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Indefinite summation essentially deals with the problem of inverting the difference
operator A : f(X)— f(X +1)— f(X).

In the case of rational functions over a field k& we consider the following version of the
problem

given a € k(X), determine 8, € k(X)) such that o = A 3+, where ~ is as “small”
as possible (in a suitable sense).

In particular, we address the question

what can be said about the denominators of a solution (3,) by looking at the
denominator of o only ?

An “optimal” answer to this question can be given in terms of the Gosper-Petkovsek
representation for rational functions, which was originally invented for the purpose of
indefinite hypergeometric summation. This information can be used to construct a simple
new algorithm for the rational summation problem.

1. Introduction

The problem of indefinite summation is the discrete analog of the probleme of indefinite
integration: it essentially asks for inverting the finite difference operator

A J(X) = f(X + 1) = J(X)

on an appropriate space of functions.

In this article we consider A acting on the rational functions k(X') over some field & of
characteristic 0. (We may restrict our attention to proper rational functions, i.e. functions
f/g9 € k(X), where the polynomials f, g € k[X] satisfy deg f < degyg, since inverting A
on polynomials is trivial). Since A is not surjective on k(X), e.g. 1/X & Ak(X), we
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consider the summation problem for (proper) rational functions in the following form
(which was apparently first formulated in Abramov (1975))

given f/g € k(X), find a/u and b/v € k(X) such that
f_a (9> +2 (1.1)
g ' v

U

where the “remainder” b/v is as “small” as possible (in some suitable sense).

The corresponding problem in the case of indefinite integration of rational functions,
i.e. solving, for given f, g € k[X],
f d (a) b
== (- — 1.2
g dX \u + v (1.2)
for a,b,u,v € k[X], is usually attacked in either of two ways (see ch. 11 in Geddes et al.
(1992)):

e by iteratively building up the “rational part” a/u by extracting “integrable” con-
stituents of the b/v-part; (Hermite’s method)

e by first computing appropriate denominator polynomials u,v from ¢ alone, and
then solving the system (1.2) for a and b with undetermined coefficients (Horowitz’

method).

Naturally, one is tempted to try to carry over these classical techniques to the situation
of the difference operator. But this turns out to be less straightforward than one may
expect. Indeed, the approach described in Moenck (1977), trying to simulate the Hermite
method, suffers from theoretical deficiencies.

These problems were first noted by P. Paule who tries to establish (among others)
a firm theoretical basis for the rational summation problem, introducing the concept
of greatest factorial factorization in place of the squarefree decomposition used in the
integration situation. Based on this concept, in Paule (1993) a Horowitz-type summation
algorithm for rational functions is proposed, which has the disadvantage of producing
denominator polynomials u, v in the situation (1.1) which are usually much too large (in
degree), hence leading to much too large linear systems for the coefficients of @ and b to
solve.

Note, however, that iterative algorithms for rational summation, different from the
above, have already been proposed in Abramov (1971,1975).

Pirastu (1992) gives an overview and a unified treatment of these algorithms and some
improvements, together with implementations in the computer algebra System Maple
(see also Pirastu (1994a)).

The present article has the following purposes:

e to establish an algebraic setup (decomposition w.r.t. shift-equivalence classes of
irreducible polynomials) in order to deal with the summation problem for rational

functions on a local-global basis, [Sections 2 and 3];
e to provide precise information about the “optimal” (in a sense to be specified)

choice of the denominator polynomials u,v in (1.1) in a Horowitz-type approach,
based on (local) information about the shift-classes associated with the denominator
polynomial g, [Section 4] — this questions has been addressed earlier in Pirastu

(1992) and Pirastu (1994b);
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o to show (from local considerations) how this information can be obtained from
the Gosper-Petkoviek representation of rational functions, which was originally
invented in the context of indefinite hypergeometric summation, see Gosper (1978),
Petkovsek (1992), and for which we give a purely combinatorial equivalent, [Section
5];

e to propose a new summation method for rational functions, based on (known)
algorithms for producing the Gosper-Petkov§ek representation of rational functions,
[Section 6].

In Section 5.1 we give a detailed example, describing the combinatorial equivalent of
the Gosper-Petkovsek representation. An example of complete application of the new
summation method is presented in Section 7.

Let us underline the following aspect: although our investigations are mostly of local
nature, i.e., referring to decompositions with respect to shift-equivalence classes of irre-
ducible polynomials, and thus apparently referring to a factorization of the initial data
into irreducible polynomials, the final algorithm operates globally and does not use any
factorization procedure at all - it is based on ged- and resultant-computation only.

2. Problem Description

Let k be a field of characteristic 0. As usual, k(X ') denotes the field of rational functions
over k. Elements o = a(X) € k(X) are written as quotients @ = f/g, where f and
g # 0 are polynomials in X over k. This representation is normalized if ged(f,g) = 1
and if ¢ is monic. Usually, but not always, we will assume that elements of k(X) are
represented in this way. A proper rational function is an element o = f/g € k(X) such
that deg f < deg g. The constant 0 is the only proper rational function which is constant.
The proper rational functions form a k-subalgebra of £(X'), denoted by R. By polynomial
division k(X) = k[X]® R.

The shift operator E and the (forward) difference operator A on k(X) are defined as
usual:

E k(X)) —=kX) @ aoX)—a(X+1)
A=E—-T :kX)—=kX) :aX)—a(X+1)—aX)

Note that E is a k-algebra isomorphism, A is k-linear and has the constant functions
as its kernel. If restricted to the subalgebra R, F is still a k-algebra isomorphism, and
A is now injective, since 0 is the only element in its kernel. Indefinite summation of
rational function essentially asks for inverting the linear operator A. Since inverting A
on polynomials is trivial, we can from now on restrict our attention to the algebra R.
This has the advantage that A=« is uniquely determined - if it exists! As is well known,
the latter is not always the case: A is not surjective on R. E.g., for any j > 0, there is
no B € k(X) such that Ag = 1/X7. More generally: if f/g' € R is a rational function
in reduced form, with ¢ irreducible, then it does not belong to AR. In view of this
phenomenon one has to make a choice between the following alternatives:

e Asking for a decision procedure for the existence of A~'a € R, and giving an
algorithm to construct such an element in the case of a positive answer. Different
approaches and algorithms in this direction were presented in Abramov (1971),

Gosper (1978), and Man (1993).
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e Enlarging the domain of functions under consideration (e.g. by adding polygamma
functions), so that at least every e € R has an inverse w.r.t. A. Moenck’s approach
mentioned above goes into this direction. A general method in analogy to Risch’s
integration method is described in Karr (1981, 1985).

e Considering a “refined” rational summation problem: given o € R, construct 5 € R
which is as “close” as possible to what we expect A~'a to be: makingy = a—AJ €
R as “small” as possible. In particular this requires: for « € AR one should get
the true inverse, i.e., ¥ = 0, and in general, if the same procedure is applied to the
difference v, this should not lead to any improvement. This problem has apparently
been first stated in Abramov (1975).

In this note we will concentrate on the last alternative. As a reasonable measure of “small-
ness” we will take the degree of the denominator polynomial in the reduced presentation

of 7. We define:
fora = f/g € R, where ged(f,g9) =1, || a|:=degyg

Note that || . || induces a metric on R.

The rational summation problem can the be stated as follows:

Given o € R, determine 3 and v in R such that « = AF + v, where || v || is
minimal.

Thus one asks for an element of AR which is closest to & w.r.t. the || . ||-metric. Naturally,
we will say that « is summable if @« € AR, i.e., if there is such pair (#,7) with v = 0.

The existence part of the rational summation problem is no problem at all, but the
answer to the question to what extent uniqueness holds is less obvious.

3. Localization

For any monic irreducible polynomial ¢ € k[X] let R, denote the subalgebra of rational
functions f/g* € R, where i > 0. By partial fraction representation

R= PR,
g

where @g runs over all monic irreducible polynomials. Clearly

ifoz:Zag , where ay € R, , then |« ||:Z [| ey ]
9 9

When dealing with the shift operator £ and the difference operator A, one has to con-
sider E-orbits, i.e., shift-invariant subspaces of R. For any monic irreducible polynomial
g € R we put

'R[g] = EB RE: g
ieZ
Here [g] denotes the class of monic irreducible polynomials shift-equivalent to g, i.e.,
the polynomials Eig(X) = g(X + i) for i € Z. In the following the notation @[g] and
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E[g] will be used to indicate product and sums over a representative system for the
shift-equivalence classes of monic irreducible polynomials. Thus

R = EB 'R,[g]
l4]

with

a= Z ag] and afg = Z ARy

l4] ieZ
It is clear that any equation
a=AB+y (a,B,7€R)
localizes to
o) = Afg1 + 191

for any monic irreducible polynomial g. And since
lall=> Il agl
[4]

we can state

if (8,v) € R? is a solution for the rational summation problem for o € R, then
for each monic irreducible polynomial g (i.e., for its shift-equivalence class) the
pair (Big), 1)) € 'R[Qg] is a solution of the rational summation problem for o[y
and conversely.

This shows that for answering the uniqueness question it suffices to study the “local”
situation in the components R[;). And in particular:

a € R is summable if and only if oy € Ryg is summable for each (shift-
equivalence class of) monic irreducible polynomial(s)

4. The structure of the local solutions

4.1. LOCAL TRANSFORMATIONS

We start with another simple observation:

For each d € Z the operator Aq = E¢ — 1 is divisible by A; = A:

A(I+E+E* 4. -+ E7Y) ifd>o0

— d_ =
Ag=F I {_A-(E_1+E_2+"'+Ed) ifd<0

which means that

A
Ad(ia) =4 < N gi> € ARy

for each f/g® € Rpy. Thus any two terms E'(f1/g%) and E?(f2/g") with i # j, appearing
in the canonical decomposition of some a € R, may be transformed according to either
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of the two identities (assuming d = j —i > 0):

Eiﬁ+Eif—j = Ei<f1 f2>+A(Ed L. +1)Eif—§
9¢ g g® g g
Ezf _|_Eyf2 = EJ'<ﬁ+f_§)_A(E—d+...+E—l)Ejf_1
9¢ g° 9* g g¢

Notice that up to a shift £7=¢ (or £*~7) the first terms on the right are the same, namely
a shift of

f—i + f—? = ic where ¢ < max{a, b}.
g g g
If these rational functions are written in reduced form, then ¢ = max{a, b} if a # b. Note
that

HEZ +EJ 2 |=(a+b) degg >c- degg—||—+—||

4.2. THE STRUCTURE OF THE 7 PART

If we take an arbitrary element a € Ry,
a:Ei1£+...+Eikf_k
gm g
say, with pairwise distinct shifts 7; (1 < j < k), then starting from (8o, 70) = (0, @)
one may produce through k — 1 of such “local transformations” a pair (8, yx) such that
a = ABy + vr, where B, 71 € Ry, and where in particular vy is a shift of
ho o 5 _

pro pr = — with a <max{ai,...,ax}

(if all the rational function are written in reduced form).
The pair (Bx, %) is a solution of the local summation problem, as the following con-
sideration shows.

If 7, vanishes, then « is summable. This can only happen if max{a, ..., ar} is attained
at least twice.
If v does not vanish, then consider any two decompositions

_ Aﬁ(l) + 7(1) — A@(Z) + 7(2)

where o, 30 40 ¢ Rig), (i =1,2) and where the 4 cannot be reduced any further by
local transformations. Solutions of the rational summation problem are of that kind. We
have

S0 Z il e Eif—j
g9° g
for some 1, j, f1, f2,a,b. Hence
A(BD — By = 42 _ (1) = Ej;”_i N E!J;_l

If i = j, then the r.h.s is of the form E* (;—i — 5—}1) = Eigi which is possible only if the

c

r.h.s. vanishes, i.e., if a = b and f; = f5.
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If i # j, then one local transformation step leads to a similar situation, and by the same
argument one concludes that a = b and f; = fs.
As a consequence:

Let o € Ryg, then cither o € ARy (ie., o is summable), or else there exist
unique 8 € Ry, f and a such that

a=nap+L
g

where ¥ = f/g¢® is reduced.

Note that the y part may be shifted freely, i.e., we could impose v = E(f/g?) for any
i € Z. This amounts to selecting a different representative g in [g], but for a natural
choice of g see (*) below. The exponent a is independent of the shift i, of course, and
a < max{ay,...,a}. The uniqueness of the § part follows from the injectivity of A on

R.
4.3. THE STRUCTURE OF THE ( PART

Before considering the g part of the localized summation problem, let us introduce a
bit of notation. In Section 5.1 we describe an example for the concepts introduced below.

Given ¢ € k[z] and a monic irreducible polynomial g, we may consider the spectrum of
q with respect to g, i.e., the doubly infinite sequence

(¢,9) = (a;)icz , where E'g" | ¢

i.e., a; is the maximum integer, such that E?g% | q. For a« = p/q € R in reduced form we
define the spectrum of « with respect to g by («, g) := (¢, ¢). Note that («, g} = (ai)icz

means
agg = ZaEig = ZEZ ngZl

ieZ i€eZ

with respect to the canonical decomposition (in reduced form) of ap,). Denote by g? the
polynomial [];.z £*g% for any sequence a with only nonnegative, only finitely many
nonzero components.

The sequences («, g) are integer sequences with finite support, but for reasons that
become evident later on, we have to consider more general classes of sequences as well.
In the following we will consider doubly infinite sequences a = (a;);cz and operators
acting on them, but some care has to be taken in order to make sure that these operators
are well defined. The arithmetic operations “+” and “—” on sequences, as well as the
infimum “A” and the comparison “<” are defined coordinatewise.

Naturally, we will have a shift and a delta operator on sequences:

€:(a;)iez —€ea = (ai-1)iez
8:(a;);ez—da = (a;—ai—1);ez =(1—¢€)a

The inverse of the é operator (on an appropriate subspace of sequences) is the summation
operator o given by

0 :(a;)jez —oa= (EJ'SZ' ai)'

=¥/
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Two further operators, which are also only defined on appropriate subspaces, are the
maximum operators “from the left” and “from the right”.

wo(a)iez — pa = (maxa])
i<i icZ

wo(a;)iez — pa = <maxaj>
j>i icZ

Let g be monic irreducible polynomial, and let us consider a € R, such that

a:i Qpig = E E! ;l

i€l i€
Then
=
1<0 g i>0
-1 —
=z(f;’; Ei) (Laxrl)
<0 g s=1 g ji>0 =
= Af+y
where

x?=—2ﬁ§) ZL (4.1)

s<0 iSS t>0 J>t

ZEZ
If we write a = (a;);cz = (@, ¢g) and b = (b;);cz = (5, ¢) then it follows that

)s for s < 0in general
)s for s < 0 with (6/73)5 > ( in particular

HNN

b is { < (e'pa); fort > 0in general
! = (e7'a); fort > 0such that (=" pa); < 0 in particular

This shows that in general (i. e., unless some cancellation takes place) the denominator
polynomial of 3 is given by ¢?, where

. {( pa), fors<0

= (cpa), fors>0
Note that one has
ﬁ aAi 6_1ﬁ a<a
with equality holding if and only if
min{ a, = max(a, g) } <0 < max{ a, = max{a,g) } ()

This condition can always be satisfied by making a proper choice of the representative
g from its shift-equivalence class [g]. A “natural” candidate for the denominator of 8 is
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thus the polynomial
gﬁ an 6_1ﬂ a

with g taken from [g] such that () holds. We will show that this candidate is “optimal”
in the sense that for a suitable choice of the numerator polynomial of « no cancellation

- -1 .. .
occurs and g # 3" " £ 2 ig indeed the true denominator of §.

4.4. OPTIMALITY

Given @ = p/q € R, the values of the candidate denominator polynomials u, v of 3,y
given above depend only on the denominator ¢ of «, and on the choice of the proper
representatives in each shift-equivalence class [g]. We now show that the “Ansatz”

u=[]gt @9 A et g)
g
is optimal in the sense that for any polynomial ¢ there is always a choice of the poly-
nomial p such that a solution § for the F-part of the summation problem for « has
precisely this denominator u (and not a proper divisor of it). As usual, we may restrict

our attention to a single shift-equivalence class [g].
Let a € Rg), o # 0, written as

a= E Et g;fTZ,
ieZ
where the sequence a = (a, g) satisfies property (%) above, i. e., a proper choice of the
representative g € [g] has been made. Consider a as fixed, and the sequence (f;);cz yet
to be determined.
Letnowb = pgaAca (we assume b # 0, otherwise the summation problem for «

would have the trivial solution § = 0,y = «).
From property (*) we know

b::{@aL if s <0
’ (e lpa), ifs>0

Consider now the sequence of polynomials

fi = 1 ifi=k%
Tl 1=gUb ifk<i<O
where k = ming { a5 #0 } = ming { bs #0 }.
It is easy to check that these polynomials satisfy the system of equations
Yoofirdm=1 0 (k<s<0)
E<i<s
Similarly, the family of polynomials
= 1 - ifj=1
P71 =g7Ubs ifo<j<l
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where l = max; { a; #0 } = max; { b; 20 } + 1, satisfies the system of equations
S hedeiot 0z
1<j<l

We put f; = 0if ¢ < k or ¢ > . Note that for all ¢ € Z f; is coprime g% and

deg fi < deg g%, so that
o=y ey Len
i<0g j20g

and is written in reduced form. Comparison with (4.1) shows that the G-part of a =

AS 4+ v satisfies
g= > E°

E<s<l

1
gt

and thus (8, g) = b. In other words: gP is the true denominator of 3.
4.5. CONCLUSION

The rational summation problem for « has a solution (4, v) such that for each shift-
equivalence class [g] with afy) # 0 we have:

- The denominator of G, divides g“<0" g9) Netula, g)

- The denominator of 7y, divides gmax(a, 9)

provided appropriate representatives g € [g] have been choosen (i. e., representatives

satisfying (x)).
An algorithm for computing (3,v) may thus proceed as follows:

- Given a € R, compute polynomials u, v:

1+

u = [ gtlea) e ulag)

- Hgmax(a,g>
g

where the products run over an appropriately chosen representative system for the
shift-equivalence classes of monic irreducible polynomials (respecting ()).

- Put 8 = a/u, vy = b/v, where a, b are polynomials with dega < degu, degb < degv
with indeterminate coefficients.

- Determine the true a and b by solving

_ Fa a b

o =
Fu u v

An algorithm for computing v and v will be presented in Section 6. Note that the
solution (a/u,b/v) will not necessarily be reduced, but in general this “Ansatz” is the
optimum one can do (in keeping u and v as “small” as possible) without taking properties
of the numerator of « into account.
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We finally remark, that our results about the denominator polynomial v can be
rephrased using the notion of dispersion, as introduced in Abramov (1975): the dispersion
dis(q) of a polynomial ¢ is defined by

dis(¢) := max{h € Z; Resx(q, E" q) = 0}

From the definition it follows that dis(q) is the maximum integer root of Resx (¢, E" q)
as a polynomial in the indeterminate h, i.e., it is the maximum integer h such that ¢ and
E" ¢ have a common factor.
Clearly: v (as above) and all the variants, obtained by shifting the contributions from
the shift-equivalence classes freely (see Section 4.2) are polynomials with dispersion zero.
As a consequence, as has been remarked earlier in Abramov (1975), solutions of the
rational summation problem can be characterized as follows:

Let o € R, then (8,7v) € R? is a solution of the rational summation problem for
a if and only if

a=AB+7 and dis(denom(%y)) =0

The existence of a solution (8, ) follows from Section 4.2, where it was also shown how
two distinct solutions are related. The latter question has first been answered in Paule

(1993).

5. The Gosper-Petkovsek representation of rational functions

The following representation of rational functions is at the basis of Gosper’s classical
decision method for indefinite hypergeometric summation:

For any rational function o € k(X)) there are polynomials p, ¢, r € k[X] such that

a:&~i with gcd(q,Eir)zl foralli >1
p Er

Petkovsek showed in Petkoviek (1992) that a presentation of o € k(X) as

a=c- % . % with ged(g, Eir) =1 foralli>1 , ged(p,r)=1=ged(p,q)
with monic polynomials p, ¢, 7 € k[X] and ¢ € k is unique.

Note that the usual algorithms for computing p,¢q,r (and ¢), as outlined in Gosper
(1978) and Petkovsek (1992), are based on resultant- and ged-computations, together
with a search for integer zeros of polynomials. In the following, we will look at this
representation from a different point of view, related to the decomposition of rational
functions according to shift-equivalence classes of irreducible polynomials. This is not
meant as an algorithmic approach, but it gives a combinatorial view of this classical
result which turns out to be useful for the rational summation problem.

Note first that the Gosper-Petkovéek representation localizes perfectly (because it is a
purely multiplicative statement). We may split « into a product olo] . al9x] where the
g; are irreducible polynomials belonging to distinct shift-equivalence classes, and where
each factor al%:] accounts for the contribution of factors from the class of g; to a. If we
have a (unique) local representation

alsil = Epi 4
pi Em
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with the appropriate ged-conditions satisfied, then the (unique) Gosper-Petkovsek-triple

(p,q,r) for a results from multiplicationT:

pP=P1 Pk » 9=41" " q , T =T1"""Tg

If we look now at the local situation for any irreducible polynomial g, then al¥! may
be represented by a doubly infinite sequence of integers

(ai)iez == (f,9) — (h,g) fora = f/h

where “—” is the componentwise difference of sequences.

Let us say that an integer sequence (a;);cz is a rational sequence if there are only
finitely many nonzero terms. If all terms are nonnegative, and again only finitely many
different from 0, then it is a polynomial sequence. Adopting this terminology, the Gosper-
Petkovsek representation boils down to the following combinatorial assertion, where § and
€ are operators on sequences as before and 0 is the all-zero sequence.

The combinatorial equivalent of the Gosper-Petkovsek representation is illustrated by
an example in Section 5.1.

ProPosITION 5.1. (Combinatorial Gosper-Petkoviek representation) Let a be any ratio-
nal sequence. Then there are unique polynomial sequences p, q, and r such that

a=-d0p+q—er
where

pAqQ=0,pAr=0, qAdr=0 forallj>1

ProoF. We define f:= ¢ a and

q:= 6;[{', €r = —6ﬁf
We then have q > 0, since ﬁf is non-decreasing, and q is a polynomial sequence, since
(6 pt); > 0 implies (6f); = a; > 0.
Similarly, r > 0, since ﬁf in non-increasing, and r is a polynomial sequence since
(6 pf); > 0 implies (6f); = a; < 0.
Now obviously

(§uf);>0and (§ uf); <0impliesi < j

so that q A ¢ r = 0 holds for all j > 1.
Consider now

pi=pf+puf—f—me=(p—id)fA(p—id)f

where mg denotes the sequence which has value myg := max;cz f; everywhere (note that
this value is well-defined since 6 f = a is a rational sequence). Again, it is easy to check
that p is a polynomial sequence, and we have in addition

Sp=6uf+éuf—6f=q—cr—a
as desired.

We now have to show that p Aq =0 and p Ar = 0 hold. Note

T The role of the scalar factor ¢ in Petkoviek’s assertion is completely irrelevant for our purpose.
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-if g = (6ﬁf)i # 0, then necessarily f; = (ﬁ f); and thus p; = (ﬁ f); —mg <0,
which means p; = 0, since p is a polynomial sequence.

-ifr; =—(6 ﬂf)j+1 # 0, then necessarily f; = (ﬁ f); and thus p; = (/_j f); —mg <0,
which means p; = 0, since p is a polynomial sequence.

So far the ezistence part of the proposition has been established. For the uniqueness
part, let p, q,r be any polynomial sequences such that the assertion of the lemma holds.
We will show that these are identical with the corresponding sequences defined above.

Let 79 € Z be an index such that both

(0Q)i, =Mmoq and (eor);,, =0

hold. Note that the condition: “q A ¢/r = 0 for all j > 1”7 guarantees the existence of
such an index. We then have

(eor);=0 foralli<iy , (ocq); =msq forall j >ig
For ¢ < iy we now have
fi=(ca)i=—pi+(ca)

hence f; < (0 q)i, and the “orthogonality” of p and q implies that f; = (0 q); whenever
q; # 0 holds. Both facts together imply

(1 £)i = (0q); foralli< i
Similarly, for j > iy we have
fi=(ca)j=—pj+msq—(cer);
hence f; < my,q — (cer);, and here the “orthogonality” of p and r implies f; = m,q —
(cer); whenever r; # 0. Here these two facts imply
(ﬁf)i =my,q— (cer); forall j > ig
We conclude, in particular, that f;; = m,q, hence mg = m, g, and consequently
f=0q and pf=my—ocer

which implies

q:éﬁf and er:—éﬁf

Finally
bp=—b6f+q—er=06(—fF+ puf+puf)
and
p=—f+uf+puf—my
follows. O

5.1. AN EXAMPLE

As an example, we determine the Gosper-Petkovsek representation of the rational
function « given by

(X = 3)(X — 2)2(X +2)(X +5)?
(X —4)(X +1)3(X +3)?

a =
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The rational sequence a associated to « with respect to the irreducible polynomial
g=X1is

a=((X =3)(X - 2)*(X +2)(X +5)", X) — (X = (X +1)°(X +3)*, X)

According to the proposition, we compute the following sequences, where the position
of the index 0 is indicated by underlining.

a = ... 0 -1 1 2 00 -3 1 =2 0 2 0
f=0a = 0 -1 0 2 2 2 -1 0 -2 =2 0 0

uf = 0o 00 2 2 2 2 2 2 2 2 2
q=6uf 0 00 2 00 00 0 000
uf 2 2 2 2 2 2 00 0 000

er = —6uf 0 0 0 0 00 20 0 000
(g —id)f = 0 1.0 0 0 0 3 2 4 4 2 2
(p —id)f = 2 32 000 1 0 2 200
p = ... 0 10000 1 0 2 200

From this it follows that the Gosper-Petkovsek representation of « is given by
p=(X X + DX +3)*(X +4)°, ¢=(X -2, r=X°
One easily verifies that

Ep i_(X—S)(X+2)(X+4)2(X+5)2 (X—2)2_a

p Er (X=X +1D)(X+3)2(X+4)?2 (X+1)2
and that ged(q, E'r) = 1 for all i > 1 and ged(p,r) = 1 = ged(q, 7).

6. The Algorithm

The proof of the proposition shows that the Gosper-Petkovsek representation of ra-
tional functions provides an algorithmic way to compute the polynomials u and v from
Section 4.5.

Let s/t € R be in reduced form and g any irreducible polynomial. We apply the
proposition to the rational function oy = t,1/Et[,. Let t := (¢, g), then we have a =
(tre1,9) — (Ety),9) = t — et and this implies f = ca = t. For p, q and r from the
Gosper-Petkovsek representation of a, the following holds

(p-tg)—(rg) = p+t—r
= —t+pt+pt—mi+treloput
= Ht+pt-my+etut—pt
= pt4+elut—myg = utAelut

Since this holds for any irreducible g, for the Gosper-Petkovsek representation (p, ¢, r)
of @ = t/Et we have that u = pt/r is globally optimal, in the sense that condition (x)
is simultaneously satisfied for all shift equivalence classes. On an algorithmic level, this
means that the optimum denominator polynomial u can be obtained directly from an al-
gorithm computing the Gosper-Petkovsek representation - see Alg. 1 below. In particular,
no factorization w.r.t. shift-equivalence classes is necessary.
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Similarly, we show that also the denominator v can be obtained from the Gosper-
Petkovsek representation of . Consider again af, as above and let ig be the smallest
index such that ¢;, = my, then from q =6 7 t it follows that 4o is the biggest index such
that ¢;, # 0. Let us define a sequence qt = (¢ );cz by

F=10 ifi # do
i Yi<ip ¥ ifi=io

. + + . q+ . L . . o+

.and the poly.nomlal 4y by 4Ly = g9 . Since Zigio qi = my, the denominator vj,) = 4y
is optimal with respect to the shift class [g].

From this it follows that the denominator v = ¢t := H[g] q[';] is optimal for s/t in

the sense of condition (*). In Alg. 2 we describe an algorithm for computing ¢* from
the polynomial ¢ of the Gosper-Petkovsek representation of ¢/Ft, again using ged and
resultant computations only — no factorization is needed.

Summarizing, we have that

for any s/t € R an optimal choice of denominators u and v in the sense of
condition (x) is given by
p-t

u=— and v=gq
r

+

where (p, ¢, r) is the Gosper-Petkovsek representation of ¢/ Et.

For the computation of the Gosper-Petkovsek representation of a rational function we
follow the algorithm proposed in Petkoviek (1992), which we include for completeness
as Alg. 1. Here Resx(p,q) denotes the resultant of p(X) and ¢(X) with respect to the
indeterminate X.

(p,q,7) — GP-Rep (a)

Inputs:
« : a rational function € R.
Outputs:
p,q,r : Gosper-Petkovsek representation of a, i. e.
E :
a=22. EL with ged(g, E*r) = 1 for all i > 1 and ged(p,r) = 1 = ged(p, q).
p r

Begin
Step 1: Initialization
p — 1, ¢ < numer(«), r «— denom(«)
Step 2:
for h € {h' € N; Resx(q, EY r)=0} do
d — gcd(q, E"r)

g —q/d
re—r/E~"d
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p—p-Tlie, B7id
endfor

return (p,q,r)

End

Algorithm 1. GP-Rep

The computation of ¢t described in Alg. 2 refers to the concept of dispersion as
mentioned at the end of Section 4.5. Several algorithms are known for computing the
dispersion of a polynomial (see e.g. Abramov (1971), Pirastu (1992), Paule (1993), Man
and Wright (1994)). In the context of computing the dispersion and, more generally, the
positive integer roots of a resultant (as in step 2 of Alg. 1), one can make use of Loos’
(1983) fast p-adic method for computing rational zeros of polynomials.

Furthermore, we say that v is the partof p in ¢ for v,p, ¢ € k[X]if v | ¢, ged(p, ¢/v) = 1
and only factors of p arise in v. In this case we write v = part(p, ¢). The computation
of part(p, q) only needs repeated ged-computations. Initialize v; — ged(p, q) and ¢; —
q/v1, then compute v; — ged(p, ¢i—1) and ¢; — ¢;—1/v; for i = 2,3, ... until v, = 1 for
some n. Then all factors of p arising in ¢ are isolated and we have part(p, ¢)— vivy - - v,.

With this notation the algorithm for computing the polynomial g% is described in Alg.
2.

qt — plus(q)

Inputs:
q : polynomial.

Outputs:
q* : polynomial with (g%, g) = (q,¢)* for all irreducible g.
Begin
Step 1: Initialization
d —dis(q), g —q,q" <1
Step 2: Collect all factors at the end of each class

for j = d downto 0 do
k — part(E~7 g,9)
9 —g/k
gt — gt Eik
endfor

return (¢F)
End

Algorithm 2. plus

In Alg. 3 we show the algorithm for solving the rational summation problem with
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optimal bounds. Remark that Step 3 mainly reduces to the solution of a system of linear
equation over the constant field k.

(8,7) — Opt-Rat-Sum(«)

Inputs:
o : a rational function in R.

Outputs:
3,7 : a solution of the rational summation problem for «
Begin
Step 1: Initialization
t «— denom(«)
Step 2: (Optimal) bounds for the denominators of 3 and 7
(p,q,7) — GP-Rep(t/E1)

i
v «— plus(q)
Step 3: Computation of the numerators of § and v
deg(u)—1 deg(v)—1

a — E aiXi, b — Z b]-Xj for indeterminates a;’s and b;’s

i=0 j=0

. . . a a b
determine the a;’s and b;’s by coefficient comparison from o =F — — — + —

u u v

return (a/u,b/v)
End

Algorithm 3. Opt-Rat-Sum

7. An Example

We want to compute a solution of the rational summation problem for the following
rational function
s X2 -3X+1

o =-=

(X —1)2X3(X +3) (X2 4+ 1)(X? +4X 45)°

For purpose of demonstration the denominator is written in factored form. Although
this information is not required by the algorithm, we can read off the two shift-equivalence
classes into which the denominator polynomial ¢ splits, and we have

Xy = ... 00 2 3 00 10
#X241) = ... 0 0 0 1 0 2 0 0

Step 2 in the algorithm first computes the Gosper-Petkovsek representation of ¢/ Ft.
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We obtain
t (X —1)2X(X +3)(X2+1)(X?+4X +5)?
Et (X +1)3(X +4) (X2 +2X +2)(X2+6X + 10)2

(X +2)(X +3)(X2+4X +5) (X —1)2X(X2+ 1)(X?2+4X +5)

(X+D(X+2)(X24+2X+2) (X+1)2(X+4)(X2+6X +10)2

_ g
p FEr
and from this the optimal bounds
it
w= 2 o (X 12X (X 4+1)(X+2)(X241)(X2+2X +2) and v = ¢+ = X3(X24+4X +5)?
, , . .
Note that
(u, X) = 000 2 1 1 1 0 0
(u, X241) = 000 0 1 1 0 0 0
(v, X) = 000 0 3 0 0 0 0
(v, X2 +1) 00 00 0 2 0 0

Step 3 defines @ = ag + a1 X + -+ agX® and b = by + - - - + bg X® and solves the
polynomial equation equivalent to

s a a b
- =F - - = 4+ -
t U u v
by coefficient comparison. This mainly consists in solving a system of linear equations in
the indeterminates a;’s and b;’s.

This way we obtain the following result a« = AS + 7,

—1900 — 24428 X + 25768 X2 4 .- — 13947 X7 4 222 X8

a
’= u 43200 (X2 4+ 1) X (X —1)°(2+2X4+X2) (24 X) (14 X)
_ b 24000 — 34250 X — 56900 X? — 27745 X3 — 4612 X* 4 37 X°
[ 72000 (X2 +4 X +5)° X3

The summation algorithm presented here has been implemented in the Maple lan-
guage. Contact the second author for the code. Maple procedures for other summation
algorithms are contained in Pirastu (1994a) and can be obtained from the first author.
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