations of sequences. From a
symbolic computation point of view, several questions are still open.

This chapter reports on joint work with Giorgio Nicoletti.

For a extensive bibliography on umbral calculus we refer to the PhD thesis by A.
Di Bucchianico [Buc91], also available on-line as part of the dynamic survey on umbral
calculus published by the Electronic Journal of Combinatorics.*

3.2 Summary

In this section we give a short introduction to the whole chapter on umbral calculus.

We will consider as basic structure a vector space V of countably infinite dimension.
Most of the work is concerned with the study of linear functionals on V, i.e., elements of
the linear dual V*, or with endomorphismsin End(V), i.e., linear operators S : V — V.

In order to give a meaning to infinite series over operators, in Section 3.3 we intro-
duce the finite topology on V* which naturally extends to a topology on End(V). In
this topology convergence of sequences and therefore series of linear operators over any
index set can be naturally defined. Although the finite topology turns out to describe
just what one usually does, we study it in some detail in order to make clear that the
topological structure directly follows from the underlying vector space structure. Tt
should be noticed that most of the properties presented in this section still hold when
the dimension of V is not countable. In this case we state the propositions according
to the more general situation.

*WWW address http://ejc.math.gatech.edu:8080/Journal/Surveys/index.html
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On the other hand the reader may, as a matter of fact, skip Section 3.3 if he is
not interested in a precise topological justification of the introduced computational
framework.

Particularly important in our approach are such operators S € End(V), for which

the sequence of kernels (ker Si+1)ieN builds a nesting sequenceJr for V, that is, when
> ker S+l =V and ker S C ker Sitl | where we denote by >_; Bi the space generated
by the union of all B;’s. We then call S a nesting operator on V. For the vector
space generated by a set B we write (B;), or just (b) if B = {b}.

In the case that the dimension of V is countably infinite and dim (ker Sit+1/ ker Si) =
1 we speak of the sharply nesting operator S, which then plays the role of the delta
operators in the classic umbral calculus, since for some basis (Ez)zeN of V we have
Sl;o =0 and ng’+1 = l;, Such a basis is then called S-compatible. See the sections
3.5 and 3.6 for detailed proofs and definitions.

Already in this framework it is possible to prove, for instance, that the ring of all S-
invariant operators of a sharply nesting S, i.e., all T"such that T'S = ST, is isomorphic
to the ring of formal power series in one variable, since such an operator 7' can be
expressed as a series T'= )", t;S" in the finite topology. In the usual umbral calculus
a particular S is fixed and chosen as the differential operator, and the S-invariant T’
then are the shift-invariant operators.

At this point we are almost ready to introduce the central concept of umbral
coalgebra over V. For a coalgebra C = (V,A,¢) we say that S € End(V) is a hemi-
morphism if AS = (id ® S)A holds (see Section 3.8). This definition is strongly
motivated by the analogy to the behaviour of delta operators with respect to the sub-
stitution p(z) — p(z + y).

In Section 3.9 we define a coalgebra C to be umbral if it admits a sharply nesting
hemimorphism S, which turns out to be equivalent to the existence of an umbral
basis (gi_)ieN; that is, a basis for which

holds. As it is to be expected, such a basis will be S-compatible for some sharply
nesting hemimorphism S and corresponds to a basic sequence of polynomials in the
usual umbral calculus (S then corresponds to the associated delta operator).

We want to point out that the behaviour of a sharply nesting hemimorphism S with
respect to the comultiplication A can be described in a natural, in essence combinatorial
way. This is based on the property of S to act like a shift on any S-compatible basis
(Ei)ieN. If we represent an element in V ® V by the bi-infinite tableau of coordinates

with respect to the basis (l_)‘l ® EJ) . then (id ® S) (or (S ® id), respectively) acts
1,5 €
like a shift to the top (or to the left, respectively) on this tableau (see Section 3.8).

TIn other contexts, like, e.g., in projective geometry, such a structure is usually called a flag.
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This point of view allows us to give most of the proofs in a more pictorial, and
hopefully more understandable way. Most of the basic properties of umbral sequences
are shown in this framework, see Section 3.10.

In Section 3.11 we study the matrix representation of automorphisms U of C. Such
an operator U maps umbral bases into umbral bases and is called umbral operator.
The framework described here allows to derive without any extra effort that the matrix
with respect to the umbral basis (;);en representing such a transformation (5;);en —
(¢3)ien 18 a recursive matrix (in the sense of [BBN82], or a convolution matrix, like
other authors say), see Section 3.12. Since the matrices corresponding to U and to the
inverse U~! are inverse to each other, they describe an inverse relation on arbitrary
sequences. In this context properties of the matrices (and so, of the inverse relations
as well) can be derived from the study of some natural questions about the operators
involved.

In Section 3.13 we present the factorial functions (introduced in [BBN86]) as an
example of a umbral structure which is not isomorphic to the polynomial coalgebra.

3.3 The Finite Topology on V*

Let V be a vector space with infinite, not necessarily countable dimension. In this
paper all vector spaces are meant over some arbitrary but fixed field K of arbitrary
characteristic, if no particular field is specified. The set N is the set of nonnegative
numbers, while N+ = N\ {0}. For the standard topological notions we refer to [Bou89].

We define the finite topology on the linear dual V* of V by a certain basis of neigh-
bourhoods of zero. This topology naturally extends to a topology on End(V). We show
later that concepts like summability and formal power series of operators and linear
functionals on polynomials arising in the umbral calculus are based on this topology.
We point out that the finite topology does not depend on the chosen base of ¥V and
does not even require that ¥V has countable dimension, since it can be defined on any
vector space V. It is no additional effort to define series in V* over an arbitrary index
set.

Consider the set 20° of subspaces of V* defined as follows

20° := {X°; X is finite-dimensional subspace of V} (3.3)

where X denotes the annihilator of X, ie. X0 := {f eV f(X)= {6}} Then 20°

defines a topology on V*, as the following proposition states.

Proposition 3.1 The family 20° is a basis of neighbourhoods of zero for a Hausdorff
vector topology on V*.

Proof. Since all elements X? € 20% are vector spaces, we have that X% — f = X0 for all
€ X0 So, if X%is a neighbourhood of zero, then it is also a neighbourhood of all its
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elements. Furthermore any finite intersection of elements from 20° is in 20°. In fact,
it is easy to prove that for any finite sequence X, ..., X, € 20° the following holds

n 0
xIn--nx8 = (Z&)
i=1

Since Y7, X, is again a finite-dimensional subspace of V, we have X9n...NX% € 20°.
This shows that 20° is a suitable basis of neighbourhoods of zero for a vector topology.

Now we prove that the vector topology defined by 20° is Hausdorff. Let f and
g be distinct elements of V*. Since f # g there exists ¢ in V such that f(¥) # g(¥).
Consider now the neighbourhoods f+(#)? and g+(#)° and assume that there is a linear
functional h in (f + (#)°) N (g + (#)°). This implies that h(#) = f(¥) and h(¥) = g(¥),
which gives a contradiction to f(%) # g(¥). This proves that any distinct f and g have
disjoint neighbourhoods, so the topology is Hausdorff. 1

Definition 3.1 We call finite topology on V* the topology defined by 20° as a basis
of neighbourhoods of zero.

The fact that the finite topology is Hausdorff implies that any limit point over any
filter is unique and, in particular, that any sequence has at most one limit point.

We define the concept of seriesin a more general way than we will later need in our
investigations, i.e., allowing any infinite, not necessarily countable set of indices. Let
I be in the following any infinite set of indices. The family §(7) of all finite subsets of
I is a directed set with respect to set inclusion. For this reason I-indexed series can
be associated to generalized sequences over §(I) and their sums can be defined in the
finite topology as follows.

Definition 3.2 Let ¢ := (¢;)ies be an I-indezed family of functionals in V*. For any
finite subset J of I the functional

PJ = Z i
JjeJ

ts called the finite partial sum of ¢ with respect to J.

The family (p.1)sex(r) of all finite partial sums of ¢ is then a generalized sequence
and 1s called the series associated to ¢, denoted by Zie[ i

The family ¢ is said to be summable if the series ), i converges in the finite
topology to a (unique) functional . In this case ¢ is called the sum of the series
Y icr i (or, equivalently, of ¢).

Note that the definition of series does not require any ordering of the index set I,
and that the limit ¢, if it exists, is unique.

Due to the structure of the finite topology on V*, a series Zie] ©; 1s summable if,
and only if for all ¥ € V we have ¢;(¥) = 0 for almost all i € I. In the following lemma
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several characterizations of this property are shown, justifying the choice of the name
finite for this topology.

Lemma 3.1 Let (¢;)ier be an I-indezed family of functionals in V* and ¢ € V*. Then
the following statements are equivalent.

1. The family (pi)ier is summable and ¢ =3 ;1 ;.

2. For every finite dimensional subspace X of V there exists a finite subset Jx of T
such that for all J € F(I) we have

JxCJ = pr€p+X°
3. For every finite dimensional subspace X of V the set
Jy={iel; ¢ ¢ X"}
is finite and ¢ 5, () = @(¥) for all ¥ € X.
4. For every ¢ € V the set
Jp={iel; @i(¥) #0}
is finite and ¢, (0) = (V).

Proof. 1<=2 : Condition 2 is just a reformulation of the definition of convergence for
a generalized sequence. Recall that the neighbourhoods of zero in our topology are
precisely those of the form X° for X a finite dimensional vector subspace of V.

3<=4 : Condition 4 directly follows from condition 3 by considering X = ().
Assume now that Condition 4 holds. Consider an arbitrary X C V with finite dimension
and let {¥y,...,7,} be a basis for X. Then it is easy to see that Ji = Jz U---U Jz,
and condition 3 holds.

3=2: Assume that Condition 3 holds. We prove that for Jx = J{ we have
Jx CJ = p5€ ¢+ X"forall J € F(I). Let now J be arbitrary finite subset of T
with J§ C J. Observe that for all j € J\ J¢ we have ¢; € X°. This implies

(=)@ =0 =Y i@ — > @@= > ¢i(@=0

jeTL JET\ Iy JET\ Ty

for all ¥ € X,s0 ¢ — s e X0,

3<=2: Let X be any finite dimensional subspace of V and Jx like in Condition
2. Assume that Condition 2 holds and consider then J§ from Condition 3. For any
J € J% such that j € Jx we have Jx C Jx U {j}. By Condition 2 this implies that
o1 +¢; € ¢+ X% which is in contradiction to ¢; & X° So, J¢ C Jx and, in

particular, Jf is finite. Furthermore, for all j € Jx \ J& we have ¢; € X° This means
that @7 (7) = e (7) = p(7) for all 7€ X. N
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From now on, let Z be a suitable index set for a basis of V and consider a basis

B := {I_)‘z, i € T} of V. We denote by ' the linear functional defined by
pi(by) = b

where §;; is Kronecker’s symbol. Then the set {3'; i € Z} forms a pseudobasis for V*,
as explained in the following.

Proposition 3.2 Let B = {E,, i €T} be a basis for V. Then the family B* := {3%; i €
7} is a pseudobasis for V*, i.e., every functional ¢ € V* can be written in a unique

way as
p= ulf

i€l
Moreover, for every i € T we have

-

ci = p(bi)

Proof. We prove that the sum
o= p(bi)p
i€l
exists and converges to ¢. From Condition 4 of Lemma 3.1 it is sufficient to prove that
for every [_;j € B the set JEj = {z ez, [3’2(5]) + O} is finite and s, (Z_;J) = gp(l_;J) From

the definition of & it is evident that Jgj = {j} and @(b;) = (b;)3 (b;) = s, (b;). 1
Definition 3.3 For all bases B of V we call B* the dual pseudobasis of 5.

At this point it is natural to study the structure of the set of operators on V*, which
are continuous with respect to the finite topology. We will see in the next section that
the adjoint map provides an isomorphism between the operators on V and the set of
such operators.

Let Ende (V™) denote the space of all endomorphisms of V* which are continuous
in the finite topology and 7" be an operator in End¢c(V*). For any series (¢.7)reg(z)
converging to ¢ we have that (T'ps) 7e5(z) converges to T'. For this reason if (¢;)iez
is summable, then so is (T'¢;)icz. In other words the following lemma holds.

Lemma 3.2 Let T be a continuous operator on V* and (¢;)iez a family in V*. Then
(pi)iez ts summable if and only if (T'p;)icz is summable. Furthermore, in this case we

have - (Z %)

i€l i€T
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Example 3.1 Consider the linear functional ¢ defined by 50(1_);) =1 foraliel.
From Proposition 3.2 we have
p=)_0

1€l
If T € Endc(V?), then Tp = dieT TB. In particular, this implies that for all ¥ in
V we have TF'(¥) = 0 for almost all i in T. We will need this remark in the proof of
Proposition 3.3.

Our main attention in the rest of this work will be devoted to the algebra of End(V)
of operators on V. An interesting property of the finite topology on V* is that it
naturally extends to a topology on End(V), providing a framework for handling series
and sums of endomorphisms in the following sections. It is easy to see that: The set

of subspaces of End(V)
{XJ‘; X is finite-dimensional subspace ofV}

where

X+ ={S €End(V); X C ker S}

forms a basis for the neighbourhoods of zero in a vector topology on End(V), which
we also call finite topology on End(V). Families (S;);ez of operators on V are said
to be summable in analogy to Definition 3.2 and the corresponding version of Lemma

3.1 holds.

3.4 Adjoint Operators

The finite topology on V* shows an interesting relationship between the endomorphisms
of V and the continuous endomorphisms of V*. We prove in Proposition 3.3 that the
space End(V) is isomorphic to Ende(V*). This enables us to define a finite topology
on Ende (V*) as the image of End(V).

Recall that the adjoint map

End(V) — End(V?), S — 5°

is defined by S*p := ¢ o S for all ¢ € V*. The operator S* is then called the adjoint
operator of S.

Notice that the map is well-defined and linear. Furthermore one has that (SoT)* =
T* o S* and (S71)* = (S*)~! if S is invertible. This adjoint map turns out to be an
isomorphism between End(V) and End(V*), as we state in the following proposition.

Proposition 3.3 Let V be a vector space with infinite dimension. Then the adjoint
map is a vector space isomorphism between End(V) and Ende (V*).
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Proof. We first prove that for all S € End(V) the adjoint S* is continuous, then we
prove that the adjoint map is injective and surjective. The fact that the adjoint map
is compatible with the vector space structure follows directly from the definition.

Let S be an operator from End (V). Since the set 20° is a basis for the finite topology
we only have to prove that X% € 20° implies (5*)~1(X% € 20°. For all ¢ € V* and
X0 e 999 we have

pe ()T (X)) & FWex"iyp="5pe X ={0}
& poS(X)={0} & S(X)Ckery
& pe(SX)°

Since S (X) obviously has finite dimension, this proves (S$*)~1(X%) = (S (X))O € 0.

Let ¢ € V* denote the trivial functional {(¥) = 0 for all & € V. Consider any
operator S such that S*¢ = ¢ for all ¢ € V*. Since S*p(¥) = ¢ o S(¢) = 0 for all
¢ € V* and # € V, it must hold S(#) = 0 for all # € V. This proves that the adjoint
map is injective.

We prove that the adjoint map is surjective. To this purpose, let T € End¢(V*).
We have to find an S € End(V) such that 7'= S*. Consider a basis {by; i €T} of V,
then we claim that for the operator defined by

S(b;) = T (b;)bs
i€l
for all j € Z we have T'= S*. Remark that S is well-defined because T is continuous
in the finite topology, so T3 (h;) = 0 for almost all i and the sum at the right-hand
side of the definition is a finite one. We have to check that for every ¢ € V* we have

Ty = poS. From Proposition 3.2 we can write ¢ = ) .7 so(l_;z)[)” Then we have for
all j €Z

Te(b;) = T(Zw@)ﬁ") (b)) =Y w(B:) (15 (5y))

i€l i€T
E— (Zmi(z?j)z?i) = o S(b;)
i€Z

This completes the proof of the proposition. B

Note that, since the adjoint map is a vector space isomorphism, the finite topology
on End(V) induces a topology on the image End¢ (V*).

3.5 Nested Vector Spaces

The umbral calculus is mainly based on the structure of a nested vector space. This
concept is directly related to the notion of graded vector space.
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Definition 3.4 A pair V = (V, (V,)ien) is a nested vector space if

1. V; is a subspace of V for all i € N, and
2. dimVy > 0, and

3. Vi C Vi foralli €N, and

4.V = ZZ V;

In this case (V;)ien is the nesting sequence of V. A nested vector space V =

(V, (Vi)ien) is sharply nested if dimV; =i+ 1 holds for all i € N.

In other words, a nested vector space V is sharply nested if dimV;41/V; = 1 for all
i € N and dimVy = 1. In the following, V denotes V = (V, (V;)sen) if the context is
unambiguous. We explicitly observe that a nested vector space must have infinite, and
a sharply nested vector space countably infinite dimension.

The bases of V which satisfy the nesting property play an important role in the
following.

Definition 3.5 A sequence B = (B;)ien is a nesting basis for a nested vector space

V if Bi 1s a basis of Vi and B; C Biy1 for all i € N.

From the definition it follows in particular that UieN B; is a basis for V. In addition,
it is easy to show that a nesting basis exists for any nested vector space:

Proposition 3.4 For any nested vector space V there is a nesting basis B for V.

Proof. We define the components of B = (B;)ien inductively on ¢ as follows. Since
dimVg > 0 we define By as a basis of V. Assume now that for any n € N we already
determined B,, as basis of V,,.

Since V,, is a subspace of V,,;1, B, is an independent set of vectors in V,, 41 and it
can be extended to a basis B, 41 of V1. This proves the statement by induction. 1

If V is sharply nested , then dim (V;41/V;) = 1. This means that Card(B;+1\ B;) =
1, say By = {50} and B \ B; = {Z;H_l} for all i € N and we write for simplicity
B = (bi)ien.

The proof of Proposition 3.4 shows the difference between a graded and a nested
vector space. The definition of a graded vector space would consider a particular
choice of the possible extension VS of V,, such that V, 41 = VH@VS, while the nesting
structure does not need this additional information. In the following proposition we
explain this relationship.

Proposition 3.5 Let V = (V, (V;)ien) be a nested vector space. Then there exists a
sequence (W;)ien of subspaces of V such that

V=W, ad V=W, (VieN) (3.4)

iEN j<i
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Furthermore for any such sequence we have Wo = Vg and for alli € N
Wip1 = Vi1 /V; (3.5)

Proof. Let V = (V,(V;)ien) be a nested vector space. By Proposition 3.4 there ex-
ists a nesting basis B = (B;)ieny with respect to (V;);en. Define Wy = (By) and
Wit1 = (Biy1 \B;) for all i € N. Obviously, W; is a subvector space of V for
all # € N. It is easy to see that from the definition of a nesting basis follows that
By, = BoU (B1 \ Bo)U---U (B, \ B_1), where U denotes the disjoint union of sets. So,
V.= @j<n W; holds. Furthermore, since UieN B; is a basis for the whole V we have
V =@;cy Wi. Property (3.5) directly follows from (3.4).

Example 3.2 For umbral calculus the most interesting example is the vector space of
untvariate polynomials over K, denoted by K[z]. For V = K[z] we can define

Vi = {p(z) € K[z] ; degp < i}

where deg p denotes the polynomial degree of p. Then V = (V,(V.)ien) is a sharply
nested vector space and a nesting basis is given, for instance, by (z');cy. On the
other hand, several grading sequences (W;);en as in Proposition 3.5 are possible for V.
Consider, for instance, the possibilities given by W; = (p;(z)) for any p;(z) € K[z] of
degree 1.

3.6 Nesting Operators

From the concept of a nested vector space it is straightforward to ask for particular
operators which induce a nesting structure on the space. The concept of a nesting
operator on a vector space is introduced here. Attention is given to computational
methods for determining nesting bases with particular properties with respect to such
operators.

Definition 3.6 Let V be an infinite-dimensional vector space. A linear operator S on
V is a nesting operator (resp. sharply nesting operator) if V = (V, (ker Si+1>ieN)
is a nested (resp. sharply nested )} vector space. For any nesting operator S a nesting

basis B = (B;)ien for V = (V, (ker Si"'l)ieN_), is called an S-nesting basis.

Observe that a nesting operator S is sharply nesting if dim (ker Sitl [ ker Si) =1
holds for all ¢ € N.

Definition 3.7 Let'V be an infinite-dimensional vector space and S a nesting operator

on V. Then an S-nesting basis B = (B;)ien of V = (V, (ker Si+1)i€N) is called S-
compatible basis if SBy = {0} and SBiy, = B; U{0} for all i € N.
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Equivalently, an S-nesting basis B = (B;)iex is S-compatible if SBy = {0} and
S (Big1 \ Bi) =B\ Bi_1.

The case of a sharply nesting S is particularly important for umbral calculus. In
this situation an S-nesting basis B = (B;);en has the form B; = {30, 51, ce 1_7;} for some
sequence (Ez’)iEN~ This means that B is S-compatible if S(l_;o) = ( and S(E,-H) = b;
for all ¢ € N. Let now S be sharply nesting and any element ' € V be represented

with respect to a given S-compatible basis (b;);en, 1.e., by a sequence of constants

(vo,v1,va,...) such that & = 37, v;b; and almost all v; are zero. Then the action of
S on ¥ can be intuitively described by the following shifting property on sequences

5(17) = S(UQ,U1,U2, . ) = (vl,v2,v3,...)

With respect to this property, it is clear that any @ such that S(&@) = ¥ will correspond
to a sequence (wg, vy, vy, Vs, - - -) for some wy.

It is not true in general that for any nesting operator S € End(V) there exists an
S-compatible basis. In fact, from the existence of an S-compatible basis it easily follows
that S is surjective. As we show in the next proposition, this already is a sufficient
condition.

Proposition 3.6 Let V be a vector space and S be a nesting operator on V. Then an
S-compatible basis exists if and only if S is surjective.

Proof. One direction is obvious. Let now S € End(V) be a surjective nesting operator.
We define B as follows. Let By be an arbitrary basis of ker S. We prove that for any
basis By of ker S"*! there exists a basis Bn41 of ker S"+2 such that SB,41 = B, U{0}
and B, c Bt

Define BS := {g° i be B}, where b° is an arbitrary chosen element of 5_1(1_;) for
all b € B,. Since S is surjective, B is well-defined. We prove that B,y1 := B2 U By
satisfies the conditions above.

Consider any # € ker S"*2. Since S(¥) € ker S”"*! we have

and therefore
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for some # € kerS. This proves that B° U By generates ker S"+2.  Furthermore
eBo )\50 b° = 0 1t follows
> ies, Aot = 0 and so A, = 0 for all b° € B, The linear independence of By 41 =
B° U By completes the proof. N

the elements in By, are linearly independent, since from 3z,

The following result is a direct consequence of the proof of the last proposition.
Corollary 3.1 Let S be an operator on V. If S is surjective, then
ker "1/ ker S™ = ker S
holds for all n € Nt and, in particular, dimker S"t! = dimker S 4 dimker S.

If S is a surjective nesting operator, we may speak of dim (kerS) as the nest-
ing step of S. As a trivial consequence, if S is a surjective nesting operator with
dim (ker S) = 1, then S is sharply nesting . On the other hand, if S is decompasable
into sharply nesting operators then S is surjective; more precisely:

Lemma 3.3 Let V be a vector space, S a nesting operator on ¥V and T a set with
cardinality Card(Z) = dim (ker S). Then S is surjective if and only if S is decomposable
by a sequence of sharply nesting operators (S;)iez.

Proof. Let S be a surjective nesting operator on V. We have to prove that there exist

(Wi)iez with W; C Vand V = @iez W; such that

S=s

1€l

for S; sharply nesting operator on W;.
Since S is surjective, an S-compatible basis B exists. Consider By = {b; ; i € Z}
and define the sequences (A4;);ez and (W;);ez by

A; = {EE U B; ; S”(E) = b; for some n € N}
JEN
and W; = (A;) for all i € Z. Then it is easy to see that V = @iel W;. Defining
S; € End(W;) to be the restriction of S on W;, we have that S; is sharply nesting on
W; and furthermore S = ®iel S;.
On the other side, assume that such sequences (W;)icz and (S;)iez exist. S; is

sharply nesting on Wj, so let BY) = (I?Ej))ieN be Sj-compatible basis of W; for all
J € Z. Then the basis B = (B;);en defined by

B; = {EZ(J) i JET}

is an S-compatible basis for V. From this it follows that S is surjective on V. 1
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A condition for a surjective nesting operator S to be sharply nesting is given in
Proposition 3.12.

In the case where S has finite nesting step, an S-compatible basis can be induc-
tively constructed from any S-nesting basis. In the following proposition we describe
an algorithm for this construction, mainly based on the solution of linear systems of
equations over K.

Proposition 3.7 Let V be a vector space and S a surjective nesting operator on V of
finite nesting step. Then an S-compatible basis can be computed from any S-nesting
basis.

Proof. Let S be nesting operator on V of finite nesting step d and B = (B;)ien an
S-nesting basis for V. From Lemma 3.1 it follows that dim(ker S't') = Card(B;) =
(¢ + 1)d, or, equivalently, that Card(B;4+1 \ B;) = d for all i € N. Let now Bi(fl_l denote
the set Bip1 \ B; for all i € N with BS = Bo, and let BS = {5\, ... bV},

We inductively construct an S-compatible basis A = (A;);en from B. First we show
how to compute A¢ such that S'Al-CH C A, then how to choose the elements d’z(-i)l

such that S(c'iz(-ﬂ_)l) = c'iz(-jj. The computation mainly consists of solving systems of linear
equations of dimension d over the ground field.

We proceed by induction on i. For i = 0 we have Aq := By and Eigj) = g(()j). Assume
now that the components Ay, ..., 4; of the S-compatible basis .4 have already been
computed and consider the set B, = {Egi_)l, ce ggi)l}.

Since SBiy1 C B; holds, we have also SB;j41 C (A;) forall j =1,...,d, s0

s () = 30 At

0<n<i
1<m<d
holds for some constants A%?n By induction we know that SAS ; = A for all n < i.
This implies
D) = X %A Y
\ém<d o<ngio1
1<m<d
= S aPam e+ > A, sal)
1 <m<d 0<n<io1
= T<m<d
We now define . ) )
b‘I] = bz‘zH - Z )‘1(1"71,)113 +1
0<n<i—1
i<m<d

Observe that Z;; is obtained by a linear combination of an element of B ; and elements
from (A;) = ker S**t'. This means that all l_;’l, . ,I_)Zi are linearly independent and
A U {gﬁ, ey f_)zi} is a basis for ker §+1.
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In addition S( ) = ZK <d X A glm) , where we write for simplicity A$) instead of

Z

)\( . We conclude the proof showing that constants ozk can be computed such that

d
for &'Z(-i)l = Zaii)’;ﬁ we have S (EZ(-Q]) — g\
k=1

J

Define a; q\) Zk 1 ozkb with indeterminate ay. From the considerations above

i+1 =
we can write

d d d
() = 3ol X = 3 (el )

k=1 m=1 m=1

(k)

To determine constants a*}i such that Zk ai)\m = 0, corresponds to solve a
system of d linear equations in d indeterminates for each j. The solvability of the

systems above is given by the linear independence of l_;lp . ..,I_)Zi, which implies the
linear independence of the coefficient rows /\5,%), Aﬁ,i’) form=1,...,d.
An analogous reasoning shows that the elements d'(_ll_)l cen d'z(i)l computed in this way

are linearly independent and that A; ;1 := A; U {-‘z+1’ Ce z+1} satisfies the conditions
stated in the lemma. 1

Since the most interesting case for umbral calculus is the sharply nesting one, we
state the last proposition for S sharply nesting and give an equivalent method for
computing an S-compatible basis.

Proposition 3.8 Let'V be a vector space and S a sharply nesting operator on V. Then
an S-compatible basis can be obtained from any S-nesting basis.

Proof. Let S be sharply nesting operator on V and V = (V, (ker Si"'l)ieN_).
an arbitrary S-nesting basis B = (Ez’)iEN of V. We construct an S-compatible basis
B = (1; )ien from B.

Since S (ker S) = {0} we have S(bo) = 0 so we put b’ = bo Assume now that
we already found the first part bO, .. b of the S-compatible basis B’. We obtain

Consider

b;_l_l from that sequence as follows: Cons1der S(Ej+1). It is straightforward to see that
S (ker $7*2) C ker S7*1. Since gj+1 € ker S92 we have for some constants Ag, ..., \;

S (B41) = Nobly+ -+ + NiF (3.6)

Tf \; = 0 holds, then S(b;41) € ker S7 and b;11 € ker S/+1. This implies <50, o Ej+1> =

ker S7+1 | which is a contradiction to the nesting property of (b z)zeN So A; # 0 neces-
sarily holds.
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Now 1t 1s sufficient to define

j=1
Vg =7 (le -3 Akb;H)
k=0

and one easily verifies that from this definition and (3.6) it follows that

s(0a) = 7 (s(5) - ) - (Sr-Ena)

_ -1 "’/' _ "/.

= A7 \by =0
Since b7 is a linear combination of b;11 and by, ..., b5 where b; 1 arises with nonzero
coefficient, the sequence b, ..., b5, is a basis for ker S7+2. This proves that the nesting

basis (g:)zeN defined this way is S-compatible. 1

Proposition 3.9 Let V be an infinite-dimensional vector space. Then a surjective
S € End(V) is a nesting operator on V iff there exists a nesting sequence (V;);en for
V such that SVq = {6} and SYiy1 =V, for all i € N. In addition, if dimV;1/V; =1
for all i € N then S is sharply nesting operator.

Proof. Tf S is a surjective nesting operator, then the sequence (ker Si*+1);c satisfies
the condition in the proposition. It is sufficient to consider an S-compatible basis B
for the proof.

Let now (V;);en be a nesting sequence for V such that SVy = {0} and SVip1 =V,
for all i € N. From this it follows directly that V; C ker Si*! so if V = 3, V;; then
also V=3, ker §'*+1.

For proving that (ker $t1); ¢y is a nesting sequence for V it is now sufficient to prove
that ker S # ker S't! for all i € N. We show by induction that (ker S"*! \ ker S™) N
V, # 0 forall n € N. For n = 0 we have {0} # Vo C ker S and ker S \ ker §° =
ker S\ {6}, so the condition holds. Assume now that it holds for n > 0 and consider
any y € (ker S"T1\ ker ") N'V,,. Since SV,41 = V,, and S is surjective, there exists
agin S7H(y) Nker S"*2 NV, ;1. Tt is easy to see that § ¢ ker S"+!| since otherwise
y = Sy € ker S, a contradiction to the choice of y. So § € (ker S"+2\ker S"+1)NV 1.
This completes the proof. In general we have V; C ker St and ker S*+! C V; 5. If
dimV;41/V; = 1, then V; = ker Si*! always holds and S is sharply nesting . 1

Example 3.3 For the univariate polynomial space V = K[z], which is nested as in
Ezample 3.2, a corresponding nesting operator is S = d/dxz, i.e., the usual differential
operator on polynomials. In addition, S is also sharply nesting. The basis (z');en is

1

S-nesting, but not S-compatible, since S(z") = nz"~' # z"~'. We apply Theorem

3.8 and compute an S compatible basis (}_;:)zeN We have by = by = 2% = 1 and



5(51) =Skx)=1= b, so bt = z. From S(z?) =2z = 26, we have by = 2715, = 5.

This way S(z?) = 32? = 65’2 and l_;g = 6"1hy = &-. Iteration yields I;Z = %, the
sequence of divided powers.

3.7 The Algebra of S-invariant Operators

If S is sharply nesting, then the S-invariant operators, i.e., all T' € End(V) such that
TS = ST, build an algebra. In addition, this algebra is isomorphic to the univariate
formal power series algebra with respect to addition and convolution. The property of
a nesting operator S to provide a nesting sequence for V has the implication that all
sums over powers of S are summable, as the following proposition states.

Proposition 3.10 Let S € End(V) be a nesting operator on'V. Then for any sequence
(ai)ien in the scalar field K of V, the sequence (a;S%)ien is summable. In other words,
for any formal power series a(t) =) ;. a;t' in K[[t]], the series

a(S) =Y a;S

i€N
converges in the finite topology on End(V).

Proof. By Lemma 3.1 it is sufficient to prove that for any # € V we have a;S*(#) = ]
for almost all i € N. Since S is nesting, we have that 3. ker S = V, so the proposition
holds. B

By abuse of notation let K[[S]] denote the set of all operators which can be written
in the form ZiEN a;S*. Note that, obviously, not every operator in End(V) can be
represented as such a sum and, if S is not nesting, not all formal series Zz’eN a; S
necessarily converge. In the case of a sharply nesting operator S, the operators of this
form are precisely the S-invariant operators, i.e., the operators which commute with S
with respect to composition of operators, and furthermore K[[S]] =2 K[[¢]].

Theorem 3.1 Let S be a sharply nesting operator on V. Then K[[S]] is the mazimal
commutative sub-ring of End (V) containing S.

Proof. Assume that S is sharply nesting operator. We have to show that for all T' €
End(V), TS = ST holds if and only if T'= 3, a;S* for some dien a;tt € K[[t]] Tt
is evident that every operator of the form ), a;S" commutes with S. For the other

-

direction, let B = (b;)ien be an S-compatible basis of V and 7" € End(V) such that
TS = ST. From the fact, that for all n € N

ST (EO) =TS (30) =T (6) =0 and ST (gn-l-l) =TS (gn+1) =T (En)
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it follows that T(En) € ker S”*1 ie.,

7 (5) = SSAD,
( ) 1=0
for some sequence of constants )‘;n) and all n € N. Since ST(I;HH) = T(gn) holds, we

have )\,(In_)l = )\Eln_il). This means that there is a sequence (A;)ien such that T(gn) =
S Ancibi.

To describe the situation more explicitely, we can represent this fact by the following
diagram

PN, N
(0,0,-.,0,1,0,..) 7 (Mgt A 20,0,

| i

0,...,0,1,0,..) T My 20,0, .)

—

where the form of the upper right element 7'(b,41) follows from the commutativity
of the diagram and the shifting behaviour of S with to the chosen S-compatible basis
chosen.

From this considerations it directly follows that T = ZieN a;S* for the sequence
(@;)ien defined by a; = A; or, more precisely, by

=t (1(1))

where ﬂo(gj) = do; gives the coefficient of I;o in the representation of the argument
with respect to B. 1

From the last few lines of the proof of Theorem 3.1 we can directly derive the
following proposition.

Proposition 3.11 Let S be a sharply nesting operator on V and T an S-invariant
operator. Then T can be written as T'= ;. a; S where

—_)
for any S-compatible basis (Ez)zeN

For a surjective nesting operator S, the converse of Theorem 3.1 holds in the fol-
lowing sense.
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Proposition 3.12 Let S be a surjective nesting operator on V. Then, if K[[S]] is the
mazimal commutative subring of End (V) containing S, then S is sharply nesting .

Proof. Let S be a surjective nesting operator on V and assume that K[[S]] is the
maximal commutative subring of End(V) containing S. From Proposition 3.6 there
exists an S-compatible basis B = (B;);ey of V. Let Z be a suitable index set for the
elements of By. Then we can write B;41 \ B; = {Ez(i_)l | j € I} with S(l_;z(i_)l) = I;Z(.j) for
allze Nand j €Z.

We prove that Card(Z) = 1 holds, i.e., S is sharply nesting . For this purpose let jg
be an arbitrary but fixed element of Z. Then we define an operator 7' € End(V) such
that 7" behaves like S on the jg-th chain in the basis B and maps all other elements to
6, viz.

T (i) = {FE& ifj = jo and i >0
' 0 otherwise
Observe that T' is S-invariant, since we have

TS (Egﬂ) - ;Eg—)l) ft}"l;ise _ {Eﬁ D) ifi>1and j = jo

0 otherwise

ST (z?gj ))

for all i € N and all j € Z. From the assumption above it follows that 7' is expressible
as a serles ZieN a;S" for some constants (a;)iey. This implies that Z = {jo}. In fact,
assume that ji € Z exists with ji # jo. Then from

T(5V) =Y as (V) = zk: B =
=0

i€N

—a(J) . . .
s () ifi>0and j=jo :{bg_g if i > 1and j = jo
S (0) otherwise

0 otherwise

for all & € N it would follow that a; = 0 for all i € N, a contradiction to the definition
of T'. This completes the proof of the proposition. I

We explicitly observe that the following proposition holds.

Proposition 3.13 Let S € End(V) be sharply nesting . Then the ring K[[S]], as a
sub-ring of End(V) with composition, is isomorphic to the ring K[[t]] of formal power
series with the usual convolution.

Proof. Let (gi)ieN be an S-compatible basis and let U,V be S-invariant operators.
Then from Theorem 3.1 it follows that U = «(S) and V = §(S) for some «, 8 € K[[t]].
Then one shows by straightforward verification that UV(gn) = («(9) [)’(S))(gn) for all
neN. N



92

The interpretation of the inverse of a series with respect to composition is explained
in the following corollary. For a formal power series a(t) € K[[t]] we write a'™?(¢) for
the compositional inverse of a, if it exists, i.e., a(a'™?(t)) = o™ (a(t)) = t.

Corollary 3.2 Let S and T be sharply nesting operators on V. Then ST =TS holds
if and only if there exists an invertible a € K[[t]] such that

S =a(T) and T = amU(S)

Proof. From Theorem 3.1 it directly follows that S € K[[T]] and T € K[[S]], so S =
a(T) and T = §(S) for some a, 8 € K[[t]]. In addition it holds that S = a(8(S)) and
T =B(a(T)), ie., B=a™". 1

In the following proposition the S-invariant operators represented by a series, in-
vertible under convolution, are characterized. They are precisely those operators, which
map S-compatible bases onto S-compatible bases.

-

Proposition 3.14 Let S € End(V) be sharply nesting and let B = (b;)ien be an
S-compatible basis. Then a basis (5;)ien is S-compatible if and only if (5;)ien =
(T‘lbi)ieN for some invertible and S-invariant operator T'.

-

Proof. Let S be sharply nesting and B = (b;);en an S-compatible basis. Assume that
for some invertible S-invariant operator T' we have 5; = T~ 'b; for all i € N. Then

S(Fi41) = ST (biy1) = T7'S(Biyr) = T7'(h) =

and S(5p) = T_ls(go) = T_1(6) =0. So, (5i)ien is S-compatible.

For the other direction, assume that (5;);en is an S-compatible basis. We have to
prove that there exists a family of constants (a;);en such that § = aol_;i-l-- . -—|-ail;o for all
i € N, with ag # 0. In this case we would have a suitable 7" defined by 77! =", a; St

Let now 5; be associated to the sequence of coefficients of its representation with
respect to (l_;z)zeN . Then from the fact that ;41 € 5_1(5’2-) follows that

gz' = (60,61,62, . ) _— §i+1 = (d, cp,C1,Ca, .. )

where d = $%(5i31). With the fact that 55 = (ag,0,0,...) for some ag # 0, because
5y € ker S and 5y # 0 we have by induction that § = 7! (I_);) for the invertible operator
defined by
=) 0()S
i€N
|

On the other hand, the isomorphism K[[S]] = K[[t]] holds only for nesting operators,
as we state in the following proposition.
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Proposition 3.15 Let S € End(V). If K[[S]] C End(V) and K[[S]] = K[[t]] then S is

nesting.

Proof. TLet S be an operator on V and assume that K[[S]] C End(V) and K[[S]] = K[[¢]].
From the fact that all series Y, a;S’ converge in the finite topology on End(V) it
follows that for all ¥ € V we have S'% = ( for almost all i € I, so V = > ker S
and, in particular, dim (ker S) > 0. In addition, from K[[S]] = K[[¢]] it follows that
ker S # ker S**! for all i, since otherwise for some i € N we would have > ;5" =
> a;S" + aS' for all constants a. This shows that S is nesting. 1

3.8 The Algebra of Hemimorphisms

As we said, sharply nesting operators on V mainly play the role of the delta operators
in the classical umbral calculus, when we impose the following behaviour with respect
to the convolution. Compared to the polynomial case, for any coalgebra the analogues
of shift invariant operators are the hemimorphisms defined below, while the sharply
nesting hemimorphisms correspond to the delta operators.

Let us first recall that for V a vector space, C = (V, A, ¢€) is a coalgebra if

AV—VRY, ¢:V—K

and the following diagrams commute

V—— >VQV V—o>VoK
| jor ]
A id@A (=] 1d®e
Vv
A
A% twist
A
Veov

Note that in the whole work we always consider cocommutative and counitary
coalgebras. Tt is easy to show that, in addition, the A is injective. Let namely A7 = Ab,
then we have (¢ ® id)A7 = (¢ ® id)Ab, and this implies ¥ = b by the properties of the
counit €.
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Definition 3.8 Let S € End(V) and C = (V,A ¢) a coalgebra. Then S is called an
hemimorphism of C if
AS=(d®S)A

or, equivalently, AS = (S ®id) A. We denote by Hem(C) the algebra of all hemimor-
phisms of C (as a sub-algebra of End(V)).

Note that in general id ® S # S ® id, but, since C is cocommutative, we have
(id® S)A = (S ®@id) A for any operator S.

Let S be a sharply nesting hemimorphism of C and (gi)ieN an S-compatible basis.
In order to describe more intuitively the meaning of Definition 3.8, we associate to each
element 7 @ @ € V® V the bi-infinite sequence (7;;); jen of coefficients with respect
to the basis (1_7; ® gj)i,jeN; e, 7@ T =), Tijl_;i ® [_;j. Then, similarly to S, a shifting
property characterizes the action of S®id and id® .S on (Ei®gj)i,jeN . This corresponds
to shifting the bi-infinite sequence one step to the top, or to the left, respectively, as in
the following simplified diagram

Tio T11 T12 Too To1 Toz - To1  To2 703
Tog To1 - S@id | g T - deS | m1 1o

T30 - — T20 - — T21
Some interesting basic facts on the structure of the algebra Hem(C) are described
in the following statements.
Lemma 3.4 For any coalgebra C the algebra Hem(C) is commutative.
Proof. Let C = (V,A,¢) and T, S € Hem(C). Then we have
ATS = (T@id)AS = (T®id)(id® S)A = (T ® S)A = (id® S)(T ®id)A = AST
Since A is injective, this proves that T'S = ST. 1

Proposition 3.16 For any coalgebra C the algebra Hem(C) is isomorphic to the dual
algebra C* = (V*, u,u) of C. Moreover, for any T € Hem(C) the adjoint operator T*
corresponds to the multiplication by a constant functional, namely

T = (B ® T*u(1))

holds for all 3 € V*.

Proof. Consider any T € Hem(C). Since AT = (T ® id)A we have the dual property
for the adjoint operator

T = p(T" ©id) (= p(id ©T7))



95

In particular, from p(8 ® u(1)) = g for all 3 € V* we have
0 = T (8 @ u(1)) = ulid @ T)(8 & u(1)) = u(3 & T"u(1))

So T* corresponds to the multiplication with T*u(1) in C*. Tt is then straightforward
to verify that this is an isomorphism of algebras.

Proposition 3.17 Let C be a coalgebra and S € Hem(C). If S is sharply nesting then
we have the following algebra isomorphism

Hem(C) = K[[t]]

and S is a pseudo-generator of Hem(C), i.e., Hem(C) = K[[S]]. In other words, the
hemimorphisms of C are precisely the S-invariant operators.

Proof. Let S be sharply nesting . Then we know from Proposition 3.1 that K[[S]]
contains precisely the S-invariant operators. From Lemma 3.4 and S € Hem(C) we
have that Hem(C) C K[[S]]. On the other hand, it is easy to prove that all operators
in K[[S]] are hemimorphisms in C. This implies that Hem(C) = K£[[S]] = K[[¢]]. 1

If S is a sharply nesting hemimorphism, then all S-compatible bases behave with
respect to A in the way described in the following proposition. Recall that such bases
correspond to the Sheffer sequences of polynomials in the classical umbral calculus
[Rom8&4]. The proof of the assertion mainly rely on the shift-interpretation of AS =
(id @ S)A.

Proposition 3.18 Let S be a sharply nesting hemimorphism of C = (V,A ¢). Then
for any S-compatible basis B = (b;);en there exists a sequence (c¢;)ien of constants in

K such that
Agn = ch—izgj@)gz’—j (37)
J

i

holds for all n € N. Moreover
n—1
cg = E(bo)_1 and ¢, = —cq Z cie(bn_i) (3.8)
i=0

Proof. Let S be sharply nesting hemimorphism of C and (gi)ieN an S-compatible basis.
We show the assertion by induction. .

It is easy to see that (3.7) holds for n = 0: Consider that A S(by) = 0® 0. Since S
is a hemimorphism, this implies (S ®id)A by = 0©0. If we write A by = ) ; Ti;0; ® by,
then we have 7;; = 0 for all 4, j € N and 700 # 0. So, Ago = Cog() ® (;0.
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Let now (3.7) be already verified for n in N, i.e., we can associate to Ab, the
following bi-infinite tableau with respect to the basis (EZ ® gj)i,jEN

Cn Cpn—1 Cpn-2 '+ Cp 0
-1 Cp—z -+ ¢ 0
Cp—2 e co 0

Cp 0

0

Recalling the shifting property described above, the fact that
(S®id)Abny1 = (id ® S)Abnpr = AS(bpy1) = Ab,

directly implies that the representation of A ];n+1 as bi-infinite tableau must be

c €n Cp_1 -+ cg O

€n Cp_1 - ¢ 0
Cn—l PR CO 0

Cp 0

0

for some constant ¢. This proves by induction that Equation (3.7) holds.

Consider now the behaviour of ¢ on A En Since ¢ is counit in C we have
(e @id)Ab, = 1@ by
which implies with (3.7) that

en—ie(bi) = don
=0

This means that the series Zj cjmj and Zj 6(Ej)a:j are inverse to each other with
respect to convolution, which is equivalent to (3.8). 1

3.9 Umbral Coalgebras

In this section we define the main structure in our description of the umbral calculus, the
umbral coalgebra. This is a coalgebra with a sharply nesting operator, or, equivalently,
a coalgebra equipped with a basis which behaves in a certain way with respect to the
comultiplication. The correspondence to the polynomial case and the convolution will
be evident.
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Definition 3.9 A coalgebra C = (V, A, ¢) is called umbral if C has a sharply nesting
hemimorphism.

The behaviour of S-compatible bases for a hemimorphism S suggests to define a
reference basis for particularly simple values of the ¢;’s from Proposition 3.18, namely
c; = ;0.

-

Definition 3.10 Let C = (V, A ¢) be a coalgebra. Then a basis B = (b;);en of V is
called an umbral basis if

Agn = ZEZ@En_l

E(ETL) = 6077,

holds for all n € N. Moreover, if B is S-compatible for some sharply nesting hemimor-
phism S, then we call it an S-umbral basis.

As a matter of fact, the existence of such a basis in C is equivalent to the existence
of a sharply nesting hemimorphism.

Theorem 3.2 A coalgebra C := (V, A ¢) is umbral if and only if C has an umbral basis
B = (b)ien-

Proof. Assume that an umbral basis B = (I_;i)ieN of C exists. Then it is easy to check
that the operator S € End(V) defined by S(EH]) = [_;Z for all i € N and S(EO) =0is

sharply nesting. Furthermore

AS(bng1) = Aby =D b @baoi= D b ® S(bnoiy1) = (id @ S)Abnyr

so, S is hemimorphism of C and C is umbral.
For the other direction, assume that C is umbral, i.e., a sharply nesting hemimor-

—

phism S exists. Let (b});en be an S-compatible basis of C. We show that an (S-)umbral
basis (gz')iEN can be obtained from (I_;;)zeN

Let 77! = ZZE(EQ)S’ T—1 is well-defined as invertible operator since 6(36) #0
is given by the fact that l_;f) is a nontrivial multiple of bo. Then, by Prop. 3.14 we
know that (gi)ieN for b = T(I_)Z) is S-compatible. In addition, by Prop. 3.18 we
know that for 7' = 5, ¢;S*. Recalling that by the cocommutativity we have A =
(T ®id)(T~! @id)A = (T ®id)(id ® T71)A and so (id ® T~1A = (T ®id)A, we can

write

)

Ab, = AT@E,)=(de T AN, = ([T ")) i bob_;
J
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i i i,k
= Z (Z Cn—ig(g:'—j—m)) = Z _‘j ® gn_]
im i J

The last equality holds since
(Z Cn_iE(gg_j_m)) = [tn_j_m] (Z Citi) (Z 6(52)752) = (5n—j—m,0
where we denote by [t']a(t) the coefficient of ¢ in the formal power series o. B

Sometimes different bases are considered, and one speaks of non-standard umbral
calculus. In the following proposition we make clear that such a difference is not
substantial for many cases.

Proposition 3.19 A coalgebra C := (V,A,¢) is umbral if and only if there exists a
basis (U;)ien of V and a sequence (¢;)ien of non zero constants in K such that

A vy,

[l
]
9
Y
L

=1
®
3@1
|

6(17,1) = Coaon
holds for all n € N.

Proof. The proof is straightforward by noticing that the basis defined by b, = Un/Cn
is umbral. B

We still have to prove that umbral bases are unique with respect to S-compatibility
to a sharply nesting hemimorphism, so that we may speak of the S-umbral basis.

Proposition 3.20 Let C be an umbral coalgebra. Then for any sharply nesting hemi-
morphism S of C there is precisely one S-umbral basis.

Proof. From the proof of Theorem 3.2 we know that an S-umbral basis exists for
all sharply nesting hemimorphisms S. Assume now that (b;);en and (b});en are S-
umbral, then they are in particular S-compatible. Tt follows from Proposition 3.14

that I_)z = T‘l(gi) for some invertible 7' € Hem(C) and so

Al = AT (Ba) = (T @id)by = Y T (Bj) @ by = Y B @ by
) J

With AB, = 378, @ B, _; this implies b} = b; for all i € N. W
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As we saw before, any S-compatible basis can be obtained from another one apply-
ing an invertible S-invariant operator. Referred to the S-umbral basis this operator is
called associated operator, as described in the following definition.

-

Definition 3.11 Let S be a sharply nesting hemimorphism of C and (b;)ien the S-
umbral basis. Then for any S-compatible basis (5;)ien we call the operator associated
bn

pN

to (5i)ien the operator R such that 8, = R_l( ) for all n.

3.10 Some Formulas

In this section some of the well-known formulas of the umbral calculus are stated and
proved in the framework presented above. In the following we suppose C = (V,A,¢)
to be an umbral coalgebra.

Theorem 3.3 (First Expansion Theorem) Let S be a sharply nesting hemimor-
phism of C. Then for any hemimorphism T we have

T = Zaksk
E>0

with

for the S-umbral basis (gz)zEN

Proof. From Theorem 3.1 we know that 7" can be expressed as series in S. The form of
the coefficients ay also follows from the proof of Theorem 3.1 recalling that for umbral
(bi)ien the counit behaves like 81

Corollary 3.3 Let S be a sharply nesting hemimorphism of C, (5;)ien an S-compatible
basis and R the associated operator. Then

R™1 =) e(5,)5"

n>0

Theorem 3.4 (Second Expansion Theorem) Let S be a sharply nesting hemimor-
phism of C, (5;)ien an S-compatible basis and R the associated operator. Then for any
hemimorphism T and any ¥ € V it holds that

AT(#) = Y _ (S*RT(¥)) @ 5,

n>0



100

Proof. Denote by (Ez’)iEN the S-umbral basis b; = R(5;). Since AT = (T ® id)A we

only need to prove

A=) (S"R(¥)) ® 5

n>0
Let =37, v,-l;i. Since (I_;i)ieN is umbral it follows that the representation of A ¥ with
respect to (Ez ® I;J) is

i,JEN
Vo U1 V2 v3
- v v v
AT = 1 2 3
(%] U3
’US ......

The n-th row (or column) is given by the n-fold shifted representation of #/, this means
AT=3"5"(F) @b

On the other hand, since R is an hemimorphism, we have (R @ id)(id ® R™1)A =
AR™'R = A and we get the proposition

AT=(Roid)(idoR™")D_S"(#) @by = Y S"R(7) ® 5n

Theorem 3.5 (Binomial Theorem) Let S be a sharply nesting hemimorphism of C

-

and (b;)ien the S-umbral basis. Then a basis (5;);en is S-compatible if and only if

Az, = Zn:s”k ® b

k=0

Proof. One direction directly follows from Theorem 3.4 by choosing ¥ = §,,, R the
associated operator of (8;);eny and T = id.

For the other direction, assume that the equation above holds for all n. We prove
that (5})ien is S-compatible. For n > 1 consider

n n—1

AS(5,) = (id® S)AS, =3 5 @ S(buk) = D 5k @ b1k = AFu

k=0 k=0

Since A is injective, this proves that S(s,) = §h—1. A similar reasoning proves S(5p) =

0. 1
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Corollary 3.4 Let S be a sharply nesting hemimorphism of C, (gz')z'eN the S-umbral
basis and (8;);en an S-compatible basis. Then

o= e(fk)baonr

k

Proof. From the Binomial Theorem above we know that

n
A, = E 5k @ bn_g
k=0

Applying (¢ ® id) on both sides of the equation we get

(e ®id)AT, = > e(5k) @ bas
k=0

Recalling the counitary property (¢ ®id)AS, = 1 ® §,, the assertion directly follows. B

In other words, any S-compatible basis (5;)ien is determined by the value of € on
it (evaluation at zero in the usual polynomial case).

Proposition 3.21 (Recurrence Formula) If (5;);en is an S-compatible basis for
some sharply nesting hemimorphism S then for every sharply nesting hemimorphism
T there exists a sequence (a;)ien of constants such that

T(5) = 3 an e (+)

k

Conversely, if such a sequence exists for some sharply nesting hemimorphism 'I' then
(51)ien is S-compatible for some S.

Proof. Assume that (§;);ey is S-compatible basis for some sharply nesting hemimor-
phism S. Since 7' € Hem(C) we have

T = a(S) = ZakSk

k>0

for some a € K[[t]], so (%) holds. Assume now that () holds for some sharply nesting
hemimorphism 7' and define S by S(55) = 0 and S(8n41) = &, for all n € N. Since
(5i)ien is a basis, the operator S is sharply nesting . An easy verification on (§;)ien
shows that 1'S = ST, so S is a hemimorphism. I
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3.11 The Umbral Group

In the usual polynomial framework for umbral calculus, the umbral composition of
a polynomial p(z) with respect to a basic sequence (qi(2));cy is defined as p(q) =
> aigi(x) for p(z) = >, a;2". An operator on polynomials acting like a substitution
of 2* by ¢;(«) is then called an umbral operator. In our framework an umbral operator
maps umbral bases of V onto umbral bases, or, equivalently, is an automorphism of the
umbral coalgebra.

Definition 3.12 Let C be an umbral coalgebra. Then we call the automorphisms of C
umbral operators on C and the group Aut(C) of automorphisms of C is also called
the umbral group on C.

The umbral operators build a structure like K[[t]]"*?, the set of formal power series
closed under substitution, i.e., composition.

Theorem 3.6 Let C be an umbral coalgebra. Then we have
Aut(C) = K[[t])™

Proof. From Proposition 3.3 we know that End(V) = End¢ (V*). This means that for
the coalgebra C we have Aut(C) = Autc(C*). In addition we have the well-known fact
that V* 2 K[[t]] (cf. also Proposition 3.2), so, we only need to prove that

Aute (K[[1]) = K™

Consider an arbitrary 7 € Aute (K[[t]]) and @ = 3, a;t* € K[[t]]. Since 7 is an algebra
isomorphism, from, say, 7(t) = # it follows that r(#') = #* for all i. Furthermore, since
the B’s must form a basis of K[[t]]""?, we have 3(0) = 0 and t appears with nonzero
coefficient in 3. Since 7 is continuous, we have

r(a(t) =Y air(t) =) aif (1)

I3 I3
Associating each 7 to the corresponding 3 gives the isomorphism we wanted to find.
Applying the automorphism 7 means then to substitute a given formal power series.
It is easy to see that the operation corresponding to the multiplication of continuous
automorphisms on K[[t]] is the substitution. In fact, consider 7, the associated g €
K[[t]I'"* and 7 € K[[t]] with the associated 3. Then for all a € K[[t]] we have
(rm)(@) = T(aof) =aof of. So, f'of is associated to 77'. 1

In the following proposition some more facts on hemimorphisms and umbral bases
are described. We point out in particular the importance of item 3.

Proposition 3.22 Let T' be an umbral operator of C. Then the following statements
hold .
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1. The map S +— TST~! is an automorphism of Hem(C).

2. If (];i)ieN ts an S-compatible basis for some sharply nesting S then (T(Ei))ieN is
Q-compatible for some Q.
3. If(gz’)ieN ts an umbral basis for C, then also (T(gi))ieN is.

. If S is a sharply nesting hemimorphism, then also T'ST™' is.
4 1f ply g phasm,

v

. If S = a(Q) for some a € K[[t]], then TST™1 = o(TQT™1).

Proof. Ttems 2 and 3 directly follows from the definition of umbral operators. Ttem 1
follows from 4.

In order to prove 4, consider an S-compatible basis (Ez)zEN Since T is umbral
operator we have that (7'(b););en is @Q-compatible for some @. One easily verifies that

Q = TST?, since QT (byy1) = TST ' T(bpy1) = TS(bpy1) = T(b,) for all n. B

We give the next theorem without proof. It states a general version of the known
theorem describing the connection between the operators associated to a compatible
basis and those associated to the basis obtained applying an umbral operator (see, for
instance, [Rom&4]).

Theorem 3.7 Let S be a sharply nesting hemimorphism of C and (l_;i)ieN an S-umbral
basis. Let Q, P € Hem(C) be sharply nesting and (¥;)ien and (£;)ien be Q(resp. P)-
compatible bases with associated operator V' (resp. T). Let (§;)ien and (Ps)ien be
umbral with respect to Q and P, respectively. Furthermore, let v, p,q,t € K[[t]] be such
that

V:’U(S), P:p(S), Q:(I(S)a T:t(S)

Define the operator Ut by Uth, =1, for all n and (7)ien by 7, = U4,
Then (7;)sen is compatible basis with respect to the sharply nesting operator

with associated operator

and corresponding umbral basis
(UPqi)ien

where Upl;n = pp foralln € N,
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3.12 Umbral Operators and Recursive Matrices

In this section the matrix representation of the umbral operators is studied. Let
U € Aut(C) be such that Ub; = ¥; for some umbral bases (b;)ieny and (7;)ieny. Then
the following theorem describes the matrix representation of U with respect to the
basis (b;)ien. As a matter of fact, the theorem describes the more general case where
the basis (¥;);en is not necessarily umbral but S-compatible for some sharply nesting
hemimorphism S.

—

Theorem 3.8 Let (b;)ien be S-umbral, (5;)ien Q-umbral and (V;)ien Q-compatible
bases with associated operator R, i.e., such that v, = R™1(5,) for alln. Let furthermore

Q = q(S), S = ¢™(Q) and R = r(Q) for some q,r € K[[t]] and denote by (o)
and (p;)z neN the transformation coefficients defined by

Sn :ZO'ZZ_);' and U, :Zpigi
i i
Then for the row generating functions of (‘7;)1- neN and (p;)z neN it holds that
616 (t) = Zo_: " = qin’u(t)k'

Sk =) g )

i,neEN

R (t)

Proof. Let r=1(t) =3, e;t'. Then the assertion follows mainly by coefficient compari-
son from expressing A, in three different ways with respect to the basis (};Z ® EJ) .

i,jEN
From the fact that (5;);en is an umbral basis we have

AT, = ZElA Sl(gn) = Zen_hA 5, = Zen_h Z.S?l @ Sp_i = (39)

l h h

Zen_h Z 0'? O'i’_i gk ® gj = Z (Z €n—h ZO':C Ui—i) gk & gj

h 1,7,k ik h i

=" () SR (1) & (1)
On the other hand, if we represent 5§, by means of (Ei_)iEN we obtain

—

Av, = Zen_hA Sy = Zen_hZUszgZ’ = Z en_hozbj ®gi_j (3.10)

n h hoig
P U
= (Z@n—hfff) br © b;
ik h

= [t")r ()& (1)
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Finally, we directly have
A, = Zp;Agz’:Zp; gj®gz’—jzz pﬁ;"’k gk®gj (3.11)
i i j ke ey
’ B0

Since (3.9) and (3.10) hold for all n € N we can deduce that Gitk (t) = &7 (t)G’c (t)
and so G"(t) = (&1(¢))". With (3.11) this implies

R (1) =71 () (&' (1))"
Tt is still left to prove that &' (¢) = ¢'""(t). We prove the equivalent statement

&'Q) =5, ie., d Q=S5

It is easy to check that for all k& we have
(Sete)a = Yebio =YY
= 3 (Sedeba) = Sttt =5 Sk ) = s
n J J

i
=[t"16' (1) &7 (1)
]

Since @ and S play a somehow symmetric role in the last theorem, this can be
restated as follows, describing a class of inverse relations.

Proposition 3.23 Let the matriz A := (al,); , be given by r,q € K[[t]], such that q is
wnvertible under composition and r is invertible under convolution, and

> aktt =r(t)q(t)*
Then the matriz B := (bl); , defined by
Z bitn — r—l(t)qinv(t)k

1s wnverse to A. Explicitly, this means that

d, = Zaﬁcn e = Zbidn

n

holds for any sequences (d;)ien, (¢i)ien.
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Proof. The statement is just a reformulation of the preceding theorem, considering the
matrix (bﬁ)km(: (pﬁ)kyn) corresponding to the transformation b, — §, and its inverse.

We follow the notation from [BBN82] and say that A = (r(¢), ¢(t)) is the recursive
matrix defined by r and ¢ if the elements of the matrix A satisfy the conditions given in
the proposition. Note that such matrices have upper triangular shape. Many properties
of recursive matrices are described in [BBN82].

An interesting property of such bi-dimensional sequences follows from a natural
question: Given two sharply nesting hemimorphisms S, @ and an hemimorphism 7". If
we know the formal power series representation of 7" with respect to S, say T' = «(5)
for some a € K[[t]], how can we describe the coefficients of g € K[[t]] for T = 3(Q).

We know by Theorem 3.3 that for T' = " 6,Q" we have b, = ¢(T(5,)) for (5;)ien

@-umbral basis. On the other hand, using the notation given in Theorem 3.8, we can

write
T(5n) = aS)(5n) = (Z%Sk) Z‘T?Ez' = Z (Z U?flz’—z) Ez

and from this it follows that

by = e(T'(50)) = ZU?ai

(recall that for (gi)ieN umbral basis, ¢ = ° holds).

In other words, the formal power series representation of T" with respect to @ is the
generating function of the sums Y, 0%a;, where 7' = 3", a;S’. With the information
that S = ¢'*"(Q) we have T' = «(S) = a(¢""?(Q)) and the following proposition is
proven for the case of a recursive matrix of the form (1,¢™?(t)). The general case is
straightforward, when we consider the basis associated to the operator »~1(Q).

Proposition 3.24 Given a recursive matriv B = (b7),; = (r~'(t),¢'™"(t)) and a
sequence of numbers (a;);cn, the generating function of the sequence

i
i neN

is given by v~ (t)a(q'™"(t)), where a(t) = 3, a;it' is the generating function for the
sequence (;)ieN-

As an example, we give two particular cases of the application of the last proposition.
The first 1s the generating function for the column-sums of the matrix and the second
for the polynomials in z with coefficients from the columns.



Corollary 3.5 Let the sequence (b7), ; be given by the recursive matriz B = (r(t), q(t)),
then !
r(t)m is the generating function for be

1 ,
r(t)w 1s the generating function for Zb?zz

Let us consider now, for two sharply nesting hemimorphisms S and @ as before, the
operator W such that S = W@Q. The existence of T is ensured by the corresponding

equation over formal power series. We know that @ = ¢(¢), so we can equivalently
determine w(t) € K[[t]], such that

t=w(t)q(t)

since ¢(0) = 0 and ¢(1) # 0, and W = w(9).

The existence of such an operator W has an interesting consequence for the recursive
matrix (p ), s = (r71(t), ¢V (t)). If we write W = ), w; S and apply both S and WQ
to the @-compatible basis corresponding to r~1(S), then we get (using the notation
from Theorem 3.8)

S(Fat1) = WQUny1) = W(i,) = (Z wisi) > hbi
i J

Zwkpfzgz’—k = Z (Z Pflwl+k) El

ik l i

and
i+1 p
Un+1 Z P:z+1
Equating coefficients we get a recurrence along the columns

i1 i+k
pn+1 - Z Wk Py,

Surprisingly, this recurrence does not depend on 7(t).

Note that computing w(t) as proposed above, i.e., to compute w(t) = tg~'(t) from
a given ¢'"U(t) corresponds to invert with respect to convolution the compositional
inverse of the series ¢!V (t).

Corollary 3.6 Let the sequence (p})n; be a recursive matriz, then there erists a se-
quence of constants (w;);en such that

i+1 i+k
pn+1 - Z Wk P,
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holds for all n and i in N. In addition, if (p7)n,; = (7(t),¢"™"(t)), then Y, wit' is the

inverse of q(t) with respect to convolution.

3.13 A non-polynomial application: Factorial functions

In the case that the field K has characteristic zero, the most natural, in some sense
canonical, example of a nested vector space doubtlessly is the vector space K[z] of
univariate polynomials. The polynomial coalgebra (K[z], A, €) is defined by A : p(z) —
p(z +y) € K[z] ® K[z] and e(p(z)) = p(0) and describes the classical umbral calculus
in one variable.

On the other hand, the polynomial coalgebra is not the only structure which can
be embedded into our framework.

An example of an umbral structure which is not isomorphic to the space of polyno-
mials is given by the so-called factorial functions, as introduced in a work by Barnabei,
Brini and Nicoletti [BBN86].

Let us consider bi-infinite sequences over K, this means the set H := K%, and define
the shift operator £ on f € H by (Ef)(z) = f(z + 1) for all € Z. The forward
difference operator A on H is defined by A := E — I, where I is the identity operator,
so Af(z) = f(z + 1) — f(2). Factorial functions are then sequences in H respecting the
following definition.

Definition 3.13 A function f € H is called a factorial function of degree n € N if
A"Tf=0 and At £0

Factorial functions of degree zero are precisely the non-zero constant functions,
while for the zero function 0 we define the degree to be +oco.

Denote by FF the set of all factorial functions in H. Then IF has the structure of a
K-vector space, with the usual component-wise addition and constant multiplication.

As a matter of fact, if K has characteristic zero, it is evident that one can look at
factorial functions as the restriction of polynomial functions over the integers. If K has
characteristic p > 0, then this correspondence is not valid any more. Namely, consider
that in this case, if f is the restriction of a polynomial function, then f(z + p) = f(2)
must be true for all z. As it will become clear below, this periodicity property does
not hold for all factorial functions f; when the characteristic is non-zero.

First, note that from the definition of factorial functions it follows that A is a
nesting operator for IF. In order to show that A is sharply nesting, we need a finitely
countable A-compatible basis for IF.

Let us define a sequence (b;);en of functions in H by

=

(x) :
(0) :
by(z+1) =bn_1(z) + by (z

0 for every z €7

=

n

1
0 forevery neZ*
) forevery we€Z,ne 7t
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The functions b,, are the so-called p-binomual coefficients, where p is the character-
istic of K, this means
b (a) = (:)
/p
and the b,’s take values in Z,.
We have that Ab,, = b,,_; for n > 1 and Abg = 0, so b, is a factorial function of
degree n.

We define a linear functional ¢ : H — K by ¢(f) = £(0). Then the following result
holds (see [MNRS1] for a proof).

Theorem 3.9 A function f in H is a factorial function of degree n € N if and only if

£=> arbs
k=0
with a, # 0. Additionally, if this is the case we have
ag = E(Akf)

This means that the b,’s form a basis of F. Additionally, (b;);en is a nesting basis
for IF which is A-compatible.

This way we can impose an umbral structure on IF, taking as sharply nesting hemi-
morphism A and as A-umbral basis the sequence (b;);en.

All the assertions in [BBN86] then can be expressed in our framework. Also the
classical umbral calculus, i.e., the umbral calculus on univariate polynomials, can be
described by means of factorial functions in the following sense. Assume that K has
characteristic zero, then to each polynomial p € K[z] of, say, degree n with

n
p= E ez’
i=0

we associate the factorial function f € F defined by

n .
7!
f= E —c;b;
L pl
1=0

This means that, if K has characteristic zero, then F is canonically isomorphic to
the vector space K[z] of polynomial functions (as we said, each fis simply the sequence
of values taken by a polynomial function over the integers).

In the case where K has non-zero characteristic the isomorphism does not hold
any more, although the umbral coalgebraic structure still remains valid. In this sense,
factorial functions over a field of non-zero characteristic provide an example of an
umbral coalgebra which is not isomorphic to the polynomial coalgebra.

As a further remark, note that in particular finite linear recurrences over finite fields
fall into this paradigm.
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