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The problem of computing a closed form for sums of special functions arises in many
parts of mathematics and computer science, especially in combinatorics and complexity
analysis. Here we discuss two algorithms for indefinite summation of rational functions,
due to Abramov and Paule. We describe some improvements and a parallel implemen-
tation on a workstation network in ||[MAPLE|| (read: parallel Maple). Our best imple-
mentation achieves a speedup of up to eight over the fastest available sequential imple-
mentation. Finally, further applications of parallel computing in this field are outlined.

1. Introduction

The problem of indefinite summation consists of finding a closed form for expressions
like g(n) := >_7_, f(k), where the summand f(z) is in our case a rational function
in z, or at least of computing some useful representation for studying the asymptotic
behaviour of g.

Consider the field K(z) of rational functions over a coefficient field K of characteristic
zero. Denote by E the usual shift operator, defined on K(z) by Ff(z) := f(z + 1), and
by A the difference operator A := E' — I, where I is the identity operator.

The problem of indefinite summation of rational functions (TRS) is stated as follows.
Problem: Given a proper rational function f € K(x), find h,r € K(x) such that

F=Ah+r (1.1)

and the denominator of r has minimal degree among all such decompositions.

If the pair (h,r) is a solution of the indefinite summation problem for f, then we call
r a bound for f.

For studying sum expressions like g(n) := Y} _, f(k), notice that any solution (h,r)
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2 R. Pirastu and K. Siegl

of the IRS problem corresponds to a decomposition in the following form
g(n) =Y f(k) =h(n+1)—h(1)+ Y _r(k) (1.2)
k=1 k=1

In particular, a solution of (1.1) with remainder r = 0 provides a rational closed form
for g as an expression in n, namely g(n) = h(n+ 1) — A(1). Otherwise, the nonsummable
part r cannot be further decomposed as in (1.1) with a remainder of smaller degree in
the denominator.

As an example, consider an easy problem which often arises in basic analysis courses.
We want to compute a value for

1 1 1 1

We first compute, if possible, a rational closed form for g(n) = "7 _; Hkl_-l—f’:j It is easily
checked that

1 3z24+6x+2
o(e+3) (‘3m<m+ 1><z+2>>
so, we have

n (11n? +48n + 49)
T8+ D)(n+2)(n+3)
From this, it immediately follows that s = lim, . g(n) = 11/18.

g(n)

Several algorithms are known for computing solutions of the indefinite rational sum-
mation problem (see Moenck (1977), Abramov (1975), Paule (1993), Pirastu and Strehl
(1995)). Here we present parallel implementations of two algorithms due to Abramov
(1975) and to Paule (1993), respectively. For the sequential implementations we refer to
Pirastu (1992) and (1995).

Abramov proposed already in 1975 an approach for solving the IRS problem. We
slightly modify this method to obtain some further properties of the solutions.

This algorithm permits us to decompose the problem in several subproblems, which
can be solved in parallel, as we later describe.

Paule (1993) provides a general algebraic framework for indefinite summation of ra-
tional functions. Besides other results, he suggests a different algorithm, which reduces
the problem to the solution of a system of linear equations, in analogy to the Horowitz
method for the integration of rational functions (see, for instance, Geddes et al. (1992)).
In this case the parallelization consists of the solution of the linear system using a parallel
Gauf} Jordan algorithm.

Strehl and the first author gave in 1995 a detailed theoretical description of the problem
and a new algorithm. In particular, the question of finding optimal solutions with minimal
degree in the denominator of the summable part is treated.

The parallel implementations are realized in ||[MAPLE||, a system for parallel symbolic
computation (see Siegl (1993)) based on the parallel language Strand and the symbolic
computation system Maple. [[MAPLE|| permits us to write parallel programs similar to
the usual Maple code and does not depend on the parallel architecture used.

In this article we want to show that || MAPLE|| is an efficient platform for parallel sym-
bolic computation, which can be used without deep knowledge of parallel architectures.
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The IRS problem treated here as a case study, shows that significant speedups can be
achieved by applying different parallel methods.

In Section 2 we give some known results about the solutions to the problem and
some notations. The idea of the sequential algorithm of Paule is described informally in
Section 3, while the same is done for Abramov’s algorithm in Section 4. The main aspects
of the parallelization of both algorithms, as well as their performance and comparisons,
are reported in Section 5. In Section 6 we summarize the article, giving some hint for
future work in this direction.

2. Shift Structure

Before we describe the algorithms and the parallel implementation, we give a short
and informal introduction to basic facts and results. We refer to Abramov (1975), Paule
(1993), Pirastu (1995), Pirastu and Strehl (1995) for complete proofs.

A fundamental role in this context is played by the shift structure of a polynomial. We
say that two polynomials p and ¢ in K[z] are shift equivalent if p = E*q for some integer
k, and we write p ~ ¢q. Consider, for a polynomial p € K[z], the complete factorization
(over K) p = api'ps? - - - pir, where all p; are distinct, irreducible and monic, e; - - - e, #
0, and o € K. Then an equivalence class of the set of irreducible factors {p1,...,pm} of
p under the relation ~ 1s called a shift class of p. A factor p = pfl” = -p:l” of p is called
a shift component of p if the set {p;,,...,pi, } is a shift class of p.

EXAMPLE 2.1. Consider the polynomial p € Q[z] given by the following factorization
p= (2" +3) (2% + 2z + Dz(z + 1) (2 + 3)(z + 5)*
then the set {z,x+ 1,2+ 3,2+ 5} is a shift class of p and p = z(z + 1)*(z + 3)(z + 5)?

1s the corresponding shifi component.

We can represent graphically the shift structure of a shift component. For instance
Figure 1 represents the situation for p of Example 2.1.

mnlinls

Figure 1. Shift structure of 1‘ T+ 1 a:‘ + 3 x + 5)2

We fix a factor ¢q, and draw d squares at the ¢-th position on a line when the polynomial
E'qq arises with multiplicity d as a factor of p.

DEeFINITION 2.1. The dispersion of a polynomial p is the mazimal integer distance bet-
ween roois of p and is denoted by dis(p). As a convention, dis(p) = 0 for constant p.

For a proper rational function given by a reduced representaiion f = p/q, i.e., p and
q are relatively prime polynomials, we define dis(f) = dis(¢). In Example 2.1 we have
dis(p) = 5, viz. the maximal distance between stacks.
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As remarked in Abramov (1975), we have the following lemma (for a proof, see Paule

(1993) or Pirastu (1992)).

LEmMMA 2.1. For f € K(x) let h,r € K(x) be such that f = Ah+r. Then r is a bound
for f if and only of dis(r) = 0.

From Lemma 2.1 it follows that the problem of indefinite summation is solved for
decompositions f = Ah + r where dis(r) = 0, i.e., where each shift component of the
denominator of r has only one stack of boxes in the corresponding diagram. As we will
see later, both algorithms make use of this property.

Since both algorithms need the value of the dispersion of the summand f, this compu-
tation is relevant. Assume that effective algorithms are known for arithmetic in K and for
finding integer roots of polynomials over K. Then the dispersion of p can be computed
as the maximal value of the integer roots of the resultant Res,(E*p, p), considered as a
polynomial in k. This procedure is very time consuming for p of large degree.

Efficient algorithms for polynomial factorization are available for working over par-
ticular fields, like the field @ of rational numbers. In this case the dispersion can be
easily computed from the complete factorization of p over K by testing all factors for
shift-equivalence (see, for instance, Pirastu (1992)).

Notice that solutions (h,r) of the IRS problem are not uniquely determined by f. For
instance, the decompositions

1 2241 1 1223+ 722+ 52+ 2 1
Al —- — and Al —- - —
dz(z+1) 2(z + 2)? 4 z?(z+1)? 2x?

are different solutions for the same rational summand f = m As one can see, the

degree of the denominator of kA can vary considerably among solutions. In the next theo-
rem, due to Paule, uniqueness up to integer shifts of the denominator of the remainders
is established.

THEOREM 2.1. Let r,7" € K(z) be bounds for f € K(z), given by the reduced represen-
tations v = p/q,v = p'/q¢". If ¢ = q5° - - -qm is the complete factorization of q over K,
then ¢' = (Elogi°) - (E'mqim) for some integers lg, ... lnm.

In fact the main difference between the presented algorithms is the strategy for the
choice of the remainder r.

If the denominator ¢ of f splits into several shift components, viz. ¢ = ¢7 - - - ¢, consider
the partial fraction decomposition

R T 2 (2.1)
q q1 qs

It can be shown that if (h;, r;) are solutions of the IRS problem for the summands p; /i,
then a solution for f is given by h = A1 + -+ hs and r = r1 + -+ 4 7,5 (see, e.g.,
Paule (1993), Pirastu and Strehl (1995)). This means that, in our exposition, we can
concentrate on the single shift components.

3. Paule’s Algorithm

Paule (1993) presents an algorithm in analogy to Horowitz’s algorithm for integration
of rational functions (see, for instance, Geddes et al. (1992)). He reduces the problem to
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the solution of a system of linear equations. The idea consists of giving an “Ansatz”, i.
e., a candidate for the denominators of the rational solutions h and r of equation (1.1).

Let us explain the algorithms by an example: Consider the following rational function
with shift structure as in the left part of Figure 2.

2241

TR

T

Figure 2. Paule’s Ansatz for z(x + 1)*(z + 3)

We need what Paule calls the shift saturated extension (SSE) of the denominator. This
is an extension of the polynomial by some factors in order to let each stack of boxes in the
class have the maximal arising height. In Paule (1993) and Pirastu (1992) algorithms are
described, that compute such a saturation without knowing the complete factorization
of the polynomials. In the example, the SSE of the denominator leads to the following
representation of the rational function with shift structure like in the middle part of
Figure 2:

a(z) _ 1‘3(33 + 2)4(93 + 3)3(1'2 +1)
3 = #1219

We are looking for rational solutions h = /6, r = ¢/n to (1.1). Paule proved that a
solution exists for § = ged(3, E~'3) and n = /8, i.e. one takes as denominator for the
bound only the factors corresponding to the rightmost boxes in each component of the
SSFE and puts in the denominator of the summable part all other boxes. In the right
part of Figure 2 one can see the decomposition in summable and nonsummable part of
the SSE of the denominator.

Substituting the values for § and 5 in (1.1) we obtain a polynomial equation. In our

example, § = z*(z + 1)*(z + 2)* and 5 = (z + 3)*, so (1.1) becomes
B+ 20N e +3%0 + 1) =2 By — (2 + 3y + 2t (e 4+ D)+ 2)% (3.1)

Since we know é and 5, we have bounds for the degree of v and €. Substituting these
polynomials in indeterminate coefficients into (3.1) and equating coefficients of same
powers of z we obtain a system of linear equations for the coefficients of 4 and ¢.

The computation can be done by Maple. The solution of (1.1) is then h(z) = y()/é(x)

and r(z) = e(x)/n(x), i.e.,

ha) = 12843362+ 91222 + 17642° + 20612* + 149125 + 66125 + 16527 + 1828
= 2z(z + 1)z + 2)F
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and
( ) 25 + 16 + 322
rMeg) = ——
4(z + 3)*

It should be remarked at this point that in general the computed solutions y(z)/é(z) and
e(x)/n(x) are not in reduced form. In other words, the Ansatz for the denominators is not
always minimal, as some factors may cancel. Although the denominator polynomial n(z)
computed by Paule’s algorithm is, 1s some sense, optimal, the degree of the polynomial
§(x) is in general too big. In this context optimal means that the candidate has minimal
degree among all suitable candidates, considering only the denominator of the input
function. A description of an optimal Ansatz for §(x) is given in Pirastu and Strehl
(1995), together with a new algorithm for computing it.

From a computational point of view it turns out that the solution of the system of
linear equations is the most time consuming task in the algorithm, taking over 80%
of the total time. For this reason, in the implementation of the algorithm, we mainly
concentrate on a parallel method for solving the system.

Notice that it is not necessary to solve a linear system for each shift component. Let
f = p/q and q splits into several shift components, say ¢ = ¢1---§s. Then we can use
6 = 61 ---65 as Ansatz for the denominator of h, where é; is the candidate corresponding
to the ith component, and analogously n = n - - -n,. Substituting in (3.1) we have to
solve only one linear system for the given rational function f.

4. Abramov’s Algorithm

Abramov proposes a different method for iteratively decomposing the rational function
reducing the dispersion of the remainder at each step.

Let us consider again the example in the last section. We do not need any saturation
of the shift structure of the denominator, but we now isolate the rightmost boxes from
the rest, viz. v = (2 + 3) and w = z(z + 1)*, and decompose the rational function:

f= 2’ +1 _ 5zt 4 52% + 152”7 — 2 + 8 -5
Cz(z+ DMz +3) 24z(z+ 1)* 24(x + 3)
Choosing Eu = —5/(24(z + 3)) we get a decomposition f = Au+ r as in (1.1) with

N 5 —152* + 523 — 922 —x — 16
= Tz +2)) 24 z(z+ D)z +2)

where r has dispersion two, i.e. less than the dispersion of f.

(4.1)

We then iterate the procedure on the remainder r, reducing the dispersion at each
step. In the end we obtain either a trivial »r = 0, and the sum has a rational closed form,
or a remainder with dispersion zero, i.e., a bound for f. We then only need to sum up
the partial results u, in order to obtain A such that f = Ah + r. This way we obtain the
following decomposition

B 5 —152*+ 523 — 922 —x — 16
24( 24

ro= x+2)) 24 z2(x+ 1)z +2)

B A(— 5 B 5 )_5m3+3x—4
24(x+2) 24(z+1) 122(z 4+ 1)*
5 b) 4x3 + 922 — 6 + 12 3z — 2z + 4
(o )-

r+2) 24(x+1) 1224 424




Rational Summation in |[MAPLE|| 7

If we look more closely at the shift structure of r after each step, as in Figure 3, then
we see that we shifted the rightmost stack of boxes one place to the left at each iteration,
while the erased stack is included in the rational part.

r(x)

h(x)

[ ] [ 1] [ ]

Figure 3. Shift-structure of the sub-results in Abramov’s algorithm

Observe that we obtain a bound with the leftmost boxes in the shift structure of the
denominator, while Paule produces a bound with the rightmost ones. On the other hand,
we would obtain exactly the same result by a slight modification of Paule’s method,
taking the leftmost boxes as Ansatz for the bound, i.e., § = ged(8, Ef).

The modification we propose is based on the simple observation that in a similar way
the dispersion can be reduced erasing the leftmost, instead of the rightmost, boxes of each
component. This way we do not need to fix the stack corresponding to the remainder
as being the leftmost from the beginning on, but we can choose at each step at which
endpoints we want to erase/shift a stack of boxes. As a strategy we propose to shift at
each step the stack (right or left) of smallest height, this means the stack which produces
the smallest contribution to the degree of the denominator of the rational part. The
following short Maple procedure abrsum does the job.

The procedure call part(p,h,v,w) computes the h-part of p, i.e., the factor v of p
such that ged(p/v, h) = 1 and only factors of h arise in v. This approach has two main
advantages in practice: The decomposition of the rational function is in general easier if
the degree of one part is lower and the degree in the denominator of the rational part h
at the end is in general smaller than by fixed choice of the remainder. In Pirastu (1994)
we show that, for a certain class of rational summands, the denominator of the rational
part obtained in this way has minimal degree among all solutions.

Already in our small example we obtain with the usual Abramov algorithm a rational
part with denominator of degree 6, while the extension keeps the degree at 3, as we see
in Figure 5. Note that Paule’s algorithm computes a solution with a rational part of
degree 9.

In our example the denominator ¢ of f consists of only one shift component. In the
case where ¢ splits into more than one shift component the procedure can be applied in
the same way, giving as dispersion the maximal dispersion among all shift components.

The parallelization is done by considering each shift component separately. In the
implementation part of this article we describe how this can be done in ||MAPLE]||.
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part := proc (p,h,v,w) 1local g,vi,wl;
g:=gcd(p,h);vi:=1;wl:=p;
while g<>1 do divide(wil,g,’wl’);
vi:=vixg; g:=gcd(wl,vl); od;
v:=vl;w:=wl;
end:
abrsum := proc( f, dis, x) local a,b,p,q,cp,vp,¥p,vm,um,u,newf;
if £=0 then RETURN(O0) fi;
if dis=0 then RETURN (’Sum’( factor( f), x)) fi;
p:=numer(f); q:=denom(f);
cp:=gcd(q,subs (x=x+dis,q));
if cp=1 then RETURN(abrsum(f,dis-1,x)) fi;
part(q,cp,’vp’,’wp’); part(q,subs(x=x-dis,cp),’vm’,’wm’);
if degree(vm,x)>degree(vp,x) then
gcdex(vp,wp,p,x,’b?,%a’);
u:=subs(x=x-1,a/vp); newf:=normal(b/wp+u);
else gcdex(vm,wm,p,x,’b’,’a’); u:=-a/vm;
newf:=normal(b/wm + subs(x=x+1,a/vm));

fi;
u + abrsum(newf, dis-1, x);
end:
Figure 4. Maple implementation of the Abramov’s algorithm (extended)
— R — R — — R —
r(x)
- - -
[1 . [1 - :
I I I
B — B —— —_—
h(x)

1 (1 [1] [T 11

Figure 5. Shift-structures in the extended Abramov’s algorithm

5. Parallel Implementation

The algorithms have been implemented in ||[MAPLE|| (see Siegl (1993)) which is a
portable system for parallel symbolic computation. The core of the system is built on
top of an interface between the parallel declarative programming language Strand (see
Foster and Taylor (1989)) and the sequential computer algebra system Maple (see Char et
al. (1983)), thus providing the elegance of Strand and the power of the existing sequential
algorithms in Maple.

[[MAPLE|| programs may run on different hardware, ranging from shared-memory ma-
chines over distributed memory architectures up to networks of workstations, without
any modification or recompilation. All necessary communication is done automatically
by the system without any additional programming effort. Since ||MAPLE|| uses implicit
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parallelism, it allows writing parallel programs without any expert knowledge in parallel
programming.

Strand Parallel Programming System

T1O-Interface TO-Interface TO-Interface
Maple Maple Maple
Processor 1 Processor 2 s Processor N

Figure 6. Structure of the ||[MAPLE|| system

The [|[MAPLE|| system has two layers (Figure 6). The top layer is the parallel declarative
programming language Strand which controls the parallel execution of an algorithm. For
performing sequential tasks we may call arbitrary Maple functions or sequences of Maple
statements in the underlying Maple system over some interface routines. The result is a
parallel programming system with the full functionality of Maple and parallel power of
Strand.

Usually, ||[MAPLE|| programs reflect this structure and consist of two parts. The Strand
code for the administration of the parallel tasks, and the Maple code for the functions
to be executed sequentially. On the other hand, ||MAPLE|| has a set of pre-parallelized
functions for some typical algorithmic structures, which allow us to write parallel pro-
grams directly as Maple code, without the use of Strand, as in the application presented
here.

Here we use a function called peval, designed for algorithms following the divide and
conquer principle. The function may be used for a wide range of algorithms in computer
algebra, in particular for recursively defined algorithms.

The ||[MAPLE|| call peval( [ f1(x1), ...., fn(xn) ], recompose) requires two
arguments:

1 A list of unevaluated functions £1(x1)...fn(xn). Each of these functions will be
evaluated on different processes/nodes in parallel. Note that the functions £i might
have more than one input parameter.

2 A composition function recompose which takes as input the results produced by the
parallel evaluations and produces the final output of the peval call. The subresults
are contained in parg[i],...,parg[n].

In particular, the functions £i(xi) do not need to represent the same computations
and may contain other peval statements, and so on.

As an example for the usage of the peval function we give a parallel version of the
well known Karatsuba algorithm for multiplying long integers in Figure 7.

Here we execute the recursive sub-multiplications in parallel as long as both integers
have more than 50 digits, otherwise we call the built-in sequential version.
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imult:=proc(x,y) local 1x,ly,n,x1,x2,y1,y2;
1x:=length(x); ly:=length(y);
if (1x > 50) and (ly > 50)
then # Parallel Karatsuba algorithm for large numbers
n:=round(max(1lx,ly)/2);
x1:=iquo(x,107n,’x27);
yl:=iquo(y,10°n,’y2’);
peval ([?imult’ (x1,y1),’imult’(x2,y2), imult’ (x1+x2,y1+y2)],
'<u*10~ (2*n)+(w-u-v)*10°n+v | n,u,v,w>’
(n,parg[1],parg[2],parg[3])

else # Built in algorithm for small numbers
X*y;
fi;
end;

Figure 7. Parallel integer multiplication

5.1. PAULE’S ALGORITHM

As we already saw, the most important task in the implementation of Paule’s algorithm
is the solution of a system of linear equations. For this reason the main goal is to improve
this part of the computation.

Solving a system of linear equations in general is a well-known task. In the sequential
case, the Gaussian elimination algorithm (see, for instance, Aho et al. (1974)) will be
used. But it turns out that the equation solver known as Gaufl Jordan algorithm allows a
better parallelization. Here we successively eliminate all elements of a column in parallel,
which should give us a nearly optimal speedup for larger matrices up to a high number
of processors.

While with fixed-size coefficients the time required per element is constant, the eli-
mination time with symbolic entries will vary and generate unbalanced execution times
for individual rows, thus limiting the benefits of parallelism. Due to worse complexity,
the Gaufl Jordan algorithm is usually slower than the Gaussian algorithm by a factor
of 3, so we need at least a speedup by 3 to compensate the algorithmic disadvantages.
Additionally, an efficient execution with symbolic entries depends heavily on a few small
details which may improve the execution time up to factor of 50 and more:

1 The smallest element in the row with minimal total size should be selected as the
pivot element. In our implementation we used the amount of memory required for
an element to determine its size.

2 Coefficients should always be simplified and normalized to integers.

3 Representing rows of the matrix as polynomials over a set of new variables will give
us access to the highly optimized polynomial operations available in Maple.

4 In a parallel environment, communication may be optimized by grouping several
rows together to form a computation block.

The effect of all these optimizations is shown by the following table comparing several
built-in Maple algorithms with our implementation on a relatively small matrix with
dimension 78.
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Algorithm Time Data Type Pivot Search

Gauf} Jordan 139 min  Matrix none

Gauf 24 min  Matrix row pivoting

Solve (Gauf) 4 min Polynomials min element in min row
Our Gauf} Jordan 13 min  Polynomials min element in min row
Parallel 2 min Polynomials min element in min row

The table shows that by parallelism and a few other improvements the Gaufl Jordan
method is able to beat a highly optimized Gauf} elimination algorithm by a significant
factor using a couple of workstations.

We tested our algorithm on several rational functions with rational coefficients. In
Figure 9 we summarize the most important timings using a network version of ||[MAPLE||
on a cluster of 12 Silicon Graphics (SGI) workstations. All computation times are given
in the form min:sec.

The first column shows the shift structure of the denominator, viz. 2,5,9 means that
the denominator of the input has three shift classes, respectively of dispersion 2, 5 and
9, respectively. The dimension of the system is given in the ninth column, while the
columns six and seven are the times needed by our parallel implementation running on
12 processors or on a single processor. It should be remarked that among the 12 processors
only 11 are involved in the real computations, as the first is used as manager.

The implementation using the built-in solver in Maple is reported in the eighth column,
while in the last we give the obtained speedup. The second column of the speedup entries
represent the speedup between the parallel implementation of Paule’s algorithm on 12
processors and the sequential reference implementation.

5.2. ABRAMOV’S ALGORITHM

The parallelization of Abramov’s algorithm lies mainly in the decomposition of the
rational function with respect to the shift classes of the denominator as in (2.1).

After this we apply the procedure on each of the summands p; /§; from (2.1) in parallel.
In the end we only need to sum up the results obtained by each parallel function call.

First we compute the shift structure the denominator ¢ of f, say ¢ = Gy - - - ;. Remark
that this computation is also done by our implementation of Paule’s algorithm.

Then we apply the divide-and-conquer principle in parallel using the ||[MAPLE|| func-
tion peval, as in the following ||[MAPLE||-code.

The function shift_structure computes the shift structure of f = p/q, i.e. the de-
composition into shift components of the denominator ¢ = ¢y - - - §;. In decompose the
number of shift components is checked. If ¢ has only one shift component, then the
sequential procedure abrsum is applied, computing a solution of the IRS problem for f.

Otherwise, if s > 2, then the function shift _par frac determines a decomposition

F=fitf= P2
q.l...qt qt+.l...qs

where ¢t = | §]. This is done by the extended Euclidean algorithm, computing p1, p2 such
that p1-Geq1- - Gs+p2-G1-- -G+ = p. Then decompose is applied in parallel to f; and f2 by
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abrpar:= proc(f,x) local fs;
fs:= shift_structure(f,x);
decompose(fs,x);

end:

decompose := proc(f,x) local f1, f2;
if nb_shift_comp(f,x)=1 then RETURN(abrsum(f,dis(f,x),x)) fi;
shift_par_frac(f,x,’f1’,’f2’);
peval([’decompose’ (f1,x),’decompose’ (£2,x)],
>sum_up’ (parg[1] ,parg[2]));
end:

Figure 8. Parallel code for Abramov’s algorithm

a peval call. The function sum_up just combines the results, summing up the summable
and the nonsummable parts of the partial solutions.

In this kind of parallelization the number of really concurrent processes is directly
related to the number s of shift components of ¢, in contrast to the solution of a linear
system.

The timings for the same examples used for Paule’s algorithm are given in columns
two to five of Figure 9.

The entries are analogous to those corresponding to the algorithm of Paule. From the
third and fourth columns follows the unexpected but interesting fact that the parallel im-
plementation carried out on one processor is already faster than the sequential algorithm.
Note that the sequential implementation considers all classes at once, so it does not need
to decompose the rational function with respect to the shift classes of the denominator.

As a result of parallel considerations, this consideration implies that also a sequential
implementation should compute the partial fraction decomposition and apply the pro-
cedure on the single components (at least over the coefficient field @ considered in our
examples).

5.3. COMPARISON

Summerizing the data in Figure 9, for our examples the implementation of Abramov’s
algorithm is faster, in both the sequential and parallel case.

In the table one also finds the value of the degree in the denominator of the rational part
computed by each algorithm. Our modification of Abramov’s algorithm often computes
a result with significantly smaller degree.

We remark that the system solver used in Paule’s algorithm would take considerable
advantage of having more processors available. Since the number of parallel processors
used by Abramov’s algorithm is given by the input, the implementation does not take
any advantage of more processors available. This means that by an appropriate number
of processors, Paule’s algorithm would be faster in some cases, e.g., for rational functions
with few shift classes, almost shift saturated structure, and corresponding to a system of
high dimension.



Rational Summation in |[MAPLE|| 13

Shift classes Abramov Paule Speedup
12 P 1P Seq Deg 12 P 1P Seq Dim Deg Abr. / Paule
2,5,9 12 19  1:18 42 2:31 13:31 4:27 78 58 6.4 / 1.7

53 1:16  3:38 53 7:58 56:42  16:06 92 67 4.0/ 2.0
25 45  2:49 50 18:10 143:54  38:59 111 50 6.7 /21

4,10,13 1:06  1:21  3:29 81 7:46 42:22  17:14 110 84 3.1 /2.2
30 45  3:31 69 15:12 106:50 43:21 123 100 6.9 /2.8
2,2,7,12 15 21 59 28 1:59 10:36 2:48 65 44 39/1.4
9 13 28 33 1:38 5:31 3:11 69 44 3.0/1.9
1,5,10,11 9 18 48 44 9:14 34:10 11:48 89 44 4.8 / 1.3
5 9 16 52 1:09 3:21 1:50 66 53 2.8/ 1.5
3,3,7,12 8 21 1:17 33 10:03 73:16  26:11 99 57 8.9/ 2.6
2,2,2,3,3,3 1:30 2:01 341 31 3:37 25:33  16:50 66 31 24 /46

1:16  1:539 6:33 46 17:55 164:44 17:12 84 46 5.1 /0.9

Figure 9. Timings

6. Conclusions

Indefinite summation of rational functions represents a significant special case of the
problem of finding closed forms for sums. We saw that within this framework it is possible
to decompose the sum obtaining a sort of “simplification” even when the expression does
not allow a closed form.

The algorithms discussed here showed some interesting combinatorial aspects by them-
selves, which can be intuitively represented by the described graphical representation.

Both algorithms suggest the use of parallel computation. The parallel implementation
in [|[MAPLE|| on a workstation network achieved significant speedups. Furthermore, in
the case of Abramov’s method the parallel approach should be used also for a sequential
implementation.

This encourages us to apply parallel methods to other symbolic computation problems
in combinatorics. For instance, consider the case of indefinite summation of hypergeome-
tric functions f, i.e., where Ef/f is a rational function in z. This problem can be solved
by Gosper’s algorithm (see Gosper (1978) and Lisonék et al. (1993)), which is based on
the solution of a linear system with polynomial entries. Also, Zeilberger’s algorithm for
definite hypergeometric summation (see Zeilberger (1991)) would take advantage of an
efficient parallel solver for systems of linear equations with symbolic entries.

[[MAPLE|| is an efficient tool for dealing with such problems, providing the symbolic
manipulation facilities of Maple. In particular, the parallel solver of linear systems pre-
sented here works without any modification for any field K which can be manipulated
in Maple, for instance for K = Q(z1,23,...,z,), the field of rational functions in the
symbols z1, ..., z,.
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