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Exact solution of linear systems
over rational numbers
by parallel p-adic arithmetic
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Abstract. We describe a parallel implementation of an algorithm for
solving systems of linear equations over the field of rational numbers
based on Gaussian elimination. The rationals are represented by trun-
cated p-adic expansion. This approach permits us to do error free com-
putations directly over the rationals without converting the system to an
equivalent one over the integers. The parallelization is based on a multiple
homomorphic image technique and the result is recovered by a parallel
version of the Chinese remainder algorithm. Using a MIMD machine, we
compare the proposed implementation with the classical modular arith-
metic, showing that truncated p-adic arithmetic is a feasible tool for
solving systems of linear equations. The proposed implementation leads
to a speedup up to seven by ten processors with respect to the sequential
implementation.

1 Introduction

For a positive integer n we want to solve a system of n linear equations for the
n unknowns zq,...,x,

1,121+ a12T2 4+ ...+ a1 0%y = by
a2121 + G222 + ...+ A2 n Ty = by (1)

Ap 121 + Ay 2X3 +...+ Ap nLp = b,

where a; ; and b; (1 =1,...,n and j = 1,...,n) are rational numbers. We will
denote the system (1) by Ax = b.

Gaussian elimination is often used in numerical analysis to find approxima-
tions to the solutions of such systems. It is well known that for so-called ill-
conditioned systems, small errors in the approximation of the coefficients may
lead to large errors in the approximation of the solution. For instance, when a
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system based on floating point numbers attempts a division of a large dividend
by a small divisor, the floating point result could be far from the exact result.

The use of exact arithmetic overcomes this problem. We will apply p-adic
arithmetic to perform exact computations and we will compare this approach
with the one based on modular arithmetic.

There exist mainly two possibilities to compute exact solutions for (1): either
one first transforms the problem to the solution of a system over the integers, or
one computes with rational numbers. One can compute a matrix A’ and a vector
b’ with integer entries, such that the system A’x = b’ has the same solutions
as (1). To A’x = b’ one can for instance apply Cramer’s rule and obtain a
solution avoiding rational arithmetic. This approach has the disadvantage that
the entries in A’ are in general considerably larger than the entries in A. On the
other hand, working directly with system (1) needs an error-free representation
of rational numbers and algorithms for error-free computations with them.

In this work we present a parallel implementation for solving linear systems,
based on Gaussian elimination algorithm and the p-adic representation of ra-
tional numbers via truncated power series w.r.t. a prime basis p. The order of
truncation r, as well as the number p, is chosen in accordance with an a priori
estimation of the magnitude of the solution of the problem. This allows us to do
error-free computations directly with rational numbers. For a detailed treatment
of p-adic arithmetic in the context of symbolic computation, refer to [7] and [5].

Our goal is to show that p-adic arithmetic provides an efficient tool for solv-
ing linear systems over the rational numbers. For this reason, we compared our
implementation with one using modular arithmetic and with a sequential imple-
mentation in the computer algebra system Maple [2].

Our parallelization consists of applying the well known Gaussian elimination
method (see for instance [1]) for different prime bases, and recovering the result
by the Chinese Remainder Algorithm (CRA). The implementation was done in
PacriB, a C-language library for parallel symbolic computation [6], on a Sequent
parallel machine with a MIMD architecture.

In the following section we give some basics about p-adic arithmetic. In the
third section the application of Gaussian elimination algorithm using p-adic
arithmetic will be outlined. Fourth section will be devoted to describing the
features of the parallel implementation. Concluding remarks are made in the
fifth section.

2 Basics of p-adic arithmetic

For any positive integer m, we denote by Z,, the ring of the integers modulo m
and by | - | the canonical ring homomorphism from Z to Z,,. Let IN be the set
of natural numbers. For a given prime p, a rational number « can be represented
in a unique way as

a=(c/d) -p°, (2)



where ¢, d, and e are integers, ¢, d, and p pairwise relatively prime and d positive.
Furthermore, o can be uniquely expressed in the following form:

a = Zaipi where a; €4, .
i>e
The infinite sequence (@eaeq1 - -a—1 agay - - ) is called the p-adic representation

of a. We use a truncated representation, defined as follows.

Definition1 (Hensel Codes). Let p be prime and r € IN. For any rational
number o = (¢/d) - p¢, where ¢, d and p are pairwise relatively prime, the Hensel
code Hp, ,(a) of length r of « is the pair
(mant,, expo) = (agay ---ar_1,€) ,
where the r leftmost digits of the p-adic representation of @ and e are called the
mantissa and the exponent, respectively.
One easily verifies that we have

r—1

le-d™t,r = Zai-piEZpr.

i=0

Let H, . denote the set of all Hensel codes w.r.t. the prime p and the code length
r, ie, Hy,, := {Hp () | « € Q}. The forward and the backward mappings
between @ and IH, , are algorithmically computed by the Extended Euclidean
Algorithm (EEA), as we state in the following theorems.

Theorem 2 (Forward Mapping). Let p be prime and r € IN. Let o = (¢/d)p®
be rational, such that c,d, and p are pairwise relatively prime. Then the mantissa
mant, of the code H, () is computed by the EEA applied to p" and d as

mant, =c-y (mod p")
where y is the second output of the FEA.

Proof. See [11].

Definition 3 (Farey Fraction Set). Let N(p,r) = [ %J . The Farey frac-

tion set IF, , of order N(p,r) is the subset of rational numbers a/b such that:
a,beIN, 0<a<N(p,r), 0<b<N(p,r).

Theorem 4 (Backward Mapping). Let p be prime, r € IN and ¢/d € TF,, ,..
If m is the value in Zy- of the Hensel code mantissa related to ¢/d, then the
EEA applied to p" and m computes a finite sequence of pairs (x;,y;) such that
z;/y; = ¢/d for some i.

Proof. See [11].



Arithmetic operations on Hensel codes are carried out, digit by digit, starting
from the leftmost digit, as in the usual base-p arithmetic operations [3]. An
addition (or a subtraction) can give a result in which some leftmost digits are
equal to zero. In this case we say that the addition (or subtraction) produced a
pseudo-Hensel code.

Definition5 (Pseudo-Hensel codes). A pseudo-Hensel code is a code such
that ag = --- = ap = 0, for some k£ with 0 < k£ <r—1.

This loss of significative digits does not permit one to execute the division,
as it has been stated in [5]. In [8] it is shown that it is possible to overcome
this problem by introducing a new approach both for division and for the treat-
ment of the pseudo-Hensel codes. These results extend the applicability of p-adic
arithmetic to a wide class of computing problems.

In order to reduce the occurrences of pseudo-Hensel codes by choosing an
appropriate base p, we remark that the probability of finding a leading zero in
a code is equal to 1/(p — 1). The probability of obtaining a leading zero after
an addition of two Hensel codes is given by the probability of finding @ (with
1 < a < p) as leading digit of the first code and p — a as the leading digit
of the second code, that is 1/(p — 1)2. The same occurs for subtraction. From
a computational point of view, the best possible choice for p is hence made
by taking p to be the greatest prime number less than the maximum integer
representable in a memory word. On the other way we want to avoid overflow
during computations, hence we will fix the base p on the ground of the wordsize
w of our computer: p < 2¢/2 4 1.

The possibility of performing exact arithmetic operations on IH, , is ensured
by the following theorem.

Theorem 6. Let p be prime, r € IN, ay, a0 € Q, & € {+,—,-,/} an arithmetic
operator. If

a1Pay = ag, with az € IF,, ,

then there exists precisely one H, ,(as3) such that

Hp r(a3) = Hp,r(al)@/Hp,r(QZ)
where &' is the operator in H, , which corresponds to @ in Q).
Proof. See Theorem 2, Theorem 4 and [5].

A scheme for a general computation consists of mapping on IH, , the rational
input numbers and then of performing the computations over IH, .. However,
by Theorem 4, the inverse mapping can be performed only when the expected
result belongs to IF, .. This means that we need a bound for the size of the
result, in order to make the right choice for p and r.



3 Bounds for the Solutions

Before showing the parallel implementation in the next session, we present the
sequential method of Gaussian elimination and an estimate for the size of the
result. The problem is stated as follows.

Problem Given A € Q"*" and b € Q", find, if it exists, a vector x =
(z1,...,2,) € Q" such that
Ax=b . (3)

We consider the case A € Z"*" and b € Z" first. By Cramer’s rule we know

that Al
PR 4
€L |1| ) ( )

where |A| denotes the determinant of A, and A; is the matrix obtained from
A by substituting the ¢th column by b. Now let @ be a maximal entry in a
matrix M € Z™*", then one easily proves by induction on n that |[M| < nla”.

From this and (4) we obtain that both numerator and denominator of any z; are
bounded by n!a™, where a is now a maximal entry in A and b. From this bound
we determine a value for r, such that the result is in IF, , for a given prime p.
From the definition it suffices that

n pr_l
nla §\‘ 2 J . (5)

Considering the square of both sides of the inequality we obtain 2(n!a™)?+1 <
p". This implies log,‘p(Q(n!a”)2 +1) <log, p" or, equivalently,

r> logp(2(n!a")2 +1) . (6)

Hadamard’s inequality (see for instance [10] or [9]) gives another bound for

the determinant
1/2

AP < H Ea?,j : (7)

i=1 \j=1

From this bound the following condition is derived in [5]

n n n
p' < Z |4 H Za?,j : (8)
i=1 i=1 \j=1

It should be remarked that both bounds are still quite conservative, since
a smaller choice of p and r is often sufficient. In the general case A € Q"*"
and b € Q" the bound for the numerator and denominator of the z;’s becomes
nla”(®*+1), This follows again from Cramer’s rule by considering the equivalent
system obtained from A by multiplying each row by the common denominator
of all entries in that row and of the ith entry in b, i.e., multiplying by a number
of magnitude at most a™*?!.



4 Parallel Implementation

We describe the parallelization on, say, k concurrent processors. We first compute
k prime numbers p1, ..., p; at random and the corresponding code length r such
that the entries of the solution x are contained in IF, ., where g = p; - - - py.

At this point k parallel tasks are started. Each of them computes the image
of the problem w.r.t. one prime in p-adic representation of the rational entries,
ie., Hy, ,(A) and Hp, »(b). By a certain abuse of notation we denote by Hp, ,(A)
the matrix (a; ;) with a; ; = Hp, ,(ai ;), and analogously for Hp, ,(b).

Then for each processor a sequential implementation of Gaussian elimination
is executed via p-adic arithmetic. The main steps of this algorithm are given in

Fig. 1.

Gaussian Elimination for p-adic Computations

Input: n: degree of the linear system;
A = (ai ;) € @*": n-dimensional square matrix;
b= (a1,n41,--+,8n,nt1) € Q": column vector;

p: prime base;
Output: x = (z1,...,%,) € Q": solution of Ax = b, if it exists;

Begin

1.1. Compute the maximum integer number ¢ among the numerators and denominators
of the rational entries in A and b;
Compute the truncation order r, as shown in (6);

1.2. Apply the mapping H,, to all the entries of A and b.

1.3. 1:=0;
for ::=1 to n do
=141

for j:=1ton+1do
Divide a;; by a;;

od;

for h:=1+1ton do
Multiply the :-th row by an;
Subtract the new i-th row from the h-th row of the system
obtained at last iteration. This is the new h-th row;

od;

od;

1.4. Recover Hy  (z1),..., Hpr(zn) from the triangular matrix obtained;

End

Fig. 1. Gaussian elimination Algorithm for p-adic Computations

Gaussian elimination computes solutions x(*) ]HZ“T fori =1,... k. Af-



ter collecting all of the x(1) we execute k concurrent calls of CRA. We apply
the parallel version of CRA described in [8] on each sequence of components

;1:](-1), ce mgk), obtaining the component z; € IH,,...,, , of the solution vector x.

From the assumptions made on r, the list {x(l), ce x(k)} of results obtained
in this way can be mapped back to a vector x € ]Fg,r (vector over the Farey
fraction set) by the CRA. From Theorem 6 we know that if the solution exists
in IF, ., then it is unique.

After this, the result x only needs to be converted from the p-adic to the usual
representation by the backward mapping, applied in parallel on each component.

A scheme of the parallel computation is given in Fig. 2.

InpPUT A,b
PrRIME COMPUTATION |
P1,p2, y Pk
FORWARD MAPPING / 1 AN
HENSEL CODES Hy, »(A), Hy, r(b) Hy, »(A), Hp, r(b)
! ! !
(GAUSS ALGORITHM | | |
! !
SOLUTIONS x = H, ,(x) x(F) = H,, (%)
SYNCHRONIZATION . | /
X, x®)
v ! N
v !
xM k(W xG k)
CRA ! ! 1
UNIQUE SOLUTION x1 € Hp, o ppr Xn € Hypy gy r
INVERSE MAPPING N\, 1 /
!
OuTPUT X

Fig. 2. Parallel Computation Scheme

In the case of dense matrices with large dimension and size w.r.t. the number
of processors, also standard parallelization techniques for dense linear systems
could be applied.

We implemented this algorithm in PACLIB (see [6]), a system developed at
RISC-Linz for computer algebra purposes in particular. PACLIB is based on the
SacrLiB library (see [4]), which provides several computer algebra algorithms
written in C. It should be noticed that several other symbolic computation sys-



tems provide a parallel implementation of a linear system solver. For instance
the parallel computer algebra system |[MAPLE|| (see [13]), a parallel version of
Maple developed at RISC-Linz, provides a solver based on the Gauss-Jordan
algorithm that can also handle symbolic entries [12].

5 Experimental Results and Comparisons

We tested the implementation on several randomly generated linear systems on a
Sequent Symmetry machine with 20 processors, a MIMD computer with shared
memory.

The parallel implementation is compared with a sequential implementation,
where we apply sequentially the same mapping onto IH,, . for the same primes p;
as in the corresponding parallel execution.

In Table 1 the execution times of both the sequential and the parallel im-
plementation are reported in milliseconds. The input size is the maximum bit
length of the numbers. If the entries are rational numbers the numerator and
the denominator have a bit length bounded by this input size. Parallelizing the
algorithm over 10 processors we achieve a speedup up to 7.5, with respect to the
sequential algorithm.

Dimension | Input Size | Sequential | Parallel | Speedup
10 10 3064 692 4.4
15 10 9388 1792 5.2
20 10 27707 4421 6.2
20 20 57014 7563 7.5
20 30 69481 11196 6.2
25 10 61528 8751 7.0
25 20 108695 15813 6.8
30 10 119890 16893 7.0

Table 1. Comparison of sequential and parallel algorithm

We compared our implementation with an efficient modular parallel imple-
mentation for systems over integers which makes use of a mixed method (Gauss
and Kramer), implemented in PACLIB. We consider two cases:

1. The input data are integers;
2. The input data are rationals. We present the case where only the vector b
has rational entries.

In the first case, p-adic arithmetic is essentially reduced to modular arithmetic
and the backward mapping becomes almost trivial. From Cramer’s rule we know
that the denominator of any component z; of the solution x divides |A|. So



H,  (z;) - Hyr(]A]) is an integer and no backward mapping is needed, since we
have

[ Hur @)y (14D /s
"o 4] | ®)

where /- /, is the signed modulo mapping to {—%, cely %} Remark that the
determinant |A| is computed as a by-product of Gaussian elimination.

In the second case, in order to do a fair comparison with the modular algo-
rithm, which accepts only integers entries, we have to study the size of equivalent
inputs for both algorithms. Let A € Q" *" be a system over the rational numbers
and let s be the maximal size among all denominators of the entries in A and
b. We must transform Ax = b to an equivalent system A’x = b’ with integer
entries. This means to multiply each row/equation by an appropriate integer. It
is easy to see that the smallest integer m; such that mja;, m;b; are all integers,
is equal to the l.c.m. over all denominators arising in the jth row a; (resp. b;)
of A (resp. b). In the worst case, m; will be the product of all denominators
(i.e., m < (n+ 1)s). In the comparison, one must take into account this fact,
although the average size of m will be probably smaller than this.

Here we are considering rational entries only in b, so if s is the size of the
entries for the p-adic algorithm, the entries of the modular algorithm will be of
size 2s.

In Table 2 we show the behaviour of the algorithms for fixed input length.
For the considerations stated above a length of 10 for integer entries means a
length of 5 for the rational case.

Dimension Modular P-adic Rational
5 321 218 278

10 692 619 718

15 1422 1719 1315

20 3210 3315 2995

25 5972 5756 5579

30 14309 12299 11107

Table 2. Comparison of modular, p-adic, and rational p-adic when length=10.

In Table 3 the timings of some executions are shown, where the dimension of
the system 1is 20.

We also compare our sequential algorithm with the implementation available
in MapleV (see [2]). MapleV implements a fraction free Gaussian elimination, so
the equations are converted to have integer coefficients and after each elimination
step, the greatest common divisor of the coefficients is divided out to minimize
growth. The timings in Fig. 3 show the behaviour of the algorithms.



Input length | Modular | P-adic | Rational
5 1908 2024 1722

10 3007 2966 2903

15 3519 3957 3416

20 5760 5441 4421

25 7502 8785 7067

30 9845 11151 9037

35 11222 11734 10023

40 22406 21372 11023

Table 3. Comparison of modular, p-adic, and rational p-adic when dim. =20.

6 Conclusions

We presented a parallel implementation for solving systems of linear equations
over the rational numbers. For the computations, the rational coefficients are
represented by Hensel codes, i.e., by a truncated p-adic representation. This
approach permits us to do error-free computations directly over the field of
rational numbers, without converting the system to an equivalent problem over
the integers. The parallelization is done by applying the sequential Gaussian

time (ms.)
80000 I I I -
70000 ratse _

maples€q —+—

60000 - S

50000 - n

40000 |- n

30000 - n

20000 [ n
9

10000

6 8 10 12 14 16 18 20 22 24
coefficients binary-length

Fig. 3. Comparison of MapleV and the sequential p-adic algorithm with dim. =20.



elimination to different p-adic images of the problem w.r.t. several prime bases,
using the p-adic arithmetic described in [7]. The result is recovered by a parallel
Chinese remainder algorithm. Using 10 processors the parallel implementation
achieves a speedup up to 7.5 with respect to the sequential one.

We compared our implementation with a parallel modular approach over
the integers and with the built-in sequential implementation in MapleV. As
expected, the p-adic representation is at least as efficient as the modular one
for the case of integer coefficients and more efficient for the case of rational
coefficients.

These experimental data confirm the expected behaviour of linear algebra al-
gorithms implemented via p-adic arithmetic as regards the heavy computational
complexity of CRA. In [8] it is shown that for problems with many large input
data the asymptotic running time of the p-adic algorithm is never dominated by
the cost of the recovering step.
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