COMPUTER ALGEBRA

Franz Winkler

University of Delaware

i Integrotion, Summation and Differentic}

Equations 331
I, Quantifier Elimination 334
i, Simplification 337
V. Computationat Group Theory 341
V. Polynomial Greatest Common Divisors 342
VI. Facterizotion and Reol Root lsolation 345
VIl,  Arithmetic in Basic Domains 348
Vill.  Program Systems for Computer Algebra 350
GLOSSARY

Algebraic number: Root of a polynomial in
Qix].

Euclidean dowmain:  Integral domain D together
with a grading function deg:D-{0} — N such
that deg(a™h) = deglu) foralla. be D, b #+
0,and forall a, b € D, b # ( there exist ¢
and rin D such that ¢ = b¥g + randr = GQor
deg(r) < deg(h).

Factor: An element fof an integral domain ) is
a factor of g € D if f divides g.

Field: (F,+,*. 0, Disaringsuchthat0# 1,%
is commutative, and every nonzero element
has a multiplicative inverse (i.e., for every
a # Othereis ana™!suchthata®a™! = 1 =
a "a).

Greatest common divisor:  An element g of an
integral domain D is a greatest common di-
visor of @ and & in D if g divides both « and
b and cvery other divisor of ¢ and b di-

vides g.
Group: (G, +, Q) is a set (& together with a

binary operation + such that + is associa-
tivelie,(a+ M +c=a+ b+ )foralla,
b, ¢ In 71, G is a unit element for G{i.e., 0 +
a=a=qa + 0for all ¢ in ), and cvery
element in G has an inverse (i.e., for every
a in (G there is a —« in & such that o +
(~a) = 0= (—a) + a). (G is a commutative
group if -+ is also commutative {i.e., ¢ +
b =5+ aforalla, bin G).

ENCYCLOPEDIA OF PHYSICAL SCIENCE
AND TECHNOLOGY. VOL. 2

Integral domaim: Commutative ring without
zero divisors (i.e., if @b = 0 then a = 0 or
b=10)and 0 £ 1,

Polynomial: A polynomial in the indetermi-
nates x;, ..., x, over the ring R is a func-
tion pixft - xMjny, on, € N} N,

which is zero for all but a finite number
of arguments; p is sometimes written
as ZE, plemd o el o yied where
xpd e ymed 1= i =k, are the only argu-
menis for which p is nonzero.

Polynomial ring: The polynomial ring in the in-
determinates xy, ..., x, over the ring R is the
ring formed by all the polynomials in xy, ...,
X, over R, written Rlx;, ..., x.].

Relatively prime: Two elements ¢ and b of an
integral domain are relatively prime if 1is a
greatest common divisor of ¢ and b.

Ring: (R, +, *, 0, I) is a set R with two binary
operations + (addition) and * (multiplica-
tion) such that (R, +, 0) is an abelian group,
* {5 an associative operation on R, 1is a unit
element for *, and * is distributive over +
[i.e., a®*(b + ¢} = (a¥b) + (a*c) and (a +
D)*c = {a¥c) + (b¥¢) for ail a. b, ¢ in R}

Unique factorization domain: Integral domain
in which every nonzero element can be
uniquely expressed as a product of primes
(up to multiplication by units and permuia-
tion of the factors}.

The field of computer algebra comprises a
wide range of basic goals, methods, and applica-
tions. As the name suggests, in computer alge-
bra one is concerned with computing in alge-
braic structures. This might mean in the abstract
setting of group theory, in differential fields with
additional functions adjoined, in algebraic ex-
tensions of the rational number field, or in poly-
nomial rings. In general the inputs to an algo-

Copyright £ 1987 by Academic Press, T,
Al rights of reprodusction in any form reserved.



I, INTEGRATION, SUMMATION, AND DIFFERENTIAL EQUATIONS 331

rithm are formulas and one also expects
formulas as the result. Another important char-
acteristic of computer algebra is that, in contrast
to other kinds of scientific computation, every
operation that is performed on the given objects
is carried out in an exact way, This means that
the result of the computation is the precise solu-
tion to the given problem and not just an approx-
imation of it. As a conseguence, computer alge-
bra allows one to construct decision algorithms
(e.g., for the validity of a formula in the elemen-
tary theory of real closed fields, for the solvabil-
ity of a system of algebraic equations, for the
solvability of a given integration problemy), in
which it Is essential to have exact answers to
certain  questions. [See COMPUTER ALGO-
RITHMS.]

l. Integration, Summation, and
Differential Equations

A. INTEGRATION

The methods for indefinite integration that are
commonly taught in calculus courses are heuris-
tic methods: they may lead to an integral. but if
they do not work, one still does not know
whether an integral of some specified form ex-
ists or not. Recently the theory of integration
has been greatly advanced by the development
of decision procedures for certain classes of
functions. {See CALCULUS: INTEGRAL EQUA-
TIONS.]

The integral of a rational function [p(x)/g(x)
dx. where p(x), g(x) € Q[x], ged{p.g) = 1, and ¢
monic, can be expressed as

g(x)
Solx) - fl!

+ ¢; logly — ay)

+ -+ gy loglx — a,)

for some g{x) € Qx}, a;. .... a, the distinct
roots of ¢ and some ¢y, ..., ¢, in @iy, ..., @,).
Letf;f% e f1, o F 1, be the square-free decom-
position of ¢ {see Section VI). Then there exist
two uniquely determined polynomials g(x) and
#(x) with deg(g) < deg(f ... f77", deglh) <
deg(f; ... f), such that

MOy B,

gx) R gt T A e i T

(1)

The polynomials g and /i can be computed by
decomposing p/g into the square-free partial

fraction decompositicn
fr
where go, gy € Qlx]. deglg;) < deg(f) for 1 =
j = i=r, and then using the Hermite trick and
integration by parts, which reduces an integral
of the form
glx)
Foy

< deg{ ), fsquarefree, nn = 2

dx deg(p)

to an integral

fg_()',‘,?,, de  deg(h) < deg(f)
Another way of computing g and A is to differen-
tiate Eq. (1), and solve the resulting equations
for the coefficients of g and 4 by equating the
coefficients of equal powers of x. That deter-
mines the rational part of the integral, What re-
mains to be done is to compute the logarithmic
part of the integral,

l‘ h(x)
DA - flx)

In the splitting field of ¢, f(x)/f3{x) -+ f{x) can be
expressed as i, cflx — o) and therefore
LRI - ) dy = 2 e log(x — o). How-
ever, the computation of the splitting field,
which in the worst case is of degree »#! over @, is
practically impossible. Fortunately, the splitting
field is not always necessary to express the inte-
gral. If p, g are relatively prime polynomials in
2[x] with ¢ square-free and deg{p) < deg(g),
then

dx

] HxHgle) dx = 2 ¢; log(iy)
=t

where the ¢; are the distinct roots of R(¢) = re-
sultant,[p(x) — cq'(x}, glv)] and v; = gedlp —
aq’, 4.

Techniques similar to the ones in rational
function integration can be used in an algorithm
for the integration of transcendeatal elementary
functions. The elemeniary functions are the
meromorphic functions on some region of the
complex numbers €, built up from the rational
functions by repecatedly doing algebraic opera-
tions, taking logarithms, and taking exponen-
tials. This algorithm, due to R. H. Risch, is
based on a theorem of J. Liouville, which is best
presented in terms of differential fields.



332 COMPUTER ALGEBRA

A differential field is a field F, together with a
derivation (") on F, that is, a map of F into itself,
that satisfies the rules {a& + &) = o' + b" and
(ab) = a'b + ab' forall a, bin F. Anelememt «
in F is called a constant if ¢’ = 0. The constants
of F form a subfield of F, the field of constants.
A field E is called a differential extension field of
F if the field F is contained in E and the deriva-
tion of E restricied to F is a derivation on F. If
for x, y in E with ¥ # 0, the relation x' = y'/y
holds, then x is called a logarithm of y or y an
exponential of x. A differential extension E of
the differential field F is an elementary exten-
sion of F if there exists a tower of differential
fields F = Fy C F, C --- C F, = E such that for
each | =i = n,

either F; = F, ,(f} where 7 is a logarithm of an
element of Fi.;

or F; = F,_ (1) where t is an exponential of an
element of Fi.,

or F; is a finite algebraic extension of F.y

If F = C(x), where € is a subfield of the field of
complex numbers, then E is a field of elementary
functions. If in addition each F;is a transcenden-
tal extension of Fr..;, 1 =i = n, then E is a field
of transcendental elementary functions.

The decision procedure for the integration of
clementary functions is based on

Liouville’s theorem. Let F be a differential
field of characteristic zero and lect f be in F.
There exists an elementary differential exten-
sion field of F having the same field of constants
and containing an element y such that ¥’ = fif
and only if there are constants ¢y, ..., ¢, in F and
clements u, u, ..., 4, in F such that

H

Wal
F=u + 2 cullu

=

For a given elementary integrand f(x), one
first has to find a field C(x, ¢, ..., 1,} = F, con-
taining fthat is an elementary extension of C(x).
Once f is represented as a rational function in
Clx, t1, ..., 4, Risck’s algorithm decides
whether f has an elementary integral, and if so
finds it. For an overview of the transcendental
case of Risch’s algorithm, see the chapter on
integration in finite terms in Buchberger ef al.
(1983).

As an example consider the problem of finding
an integral for

£l = 2x exp(e) log(x) + 5@
log(x} — 2 (2/x) log(x) + Iix +1
[fogh(x) + x}? logi(x) + x

where f(v) is in ©(x, f;. 1) and 1, = exp(x?),
£> = log(x). The decision procedure treats f{x} as
the rational function

Ixtits + fix + (1 — DS + 4
+ [(fdy + (Ux) + 1003 + x)
and vields the integral
hiy — LI + x) + log(d + x)

log{x)

= exp(x?) log(x} — Jog?x) + x

+ Jogflogi(x) + x}

as the solution to the integration problem.

B. SUMMATION

Let a difference field be a field FF together with
an automorphism ¢ of F. For f € F, let Af =
a(fYy — f (upper difference operator), ¥/ = f —
o~ f) {lower difference operator). Then f & F
is calted a constant of the difference field {(F, o),
itf o( /) = f. All the difference ficlds in this sce-
tion are assumed to have characteristic zero.

I. EXAMPLE. [Q(x), o}, where o f(x}] =
f{x + 1), forms a difference field, Af(x) = f(x +
D~ OV = f(x} — f(x — 1. Consider the
elements of C)(x) as functions from the integers
inte @. Then

Ag=Ff if and only if

> fliy = gm) ~ g@ foralln € N

0=i<n

Vh=f if and only if

> fliy=hin) - h©) forallne N
0<i=n
Soif equations of the form Ag = f(Vh = f) could
be soived, then a “‘closed form™ solution to the
summation problem

S S0 =g | S i) =hon)]
0=i<n D<i=n -
would be available.

The constanis of a difference flield (F, o} form
a subfield of F, the field of constants of (F, o).
The operators A and V are linear and they satisfy
the product rule

Alf-g) =/ Ag+ A g+ A 2
V(f-g)=f-Vg+VNf- g~V Vg

Let (F, o) be a difference field, x transcendental
over F, and extend o by letting o(x} = x + [.



. INTEGRATION, SUMMATION, AND DIFFERENTIAL EQUATIONS

333

Then (F(x), o) is a difference field; {F{x), o)
may be viewed as the field of rational lunctions
from the integers (o F. For a{y) € Fix), onc may
extend F{x) by t{x), the “factorial”™ of a(x},

tix)y = || e

OFicy

or by the “‘indefinite sum™

stx) = 2, al)
[N
Karr calis extensions of this form H-extensions
or Z-extensions. A I12-field is a difference field
constructed from some constant field by Tl-ex-
lensions and Z-extensions.

The problem of sumemation in finite terms is,
given a difference field (F. o) and f€ F, to find
the solutions g of Ag = f{or Vg = f) only in F.

Karr has developed a theory for solving arbi-
trary first-order linear difference egquations——
that is, equations of the form o{(g)-a - g = f—for
a and fin F, in any [12-field F. This method is
able te produce formulas (i.c., rational functions
of n} for the indefinite sums

" n n
S e i
f=1 i=0Q i=1

i

> 1/(52 w2), D il
i i

=

and also show that no such formulas exist for
" n IE“ L]

, . . 3 Prs ol

DRI YR VLD Y LI Y
A s = i=

i=1
Indefinite summation problems of the form
S{n) — SO) = 21 ali), where a(n)aln — 1) isa
rational function of », can be treated by Gos-
per’s algorithm. It will produce the result S(a), if
S8 — 1) is a rational function of ».
2. EXAMPLE. Use Gosper’s algorithm for
solving the summation problem
n—i
Som) = SO = >
et [Thr+ci+e
F

n--|

[To?+cg+d
L

ie., afn) = J”
[Tor+cte
=1

In a first step, polynomials p(n), g(n), and Hn)
are computed so that a(n)/a(n — 1) = [p(mg(m))/

[p(n = Drtm)] and ged[g(n), rin + j)] = 1 for all
7 = 0. For this example it suffices to choose
p(n) = 1, gln) = bn — 1) + cln = 1) + d,
) = bnt + cn + o, Now if S(n)/5in — Disa
rational function of n, then S(#) is of the form
[g(n + Dalmflipin), for some polynomial
f(#n). A bound for the degree of f can be com-
puted, which in this case turns out to be ¢. Once
a bound for the degree of fis known. it can be
determined as the solution to the eguation
pl) = gln + Vf(n) — rin)fin — 1). So
[= td ~ ¢yand therefore Stn) — S(®) is equal to

/1

L= TR + o + i+ i + o)
i

¢ - d

C. SOLUTION OF DiFrERENTIAL EQUATIONS

The integration problem can, of course, be
considered as a problem concerning a special
kind of differentjal equation, namely ' = f
There are, however, decision algorithms for
more general types of differential equations. As
in the case of the integration problem, one has to
determine the domain in which the solutions are
to be sought. In ihe following this domain will be
a Liouvillian field. [See DIFFERENTIAL EQUA-
TIONS, ORDINARY.]

Let F with derivation (') be a differential field
of characteristic zero. A differential extension £
of Fis Liouvillian over F if there exists a tower
of differential fields F= Fy CF, C - CF, = E
such that foreach 1 =i = n,

either F; = Fi.({r) where '/t is in Fi.y (¢ is an
exponential of an integral over F;))

or F; = F; (1} where ' is in F.; (¢ is an
integral over F,_y)

or F; is a finitc algebraic extension of Fi;

A function is said to be Liouvillian if it is con-
tained in some Liouvillian extension of Clx), for
C a subfield of the complex numbers.

In 1979, J. J. Kovacic derived an algorithm
that decides whether the second-order homoge-
neous linear differential equation

¥4 oay' + by =0, where a, b are in C(x)

(2

has a Liouvillian solution, and if it does finds a
basis for the space of Liouvillian solutions. As a
first step in the algorithm, the change of vari-
ables z = y exp[(}) [ i is performed. This leads
to an equation of the form

=0 (3)



334 COMPUTER ALGEBRA

A solution 7 to Eq. (3) is Licuvillian if and only if
the corresponding selution y to (2) is Liouvillian,
The decision procedure is based on the fact that
exactly one of the following cases occuss:

{(a) Equation (3) has a solution of the form
exp(f w) where w is in C(x).

(b) Equation (3) has a solutior of the form
exp([ w) where w is algebraic over C(x) of de-
gree 2.

(¢) All solutions of Eq. (3) are algebraic over
C{\} i

(d) Equation (3) has no Licuvillian solution.

In 1981, M. F. Singer discovered an algorithm
for deciding whether the nth-order homoge-
neous linear differential equation with algebraic
function coefficients

Yk gy e oy oy = 0 ()

has a Liouvillian solution and if it does finds a
basis for the space of Liouvillian solutions. One
of the basic facts used in Singer’s algorithm is
the following characterization of Liocuvillian so-
lutions to an equation of the form of Eq. (4),
which can be proved using a group theoretic
result of JTordan.

Theorem. Let F be a differential field with
an algebraicaliy closed field of constants, There
exists a constant & that depends only on # so that
it Eq. (4) has a Liouvillian solution over £, then

it has a solution z where z'/z is algebraic over F

of degree =k,

The algorithm proceeds by reducing the ques-
tion of the existence of a Liouvillian solution of
Eq. (4) to a problem in elimination theory and
then constructing a basis for the vector space of
Liouvillian solutions.

H. Quantifier Elimination

The elementary theory of real closed fields is
the first-order theory with the constants 0 and J,
function symbols +, —, -, predicate symbals =,
>, =, <, =, + (clementary algebra), and an
axiom system consisting of the axioms for a
(commutative) field, axioms tha( relate the order
relation to the arithmetic operations

(Va)(Ve)la > 0& b >0—a+ b >0
(Ya)Vh)a > 0&b>0—a-b>0]

and axioms that guarantee roots of certain poly-
nomials

(Ya)@h[a = b2 or —a = &

for every n = }:

(Yagi¥a,) - (Va,)(35)

EaO + a!b +o az”bln + b;’““—i = 0]

Models for the elementary theory of real closed
fields are the field of real numbers R and the fleld
of real algebraic numbers. Every formuta ¢ of
elementary aigebra that is valid in one model of
the elementary theory of real closed fields is
valid in every model of this theory. So in order
to decide ¢ for an arbitrary model, it suffices to
decide it for R,

In 1951, Tarski gave a gquantifier elimination
algorithm for transforming any formuia ¢ of the
theory of real closed fields into an equivalent
formula that contains no quantifiers, and he also
showed how to decide whether ¢’ is true for any
formula ¢ that does not contain quantifiers and
variables. Seidenberg and Cchen described
other methods for quantifier elimination. How-
ever, all these methods have an extremely high
computational complexity. In particular, even if
one fixes the number of variables r in the for-
mula ¢, they have a computing time that is expo-
nential in both m, the number of polynomials
oceurring it ¢, and #, the maximum degree of
these polynomials.

In 1973, G. E. Collins discovered a new
method for quantifier elimination, based on cy-
lindrical algebraic decomposition. This method
has a maximum computing time of

28 -+
(2 Y da

where ¢ is the maximum length of any integer
coefficient of any polynomial in ¢, and « is the
number of occurrences of atomic formulas in ¢.
In the following, Collins’s guantifier elimination
method is described.

Some notation is needed for stating the prob-
lem of quantifier elimination and the algorithm
for cylindrical algebraic decomposition. A stan-
dard atomic formula is an expression of the form
A ~ 0, where A is an integral polynomiai and ~
is a predicate symbol. A standard formula is a
formula constructed from standard atomic for-
mulas by use of propositional connectives and
quantifiers, and a standard prenex formula is a
standard formula of the form (QuriiXes) -
(Q.x,)d(xy, ..., x,), where ¢(xy, ..., x,) is a quan-
tifier-free standard formula containing the free
variables xy, ..., x,, 0 < &k =< r, and each Q; is
gither an existential or a universal quantifier.
Every formula in elementary algebra can be ex-
pressed as a standard prenex formuila.



0. QUANTIFIER ELIMINATION 335

Let B denote the r-dimensional Euclidean
space. A nonempty connected subset of R is
called a region. The cylinder over a region R,
written Z{R), is R x B!, A section of Z{R) is a set
s of points (a, ..., ., flay, ..., @), where
(ay, ..., a,) ranges over R, and f'is a continuous,
real-valued function on R. So s is the graph of f
and it is also called the f-section of Z(R). A sec-
tor of Z(R) is a set s’ of points {ay, .... 4., b),
where (g, ..., a,) ranges over R and fi{ay, ..., a,)

< b < filay, ..., a,) for continuous, reaj-valued
functions f; < f,. The constant fupctions
fi = == and 5 = += are allowed. Then 5’ is

called the (f1. f2)-sector of Z(R). A decomposi-
tion of a subset X of R is a finite collection of
disjoint regions whose union is X. An clement of
a decomposition is called a cell of the decompo-
sition. Continuous, real-valued functions f; < fa
< < fy, k2 0, defined on a region R, together
with fo = —%, fr=) = +%. naturally determine a
decomposition of Z{R) consisting of the (f,
fie1)-sectors of Z(R) for 0 =/ = k, and the f;-
sections of Z(R) for | = i = k. Such a decompo-
sition is called the stack over R determined by
the functions f3, ..., /¢. A decomposition D of R"
is cylindrical if either (2) r = 1, and D = (D, ...,
Dy,..q), where eitherv = 0and Dy =Rl orv > 0
and there exist real numbers a; < ar < -+ < ay,
such that Dy = (=%, ), Dy = {og}for 1 =7 = w,
Dg,‘_-| = (’Ot;, a7 |) forl =i<uvy, Dz,,_;.l = (., x);
or (b) r > 1, and there is a ¢ylindrical decompo-
sition D' = (D, ..., D,) of "' such that D =
O, L Dy ars o D o, D,l‘gx,#.;.l) apd for
each 1 =i = (D, ... Dizey) i a stack over
D;. D' is unique and is called the induced cylin-
drical decomposition of B! It [ is determined
by algebraic functions fi, ..., fz. then it is a cylin-
drical algebraic decomposition {cad). A sample
point for a celf of a decomposition is a point
belonging to that cell. A sample of a cad D =
Dy, ...DYisataple s = (5;, ..., %) such that
§ € D;for 1 = i = y. The sample is algebraic in
case each §; is an algebraic point. A sample s is
cylindrical if either (1) r = 1 or (2) ¥ > 1 and

there is a cylindrical sample s* = (sy, ..., 5, ) of a
cad D' of B ' such that s = {814, s S12uye1s oo
St s Spdn, i} and the first r — 1 coordinates

of §;; are, respectively, the coordinates of s;, for
all l =i=p, 1 =7=2y+ 1. A sample that is
both cylindrical and algebraic is called a cylin-
drical algebraic sample {cas).

Let A be a set of integral polynomials in »
variables. A cad D of R is A-invariant if every
polynomiat A in A is sign-invariant on every cell
of D (i.e., is either positive, negative, or zero on

the whole cell). If sample points for the celis of
an A-invariant cad are available, then the sign of
A € A on a particular cell can be determined by
evaluating A at the sample point for the celi,
Exact computation is essential.

A standard formula ¢(x,, ..., x,) containing
just the free variables x;, ..., x, is a defining
formula for the subset X of R if X is the set of
points in B satisfying ¢. A standard definition of
the cad D = (D, ..., D,}is a sequence (¢, ...,
¢,) such that, for [ =i = g, ¢ is a standard
quantifier-free defining formula for D;.

Now the problem of quantifier elimination for
the elementary theory of real closed fieids can
be stated as:

For a given standard prenex formula &* =
(Quirxpar) - (Qrx)d(xy, ..., x}, find a stan-
dard quantifier-free formula ¢* such that * is
equivalent to ¢*.

The top-level algorithm for soiving the quanti-
fier climination problem is given in Algorithm 1.
Step (2) of the algorithm needs some further de-
scription. The algorithm for computing & cylin-
drical algebraic decomposition, given the input
A = (A, ..., A,) and k, proceeds in three
phases: the projection phase, the base phase,
and the extension phase. In the projection
phase, if r = 2, a list PROJ(A) (projection of A)
of polynomials in » — | variables is computed,
such that (E) for every PROJ(A)-invariant cad
D' of BV there is an A-invariant cad D of R” that
induces D'. This projection process is appiied to
PROJ(A} recursively until univariate polyno-
mials are reached. The property (E) can be
achieved by letting PROJ(A} = PROI;j(A) U
PROJ{A), where

ALGORITHM 1. Quantifier Elimination Algorithm

* — ELIM(¢*)°

;. Extract £ and the list A = (A, .... A,) of dis-
tinct nonzere polynomials occurring in o from $*.

2. Apply the algorithm for cylindrical algebraic
decomposition to A and &, obtaining s, a cas for an
A-invariant cad D of R, and , a standard definition
of the cad D' of R* induced by Dif k> Gor¢ Jif
k=0

3. Construct #* from ¢ and 5 by evaluating the
polynomials in 4 at the sample peints in s.

«¢* is a standard prenex formula (Qp.pvay) -+
(T,x)d(x), ..., 0.0 0= k=i, and & is quantifier-free;
¥F 15 a standard quantifier-free formula equivalent
to ™.



336  COMPUTER ALGEBRA

PROI (A} =

U U waeren v esce. 61
b=sism GEREDIA))
PROIA) =

U U

Isi<jzm GEREDAIRGEREDA,)

PSC(Gi. Gy,

Here Idef(F), the leading coefficient of iF, is the
coefficient of x*, where +¥ is the highest power of
x, in F; red(F), the reductam of F, is F —
ldef(Fixk, REDF) = {red“(F)0 = k = deg(F) &
red*(F) # 0}, where red%F) = F, red* I{F) =
red[red®(F)], and PSC(F, G) = {psci(F, G0 =
J = minldeg(F), deg()] & psc(F, G) + 0},
where psc;(F, () is the jth principal subresultant
coefficient of F and &, that is, the coefficient of
X in S;(F, G}, the jth subresultant of F and G
(see Section V), for integral polynomials F and
G in the variables xy, ..., x,. In Arnon ef al.
(1984) the following theorem is proved:

For a list A of integral polynomials in r vari-
ables, r = 2, if R is a PRONA)-invariant region
in R, then every polynomial A in A is either
delineable on R [i.e., the set of real zeros of A
in Z(R) consists of finitely many disjoint sec-
tions of Z(R)] or identically zero on R, and for
every A;, A; € A, any A-section and any A,-
section of Z(R) are either disjoint or identical,

In the base phase, after r — 1 applications of
PROJ, the real roots of the polynemiais under
consideration are isolated (see Section VI).
These roots determine a PROJI™(A)-invariant
cad D of R', and algebraic sample points can be
constructed. A standard definition of £ is cither
( )}if & = 0 oris determined by the signs of the
pofynomials on the cells of D.

In the extension phase, a cas for a
PROJ-"Y(A)-invariant cad D is constructed
from the cas for a PROJ"Y(A)-invariant cad D',
for 1 =/ =r ~ 1. This is done by isclating the
real roots of the polynoemials Bla;. ..., a;, 1),
where B € PROJHA) and (¢, ..., a)) is a
sample point for a cell in D', These roots also
allow one to extend the standard definition of 1’
to a standard definition of D. In order for the
arithmetic to be exact, the computations are car-
ried out in an algebraic extension of Q. Algo-
rithms for computing a primitive element y of a
multiple extension (Xa, 3) are used, se that all

ALGCRITHM 2. Algorithm for Cylindrical
Algebraic Decomposition

(s, ) < CAD(A, k)

L. §r= 1]. If r > | then go to (2). Isolate the real
roots ay, ..., a, of the irreducible faclors (see Sec-
tion V) of the nonzero elements of 4. Construct a
cas s for an A-invariant cad D, if & = 0 then set ¢ to
{ ). Otherwise, if n = 0, then set ¢ to (**0 = "),
Otherwise use the signs of the polyromials in A in
the cells of D to construct a standard definition & of
D. Exit.

2. [r>1].If &k = rihen set &' to & — 1, otherwise
set &' to k. Call CAD recursively with the inpui
PROJ(A) and &', abtaining outputs s” and ¥'. Since
5" is a cas for a PROJ{A)-invariant cad D', the real
roots of A are delineable on cach cell of £, Let s* =
{812 ooos Sy 8 = (57, .... 5,1} Construct a cas s for
an A-invariant cad D of B’ by isolating the real roots
of Alsj1, ..., Sipr. X forevery AE A, t=f=<p. If
& < r then set ¥ to o', otherwise use the real roots
of the derivations of the polynomials Als;(, ..., &1,
x.} to extend ¥’ to a standard definition ¢ of D,
Rolle’s theorem is essential here.

“ Ais afist of m = 0 integral polynomials in r variables,
0=k =r;sisacas for some A-invariant cad D of B
W is a standard definition of the cad D* of R*induced
by Dif & > 0; and  ts the null list if £ = 0.

the arithmetic can be carried out in Q(y) for
some algebraic number v (see Buchberger er al.
(1983), chapter on computing in algebraic ex-
tensions}). The algorithm for computing a cad is
given in Algorithm 2.

Consider (Fy){x? + Y2 -4 <0& Y- 20+ 2 <
0) as an example for an input formula ¢* to the
algorithm ELIM. In step (1), k is recognized to
beland A = (y? + x? ~ 4, y* ~ 2x + 2}, In step
(2}, the algorithm CAD is called with the inputs
A= +xt—4, v -2x+Dand k = 1. The
number of variables in 4 is 2, so step (2) in CAD
is executed. PROKA) is {{~x? — 2x + 6)?, (% —
D (=2x + DL 42— &), 4(—2x + 2), 2, 11 At
this point it is realized that ali the relevant infor-
mation about the reat roots of the polynomials in
PROJ(A) can be gathered from the polynomials
imB={x"+2x— 6,12 —4,x~ 1L SoCAD is
called recursively with the inputs B and 1. Now
r = 1 (base phase) and the real roots of the poly-
nomials in B are —1 — V7 < -2 <1< —1 +
VT < 2. A cas for a B-invariant cad of B'is 7 =
(=4, —1 = V7,-3,-2,0,1.4, -1 + V7.2,2.3
and a standard definition for this cad is



lil. SIMPUFICATION 337

=8B >0&8>0& B, <0,
B, <0&B,=0&B; <0,
By <0 &B:, <0&B;>0,
B;>0&B,=0& B; >0,

That finishes the recursive call of CAD. _

The extension of ¢ to a cas for an A-invariant
cad of B? yields s = ((—4, 0), (=] — a, 0},
(=3, 0), (=2, =D, (=2, 4, (-2, 1), (0, =3),
9, -2), (0, &y, (0, 2), (0. 3), {J, =2, (L, —4),
(1, =1), (1, 0), (1, 1), (L, B), (1. 2), &, -2,
3, —a2), G -H. G -1, G0, & D, G5,
&, a2, (3. 2, (&, =2}, {a, ~y), (a, 0), (e, 7),
(2, 2}, &, -2, G, —8), G -1, & -, & 0,
Ge) @& 1,3 8.382,02,-2),2,-0,2, -1,
{2,0), (2. 1),(2,0,(2,2),(3, —3), (3, ~2), (3,0},
(3, 2.0, 3], where o = V7, g = V3, y = V2
VAT 2,8 = 2VIVE e = VIS, L= V2
(see Fig. 3). Further, & < », s0 ¢ does not have o
be extended. That finishes the call of CAD. In
step (3) of the algorithm ELIM, the polynomials
in A are evaluated at the sample points in s. Only
the cylinders over the cells defined by s, U,
and yry contain sample points that satisfy 4; <0
and A, < 0. Thus a standard quantifier-free for-
mula equivalent to ™ is * = (Y Ov fig OF g} In
Fig. | the set of zeros of the polynomials in A is
shown, the sample points for R are indicated as
lines paraliel to the y-axis and the sampie peints
for B? as points.

As is obvious from the above example, effi-
ciency can be gained by combining neighboring
cells, in which the polynomials involved have
the same signs, into clusters of cells. Only one
sample point is necessary for the whole cluster.

FIG. 1.
of B

The (3 + x* — 4, y? — 2x + 2)-invariant cad

B =0&5B,>0& B, <0,
B <0&B,<0&B;<0,
B =0&KB, <0& B> 0,
Bi>0&B,>0& B> 0).

B]EO&Bg>0&B3<0,
B|<0&Bg<0&33x0,
B >0& B, <0&B, >0,

Clustering algorithms are discussed in Arnon ef
al. (1984).

IH, Simplification

A. CANONICAL SIMPLIFICATION AND DECISION
OF EQUIVALENCES

Let T be a decidabie set of objects and ~ an
equivalence relation on T. The problem is to de-
cide, for arbitrary « and b in T, whether a ~ b.
Related %o that is the problem of simplification of
elements of T. If a canonical simplifier for ~
were available, that is, a function S from Tto T
such that

Slay ~a and
if a~b then Sla) = S(b)
then one could decide a ~ b by reducing « and 4
to their normal forms S(a} and S(b), respec-
tively, and checking whether 5{a) = 5(b).
This problem of deciding equivalences or sim-

phifving elements appears in many situations.

For instance, given the poiynomial equations
47+ oyt —z+ 4 =0

W+ yr+ =0 (5)

~xlz+ v+ =0

one might be interested in simplifying the poly-
nomial

. Y = - L1 80126 5 168,85 1043 .4
fl,y,2) =20 + 3 Wfzt o+ 1 o

1493y 9004 2
1988 < 1988 4
1,067,573 153.426

T e T o

Or, phrased as a decision problem, one might be
interested in the question

flx, y, z) =07 (6)

Let T be the free algebra of terms over a
(countable) set of function symbols F and a
{countable) set of variables V. Then the problem
is to decide whether two terms are equal with
respect to a given equational theory {i.e., a set of
term equations} £. Two terms are equal if and
only if they can be proved equal in the equa-
tional calculus, which assumes all the equations



338  COMPUTER ALGEBRA

in £ as axioms, and uses the rules of reflexivity,
symmetry, transitivity, substitution, and re-
placement of subterms. As an example consider
the term algebra T over the function symbols
newq, add, app, with arity 0, 2, 2, respectively,
and the countable set of variables [, x, ¥, 2, w),
X1, Y1, Zi» ---}» Let E be the equational theory

applx, newq} = x
applx, add(y, z)] = add[app(x, v), z] (D)
applapp(x, y), z] = applx, app(y, z)]

Given this equational theory E, one might ask
whether

app{x, appladd(y, z), wi} = app(add{applapp(x.
newq), v}, z}, w) {8)

In many cases (for instance in the ones above)
one can associate a reduction relation — with
the given equivalence ~ so that <* (the reflex-
ive, symmetric, and transitive closure of —) is
equai to ~. If, additionaily, — has the termina-
tion property (i.e., there are no infinite chains of
the form #;, — f,— {3 ---) and the Church-Rosser
property (i.e., f; ©¥ 1, implies that there exists
an s such that f; — ¥5 <% 1), then every ~-
equivalence class [/} contains exactly one —-
irreducible element nf{7), the normal form of 1.
Then nf{f) is reached after finitely many applica-
tions of the reduction —. Thus ¢, ~ 1y if and only
if nf(r,) = nf(s;), that is, ~ can be decided by
reducing f; and ; to normal forms and then test-
ing for equality.

For checking the Church-Rosser property of
a reduction relation —, the following facts are
useful:

a. — has the Church-~Rosser property if
and only if — is confluent (ie., 1) «* s =% 1,
implies that there is a « such that | =% u «* 13)

b. [If— has the termination property, then —
is confluent if and only if — is locally confluent
(i.e., 1; « § — 1 implies that there is & # such
that £, —»* 4 <* ;).

For a more detailed introduction to the decision
problem for equational theories and simplifica-
tion, the reader is referred to the chapter on
simplification in Buchberger er al. (1983) and to
Huet and Oppen (1980).

In the approach to the decision problem
for ~ that is presented here, one tries to con-
struct a reduction relatiocn — that has both the
termination property and the Church-Rosser
property.

B. GROBNER BASES AND CANONICAL
SIMPLIFICATION OF POLYNOMIALS WITH
ReSPECT TO POLYNOMIAL SIDE RELATIONS

Let Kbea field, T = K[x,, ..., x,]. the ring of
polynomials over K in the indeterminates xy, ...,
x,. Every set F of polynomials in Kix,, ..., x,]
generates an ideal id(F?), the set of all polynomi-
als of the form

h} 'fi ot hm 'f;n

where /m Is an arbitrary nonnecgative integer.
By, oo hy € Ky, o xJand fy, . fa € FL
Then F is called a basis of the ideal. According
to Hilbert’s basis theorem, every ideal in K{x,,
... X,;] has a finite basis, so without loss of gener-
ality one can restrict F to be finite.

Every basis F = {f}, ..., [} generates an
equivalence relation ~p: f~p g if and only if f —
g£ &€ id(F), or in other words,

f_g=h]‘.fl "["""é‘hm'-ﬂ” (9)

where s is an arbitrary nonnegative integer,
By ool € Ky, o, x,] Obviously ~p =~ if
Fand F’ generate the same ideal. Of course, Eq.
(9) could easily be solved or shown to be un-
solvable if an upper bound for the coefficients
hy. ..., b, (say, for their degrees) were known.
In 1926, G. Hermann compuled such bounds.
However, they turn out to be double exponential
in the number of variables, which creates a
nearty insurmountable problem in actual compu-
tation.

Alternatively, take the approach outlined in
the previous section. As the first step, choose a
linear ordering > on the power products in
Xi. ..., X, that satisfies the properties

S d<p forall p# Al

N

fp;<pathenp,-g<pr-glorallp,. p. g
These two properties immediate imply that >
does not admit infinitely decreasing chains, that
is, > has the termination property. Using the
ordering > one can decompose every polyno-
mial f; € F into a leading term (consisting of a
ieading power product, Ipp. and a leading cocffi-

cient, ldcf) and a reductum red,
fi = Idef( i) - Ipp(f) + red(fi)

such that 1dcf( ) # 0 and every power product
that occurs in red( f;)—that is, that has a cocffi-
cient different from 0 in red( f;)—is smaller than



[E. SIMPLIFICATION 339

Ipp(fi} w.r.t. >, This leads to the rule system

Ipp( f;) ~ = [1/ldefi /)] - red(f})

Ipp( fo) — —{1Adef( £,3] - red(f,.)

and to a reduction relation —, where f—p g if
and only if there is an index { (I =i = m) such
that a multiple of lpp{ f5), say p - Ipp( /), occurs
in f with coefficient & and

£

g=f—a-p-lpp(fiy +a-p - [—(Vdef(f)] -

red(f7)

So, whenever the ieft-hand side of one of these
rules occurs in a polynomial f, then one can sub-
stitute the corresponding right-hand side for it.
Further, «»f = ~p, so if it can be established
that —», has the termination property and the
Church—Rosser property, then ~p can be de-
cided by computing normal forms. In this spe-
cial case the termination property is not a prob-
lem. In fact, — terminates for every ideal basis
F (in every reduction step a term is replaced by
lower terms w.r.t. a terminating order relation).
A basis that has the Church-Rosser property is
called a Grobner basis. In 1965, B. Buchberger
showed that

F is a Grobner basis if and only if for every

critical pair {f, g) there exists an A such that f
—fh—fg.

This theorem reduces the check for local conflu-
ence (which involves infinitely many test cases)
to a confluence check on the finitely many
critical pairs. A critical pair consists of the
two reduction results of a term that can be
reduced by two different rules. More precisely,
let (1) py — » and (2) p» = m be two rules
derived from polynomials in F, let [ be the re-
sult of reducing the least common muitiple of
py and p, by rule (1), and fet g be the resuit
of reducing the least common multiple of p,
and py by rule (2); then, (f, g) is a critical pair
of F.

Buchberger's theorem immediately ieads to
an algorithm for testing whether a given F is a
Grobner basis: for every one of the finitely many
critical pairs (f, g). check whether nf( f) = nf(g).
If nf(f} + ni{g) for some critical pair (f, g),
then this inadequacy can be resolved by add-
ing the polynomial nf(f) — nf(g) te F. This
procedure stops for all inputs F, and it is called
the Grébner basis algorithm, the completion
algarithm for bases of polynomial ideals (sce Al-
gorithm 3).

Application of the Grobner basis algorithm to
the polynomials in Eq. {5) leads, after reducing
the polynomials in the basis with respect to each
other, to the following system of algebraic equa-
tions:

ST L6 SR 3304 75,3 171,32 133, 15 —
Z 20 R T b BAF RS -NA e H - B =0
2 LSS g 318,58 £107 .4 51855, 3
¥ 3 40 AT T sl 7 T ©
4818373 107 _ T8
ogs £ T 1988 < . 0 (10)
- o 927846 150,53 210§ 61058 _3
v+ AR - 3R+ e reata
B T P07 0
IR 2

ALGORITHM 3.  Grdbner Basis Algorithm

(G « Gréhner basis(/ )«

G« F;
C < set of critical pairs of G
while C # { }do
{choose (£, g) from C;
defete (f. g) from C;
if of( £} #+ nf{g)
then
{add nf(f} — nf{g) to G:
increase C by the critical pairs derived from

nf(f) — nf(g)}};

@ Fand G are finite sets of polynomials, id{F) = id(G}.
G is a Grobner basis

So, indeed, Eq. {6) holds.

Besides solving the equivalence problem mod-
ulo a polynomial ideal, a Grébner basis also
provides solutions to a number of other prob-
lems, like determining whether an ideal is zero-
dimensional, effective computation in the resi-
due class ring modulo a polynomial ideal, and
the word problem for commultative semigroups.
In addition. if the ordering > is lexico-
graphic, then the construction of a Grobaer
basis is a major step towards an exact solution
of a system of algebraic equations. So, for in-
stance, the variables in Eq. (1) are sepa-
rated.



340  COMPUTER ALGEBRA

€. COMPLETE REWRITE RULE SYSTEMS
AND CANONICAL SIMPLIFICATION
OF FirsT-ORDER TERMS WITH RESPECT
TO EQuATIONAL THEORIES

An idea very similar to Grdbner basis con-
struction can be used for attacking the decision
probiem for equational theories over first order
terms. As a basis F for a polynomial ideal deter-
mines a set of pairs of polynomials fand g such
that f ~¢ g, an equational theory E determines a
set of pairs of terms s and ¢ such that s =, r.
Again, the first step is to give a direction to the
equations in £, usually by choosing a well-
founded ordering >. For instance. from Eg. (7)
one would get the rewrite rules

app(x, newq) ~—» x
appix, add(y, 2)] — add[app(x, ¥}, z] (11}
applapp(x, ¥}, z} — applx, app(y, 2)]

which determine a reduction relation — on the
first-order terms. This reduction relation satis-
fies «»f = =g, The goal is to complete the re-
write rule system by adding new rules that leave
e} invariant but transform -, into a reduction
relation that has the termination property and
the Church—Rosser property. Proving that —p
has the termination property can be very com-
plicated.

In 1967, D. E. Knuth and P. B. Bendix proved
a theorem similar to Buchberger's theorem,
namely,

— is locally confluent if and only if for every
critical pair (s;, s2) there exists a ¢ such that
I e IS

The construction of critical pairs in this case is
more complicated than in the polynomial case.
Let () f; — r, and (2) [, — r; be two rewrite
ruies. Let r be a subterm of /, that is unifiable
with I, {their variables might have to be renamed
so that they become different), say by the unifier
o. Then a critical pair (sy, s2) results from reduc-
ing (1} by rule (1) and by rule (2), respectively.

The theorem of Knuth and Bendix suggests
the following algorithm for testing whether a ter-
minating reduction relation —¢ has the Church~
Rosser property: for every one of the finitely
many critical pairs (s, #} check whether nf{s) =
nf(0). If nfs) # nf(r) for some critical pair and the
equation nf{s) =, nf{(7} can be transformed into a
rewrite rule / — r such that the termination prop-
erty is preserved, then one can resolve this defi-
ciency by adding the new rewrite yule 7 — r to

the system. That is essentially the Knuth-Ben-
dix completion procedure for rewrite rule sys-
tems over frst-order terms. Contrary to the
polynomial case, it might happen that a newly
derived equation cannot be transformed into a
rewrite rule, in which case the procedure stops
unsuccessiully, or the completion procedure
might run forever, generating infinitely many
new rewrite rules. So a very important issue,
which is still not resolved, is to determine
whether the Knuth-Bendix procedure stops on
a given equational theory E.

Given the equational theory of Eq. (7), the
Knuth-Rendix procedure produces the rewrite
raje system

applx, newgq) — x
appix, add(y, z)] - add[app(x, ¥). z]
applapp(x, ¥), zl — apptx, app(y, )]
applx. app(newq, y}] — app(x, ¥)
app{x, appladd(y, 2), wi} —
app{addfapp(x, ¥}, z}, wi (12)

So Eg. (8) holds modulo the equational theory
E, since both sides reduce to the same term with
respect to the complete rewrite rule system of
Eq. (12},

D. CANONICAL SIMPLIFICATION
IN OTHER DOMAINS

Rational expressions in x;, ..., x, over an inte-
gral domain R represent elements in the quotient
field of Rixy, ..., x,]. Two expressions fi/g, and
Jfey are equivalent (represent the same element
in the quotient field) #ff f; - g2 = f2 -+ g». If great-
est common divisors can be computed in
Rlxy, ..., x,), then there is a canonical simplifier
S for this equivalence, which, for every rational
expression, produces an equivalent expression
whose numerator and denominator are rela-
tively prime and whose denominalor is a monic
potynomial. The simplifier § uses rational arith-
metic and the computation of greatest common
divisors (see Sections V and VII).

Radical expressions are built from the ration-
als @ together with the variables x,, ..., x,, func-
tion symbols +, —, -, /, and radicals, that is,
rational powers s°, where s is a radical expres-
sion and r &€ @ (s in 57 is called a radicand). For
two radical expressions s and /1, s ~ ¢ iff s and ¢
denote the same meromorphic function. Cavi-
ness and Fateman have developed a canonical
simplifier for unnested radical expressions, an



V. COMPUTATIONAL GROUP THEORY 341

unnested radical expression being an expression
s such that no radicand in s contains another
radical. Factorization of polynomials plays a
major role in the simplification algorithm. Basi-
cally, an extension field K of € is constructed
such that the expression s can be viewed as de-
noting an element of K. In a second step. s is
simplified using rational arithmetic in K.

We have mentioned a few examples of do-
mains that allow canonical simplification. In
general, however, domains with canonical sim-
plifiers are quite rare. An example of a domain
for which no canonical simplifier exists is the
class R2, which consists of terms built from the
rationals €}, the variable x, #, and the function
symbols +, -, sin, and abs. Two expressions s
and ¢ in R2 are equivalent if s and ¢ denote the
same function on R,

E. NONCANONICAL SIMPLIFICATION

Canonical simplification may not be possible
in the domain to which an expression belongs,
or the emphasis may not be put on using simplifi-
cation for deciding equivalences, but on generat-
ing “‘intelligible” output. For situations like
that, most of the currently available computer
algebra systems give the user the freedom to
choose from a number of simplification proce-
dures the one which is most appropriate for the
problem at hand, or even to teach the system the
kind of simplification he or she wants. Substitu-
tion and pattern matching are two widely used
techniques in such noncanonical simplifiers.

IV. Computational Group Theory

Computational group theory probably started
with Todd and Coxeter’s (1936) method for co-
set enumeration. By now, it has evolved into a
sizable collection of algorithims and program
systems of its own. These methods and program
systems are in most cases quite distinct from
those used in other parts of computer algebra. It
is therefore not feasible to present an overview
in this limited space. The interested reader may
wish to consuit Atkinson (1984) and the chapter
on computing with groups and their character
tables in Buchberger e al. (1983) for algorithms
dealing with finitely presented groups. permuta-
tion groups, matrix groups, determination of the
character table of finite group, and computation
of Galois groups.

The following example of the Todd-Coxeter
method for determining the cardinality of a

group given by a finite presentation should give
the flavor of the computational methods used in
group theory. Let {4, B| ABA = |, BAB = 1} be
a finite presentation of a group G, that is, G is
the quotient of F by R, where F is the free group
generated by A and B, and R is the congruence
generated by the relations ABA = 1 and BAB =
1. The goal is to enumerate the elements of &
and also produce a multiplication table for G.
Various tables are used in the process: a multi-
plication table, and a relator table for each of the
relators. The rows in the relator tables show the
effect of multiplication of each element by the
relator, the overall effect being identity. To get
started, one defines 2 = 14. This information,
together with 2471 = 1, is stored in the muitipli-
cation table and the according entries are also
made in the relator tables, leading to the multi-
plication table:

A A B B

2 1
and the relator tables:

A B A B A B
1 2 1 H ]
2 1 2 2 2

No further entries can be made into the tables.
So the next definition 3 = 1471 is introduced.
Entering this information into the tables causes
the first row in the relator table for ABA te be
ciosed, producing the deduction 28 = 3, which
is denoted by the subscript 1. This deduction is
recorded in the multiplication tables and the re-
lator tables, leading to the deduction 18 = 2.
Finally all the tables close and the procedure
stops, with the multiplication table:

A A" B B!
12 3 2 3
23 1 3 1
i 2 1 2

and the relator tables:
A B A B A B

(V=R ]

L B mem
—_— o
) Pl
Wl D —
—

o — L
L o

l 3

1
4

2 3
So the group G has cardinality 3.

It has been recently recognized that comple-
tion procedures such as the ones discussed in
Section III can be used instead of the Todd-
Coxeter method. The completion procedure ter-



342  COMPUTER ALGEBRA

minates whenever the given group is finite, but
also in some other cases.

V. Polynomial Greatest
Common Divisors

For many of the problems in computer alge-
bra—for instance, indefinite integration, indefi-
nite summation, or cylindrical algebraic decom-
position—it is essential to be able to compute
the greatest common divisor (ged) of multivari-
ate integral polynomials. The ring £{x;, ..., x.]
does not ailow division with guotient and re-
mainder, and it is not a Euclidean ring. That
means no grading function deg exists such that
for every A and every nonzero B, 4 can be writ-
tenas A = QB + Rand R = 0 or deg(R) <
deg(B). However, letting deg denote the degree
in the main variable x,, for every A and every
nonzero B with m = deg(A) = n = deg(B), it is
possible to find polynomials ¢ and R such that

ldef(B)"~*'4 = QB + R
and R=10 or deg(R) < deg(B}

(see the algorithm for pseudo-division in Section
VII). ¢ is the pseudo-guotient, pquot, and R the
pseudo-remainder, prem, of A and B.

Throughout this section the isomorphism
Zlxry ey x) ~ (Z[xy, ..., 1 Dlx,] is used and
polynomials in Z[x,, ..., x,] are considered as
polynomials in the main variable x, with coeffi-
cients in Z[x), ..., x._1].

A. POLYNOMIAL REMAINDER SEQUENCES

For an arbitrary unique factorization domain
U/, two nonzero polynomials A(x) and B(x) in
Ulx] are called similar, A(x) ~ B(x), if there are
nonzero coefficients of simitarity ¢ and & in U
such that aA(x) = AB(x). A polynomial remain-
der sequence (prs) is a sequence Fy, Fa, ..., Frof
nonzero polynomials in Uix], where & = 2,
deg(F) = deg(Fy), F; ~ prem(F; 5, Fi-yfor3 =
i =k, and prem{Fy.,, F) = 0. Pseudo-division
yields a unique resuit, and this implies that the
prs beginning with F, and F, is unique up to
similarity. Because of ged(Fy, F3) ~ ged(F, £3)
~ v~ ged(Froy, Fp) ~ Fp. the last clement in a
prs is equal to ged(Fy, Fy) to within similarity.

A polynomiat A &€ U[x] is primitive if its coeffi-
cients are relatively prime. Every A € Ulx] can
be written uniquely {up to multiplication by unit
elements) as A = cont(A) pp(A), where
cont(A). the content of A, is the ged of the coeffi-

cients of A, and pp(A4), the primitive part of A, is
a primitive polynomial.

So the ged of two polynomials A and B in Ulx]
is the product of gedfcont(A), cont(B)] and the
primitive part of the last element of a prs starting
with pp(4) and pp(B). An algorithm is given in
Alg. 4. The efficiency of step (2) in PRSGCD
crucially depends on the method used for com-
puting a prs. Choosing F; = prem(F; 3, Fi.y)
leads to the Euclidean prs algorithm. This algo-
rithm suffers from an exponential coefficient
growth and is therefore impractical even for uni-
variate polynomials over Z. As an example, take
Fle=ad b —3xt =37+ 82+ 2x — 5, F, =
3af 4 Sxt — 4x? — 9x + 21. The Euclidean prs
algorithm produces the prs F, Fp. F3 = —15x* +
32 ~ 9, F, = —5265x% — 10,125x + 19,845,
Fs == 114,727,286,250x — 151,313,062,500, Fy =
1,426,857,992,535,543,750. So ged(F,, F) = L.
The coefficients in the inputs as well as the
result are very small, yet the intermediary
resuits show an enormous coefficient growth,
The effect is much worse for multivariate poly-
nomials.

In the primitive prs algorithm, one chooses

s = pplprem{F;-z, F;—1)]. This produces the prs
Fy Fy, Fo=5xt =0 + 3, Fy= 1357 + 25x — 49,
Fs = 4663x — 6130, Fy = 1. The coefficients are
kept a5 small as possible, but the price that has
to be paid is the gcd computations in the ceeffi-
cient domain, which may be very time-con-
suming.

Exploiting the advantages and avoiding the
iimitations of both the Euclidean and the primi-
tive prs algorithm, one will try to factor out as
much as possible of the content without actually
computing the content, that is, one chooses §;
F; = prem(F;_,, Fi-;) for a suitable 8;. The best
algorithm along these lines is Collins’s subresul-
tant prs algorithm. Some notation is necessary
for stating the algorithm:. Let Alx) = a,x" +

wE gy b oagand B(y) = bt + o+ by + by be

ALGORITHM 4.  Algorithm for Computing the ged
of Polynomials in {/{x] by Pelynomial Remainder
Sequences

G« PRSGCID(F,, [y

1. Compute d = gedfcont(F,), cont{F;)].
2. Compute a prs Fy = pplF)), F2 = pp{Fa). ...,

Fr.
3. Set Gto d - pp(Fy).

« F,, F, are nenzero polynomials in Ulx], deg(fy) =
deg(F,), and G = ged(F,. Fa2).



V. POLYNOMIAL GREATEST COMMON DIVISORS

343

two nonzerco potynomials in U[x] with m =
degf{A) = n = deg(B). Let M(A, B) be the Syives-
ter matrix of A and B, such that

prs algorithm produces the prs Fy, fy, Fy =
—15x* 4+ 3T = 9, Fy= —65:7 — 125x + 245, Fs =
9326x — 12,300, F¢ = 260.708.

-am 4] {1 0 {)—| N
9 Uy [P ay s 0
i IOWS
A ) 0 ¢ o -} oy do} |
(A, B) =
by bnml b Q 0 —|
0 bH’ bn*l bo 0
mrows
|0 0 by buo by b

Let M(A, B);; be the matiix that results from
M(A, B} by eliminating the last j rows of coeffi-
cients of A, the last j rows of coefficients of B,
and the last 2/ + 1 columns except the (m + 1 —
i = j3th,for0=i=j=n— l. The jth subresul-
tant of A and B is the polynomial

4
S{A, B) = 56 det[M(A, B); ;] - &

for 0 =< j = n — 1. The zeroth subresultant is
what is usuaily called the resultant of A and B,

Let Fy, F, be two nonzero polynomials in
Ulx], and Fy, F5. ..., Fraprs in U[x]. Let #; be
the degree of Fy, for 1 =i =k, and &; = n; — Ryay.
for 1 =i = k — |. The fundamental theorem of
subresultants states that there are y; and ;. 1 =
i = k., in the quotient field of I/ such that for i =
3k S (Fy Fo) = oy SAF, L Fy) = Ofor
Hiey = V> > hy, S, (Fy . Fa) = 0,F;, and §;(F;,
F3) = 0for . > j= 0. Inorder to get v; = 1, it
suffices to choose

;@3 - (A”SI—%—!..
Bi = (— 12t Idef(F,_o)hiise

where
= IdCf(Fg}ﬁi

hy = Gef(F)Pe i i fori=3, .., k-2

A proof of the fundamental theorem of subresul-
tants and a detailed introduction to the theory of
subresuitants can be found in the chapter on
generalized polynomizal remainder sequences in
Buchberger ¢f «l. (1983). Starting with the poly-
nomials F} = x% + x® = 3¢ — 33 + 857 + 2x - §,

=3x8 + 5xf — dx? — 9x + 21, the subresultant

B. Moburtar GCD ALGORITHMS

In 1971 W. 8. Brown and G. E. Collins inde-
pendently discovered a modular algorithm for
computing the ged of polynomials in Z[x,, ...,
x,]. In the following, Brown’s version of the
modular algorithm: for the univariate case is de-
scribed.

Algorithm 3 shows how the ged computation
for arbitrary polynomiats in Z[x] can be reduced
to the ged computation for primitive polynomi-
als. So let F,, F, be primitive polynomiais in
Zlx]. Let G, H,|, H, denote the ged and the co-
factors of Fy and F». Furthermore let fi, /5. g.
hy, Ry be the leading coefficients of Fy, Iy, G,
H,, H. respectively. Setting g = gedi fi, f2),
G=1(gig} - G F=g F.F.=g F H=
g f‘[|, H'_) = g 1’{2. 1mplles that F] =G - H].
F. = G - Hy, and furthermore pp(G} = G,
ldef({G) = g, IdefiH) = g - iy = fi, idefl(H) =
gl =f. Thenf), fr, and g can be computed at
the beginning, whereas g can be determined

ALGORITHEM 5. Reduction of the ged Computation
for Integral Polynomials to the ged Computation for
Primitive Integral Polynomials

(G, 1Y, Hy) — GCDOF], Fo)e

1. Compule ¢; = cont(F}). ¢: = conl(F). and
c = gedley, o).

2. Set Fy < Filc,, Fy = Fiics.

3. Compute the ged G of the pelynemials £y and
F, and the corresponding cofactors H; and H..

4, G ¢ G, H «—{cfe) - Hy,
Hy e (exfe) - Hy.

o FLand F; are polynomials in Z[x); G© = ged{F1, Fik
H| and H; are the cofactars, i.e., F{ = H{ - G', i~
G



344  COMPUTER ALGEBRA

only at the end of the computation. Further, d =
deg((z) is unknown at the beginning of the
computation, but obviously ¢ = minjdeg(F,),
deg(Fa)l.

Now a prime py is chosen that divides neither
finor fz. Let g~ = g mod p,. The polynomials
Frid = F, mod py, FyU = F; mod py. G =
_g~(i) . UCd(FN(” F (l)} [_] ~{1) F Abje rn
HyW = F; ”)/G W in zi,,l[x] fue computed Lzsmg
a gcd a]gor;thm for Z,,[x]. It is assumed that this
ged algorithm returns a monic ged (leading co-
efficient is 1). So idef(G~") = g~ Since G

divides Fy and F, in Z[x], G, divides F71V
and Fy® and therefore G, divides G~ o' in
Z,.[x], where G, = G mod p,. Furthermore,
deg{G,,) == deg(G), because p, neither divides f,
ner f» and thus also does not divide g. So
deg(G~" = deg(G, ) = deg(G) = d. If, aédltlon-
ally, deg(G~) = d, then G~ = « - (G mod py)
for some a € Z,,. But a = | because of ldef{G
maed py) = g~ and therefore G~ = G mod p,
and H;" = H; mod p,, H;'" = Hy; mod py.

This process is repeated for several primes
P2y «ees Pa- Only those primes are kept for which
deg(G ™ is minimal. Instead of storing all the
quadruples (p;, G™9, H 9, HT™), the Chinese
remainder algorithm (see Section VII) is used to
compute the uniquely determined polynomials
G*, HY, H with coefficients smaller than ¢/2
such that G* = G~ mod p;, HY = H;* mod p;,
Hi = H;% mod p;, forall | =i =< n, where g =
P oo pe. Those primes p;, which neither di-
vide fi nor f; but for which deg(G~'" > d, are
called unlucky primes. Brown proves that every
unlucky prime is a divisor of a certain subresul-
tant of | and F,, so there are only finitely many
of them.

As soon as deg(G~") = -+ = deg(G~") = d is
reached, one has G* = G mod ¢, H} = H, mod
g, HY =H,mod ¢. If ¢ > max(u®, p), where p*/
2 is an upper hound for the absolute values of the
coefficients of G* - HY and G* + H5 and p/2 is an
upper bound for the coefficients of g« Fyand g -
Fo, then G* - HY = F; mod g and ¢/2 is an upper
bound for the absolute values of the coefficients
of G* - Hf and F,. Therefore G* - HY = F
Under the same conditions one gets G* - Hy =
F.. So G* = G, Hf = Hy, Hi = H,. The final
resuits are G = pp(G), H, = H)/g, Hy, = Hy/g.
The algorithm is given in Algorithm 6.

The following example illusirates the modular
gcd algorithm. Consider the two polynomials
Fir=x—x -3 -3x+2, FH=x -2 -
I+ dx + 4. Sofy = =g =t e =
min[deg(F,), deg(Fy}l = 4, u=2-1-4 =8,

i

ALGORITHM 6. Modular ged Algorithm for
Univariate Primitive Integrat Polvnonuals

(G. H,, Hy) « MODGCD(F,. I

1 fi = Mdef(Fy), fo o Wef(Fy), g « ged(fi, f2).

2. n <0, ¢ « min[deg(F,). deg(F;)].

3. poe2 g - max{jeiie is a coefficient of F; or
Fi}.

4, Choose a new prime p that does not divide f
and f3.

5. g7« gmodp, F{ < g Fimodp, Fi e gk,
mod p.

6. Compute ged(F7, F7)and set G~ « g~
ged(F7, Fi). Hy « FIG~, Hy «— F3IG~. All the
computations are done in Z,[x].

7, If deg(G™) = O then set (7 « 1, f; < F, H,
« F, and exit. If deg(G™) > ¢ then go o {(4). If
deg(G~) < e then set n < 0, ¢ « deg(G™).

8. nen+ 1.

9. Ifn = | then sel g < p, G* « G~, H{ « HY,
HY « H7. Qtherwise use the Chinese remainder
algorithm with the moduli ¢ and p in order to extend
(g. G*, H{, H)) by (p. G~ HY, HY),

10. If ¢ < g then go to (4}, Choose w*/2 10 be an
upper bound for the absolute values of the coceffi-
cients of G*HY and G*Hi. If ¢ < u* then go to (4).

1. G« pp{G*), g « Wcl(G), H, « Hilg, H, <
Hileg.

« F and F, are primitive polynomials in Zix) G =
ged(F, F3), Fy=H, -G, F>-= H, - G,

As the first prime, choosep = 2. Fy = x° + t“ +
e x, FTo=x' 4+ 2% Then ged{F7, F3) = x* + 0.
iheleforc G- =x+x HY = F{iG™ = x* +
1,H24F2/0 =y, e=3qg=2 G%=

x3 +x, HE =2+ x+ |, HY = x. Since ¢ is less
than ,u, choose the next prime p = 3 Fy = x% -
xt -1, F7o=x* + x' + x + 1. Then ged(Fy,
Fiy=xt—-x+ 1 Therefore G~ = 3% — x + 1,
H; =FG =X —x— 1, H; = FyiG-=x* =
X+ 1. deg(G™) < e, so the prime 2 is eliminated
ande =2,g=3,G* == x + |, Hf = x' =
x— 1, Hf = x* — x + 1. Since ¢ is less thcm o,
choose the next prime p = 51 F] =1 = x% +
2 x4 2, Fy =yt -2t + 20 - x — 1. Then
gediFy, F3) = xt — x = 2, Therefore G~ = x* —
X — 2, M = F{IiG - =x+ Ix — {, Hy =
F3/G™ = x¥ — x — 2. Extending (g, G*, HY, HY)
by (p, G, HY, HY) yields {g, G*, I, H3) =
(15, == 2,3+ 2x— 1,2 —x — ). Now
g = pand g = ¥, sotheresultis G = pp{G*) =
Xy -2 H =+~ L Hy =t —x =2
The algorithm described in this section can be
generalized to a ged algorithm for multivariate
polynomials over Z. The polynomials are con-



V. FACTORIZATION AND REAL ROOT iSOLATION

345

sidered as polynomials in the main variable x,
with coefficients in Z{x,. ..., X, 1. Instead of
prime numbers p one has to use irreducible poly-
nomials in Zix;, X._;). The algorithm
MODGD and its generalization to multivariaie
polynomiais do not lake advantage of the
sparseness of the input polynomials. Algorithms
that take sparseness into account are Moses and
yun's EZ-GCD algorithm, which is based on p-
adic arithmetic and Fensel lifting, and Zippel’s
probabilistic algorithm, which is currenty the
default ged algorithm used in Macsyma.

VI. Factorization and Real
Root Isolation

A. FACTORIZATION OF UNIVARIATE POLYNOMALS
OVER A FINITE FIELD

This section deals with the factorization of a
polynomial A(x) in Z,[x], where p is a prime
number. In a first step the factorization of A(x) s
reduced to the factorization of square-free poly-
nomials, a square-free polynomial being a poly-
nomial with no factor of multipticity greater than
I. Let A{x) be a nonzero polynomial in Z,[x]. If
A(x) has a factor of multiplicity greater than 1.
then it can be written as

AlY) = B)C(x).
The derivation of A(x) is
A'(X) = 2BAOB()CKY + BO)PC (x)

so A(x) and A’(x) have a nonconstant greatest
commeon divisor. On the other hand, if A{x} is
square-free,

.

Alx) = —I Ailx)

=1
where the 4,(x), 1 = [ = r, are pairwise different
prime factors, then

r -

-
A0 = Al [T Ao + -+ A [T A
i3 Bl

50 A(v) and A'{x) are relatively primc. Thus a
nonzero polynomial A(x) in Z,[x] is square-free
if and only if gcd[A(x), A'(x)] = 1. Using this
fact, one first computes D{x) = ged[A(x), AL
If D(x) = I, then A(x) is already square-free. If
D(x) is a proper factor of A(x}, then the factori-
zation of A(x) reduces to the factorization of
D) and A(x)/D(x). Finally, if D(x) = A1), then
A'(x) = 0, that is, the coefficient a; of x* in A(Y)
is different from 0 only if & is a multiple of p. So,

using the basic arithmetic in Z,, Alx) can be
written as A(x) = B(x#) = [Bx)]r. The {actoriza-
tion of A(x) reduces to the [aciorization of B(x).
Iterating this process sufficiently often will lead
to square-free polynomials in Z,[x1.

Fhe problem of factoring square-free polyno-
mials is solved by Berlekamp's algorithm. Let
A{x) be a square-free polynomial in Z,{x] of de-
gree i, and let r be the number of prime factors
of A(x), A(x) = Pyx) - PAx). By the Chinese
remainder theorem for polynomials (Section
VID, for every ~tuple (s;, ..., 5} in Z, there
exisis a uniquely determined polynomial Vix) in
Z,[x] such that

{*) Vix) = s{mod Pi{x)]
for | =i=r and
deg(V) < deg{P,} +

Ifr = 2 and &, # 52, then P{x) is a divisor of

ged[A(x), V(x} — 5], but Pyx) is not. If Vi)

satisfies the condition (*) then V(x)? = 57 = 5; =
V(x) [mod Pi{x)] for § =i = r, 50 V() satisfies

(%) VLo = Vix) [mod A()] and deg(V) <
deg(A)

+ degi{P,) = deg(A)

Every solution of {¥) for some {5, ..., &) is also
a solution of (**}, On the other hand, V(x)* -
Vi = {Wx) — 0[V(x) — 17 ... [Vix) = (p ~ B,
sa if ¥(x) satisfies (%) then A(x} divides V(x)Pf ~
V(x) and therefore every irreducible factor Pix)
divides one of the relatively prime factors
Vix) — 5. Thus, every solution of (%) is also a
solution of (*) for some (51, ..., 5,). So there are
exactly p* solution of (¥*).

The solutions of (**} form a vector space. If ¢
is the (n, m-matrix whose kth row (g " Grae-1)
is determined by x?* B =g, 2t + e+ gy
+ grolmod A()). 0 = &k = n — 1, then

Wiy ooer Upet) - @ = (Wos ooy Unt) if and only if
i n—{ -l
Viv) = > wad = > E UL qry X
j=0 =0 k=0
n_';l
=5 gt = V(ar) = Vx)*[mod A(Y))
el

SO V(x) = vyt 1+ oo + vpx + vg solves (77)3f

and only if (g, ...y Un-1) * @ = (Lo, vvvs 1), a0d
therefore the solutions of (**) are the solutions
of v(Q — 1) = 0.

The Berlekamp algorithm is given in Algo-
rithm 7. As an example. consider the problem of
factoring A(x) = x* + 3 + 2xF 4+ x + 2in Z3{a]:
A'lx) =26 + x + 1, so ged[Alx), AY)] = | and
A(x) is a square-free polynomial. Next the



346 COMPUTER ALGEBRA

ALGORITHM 7. Berlekamp Algorithm

FACTORS <« Berlekamp(A{x), p)*

{. Let s be the degree of A. For0 s k= ~ |
compule the entries (geg ... Gin-1) of the kth row of
Q from xP* 1 = gyt e g g[mod AY))

2. Transform the matrix Q — [ into the triangular
form I by elementary operations. From 7 read off
the rank # — r of @ ~ [ and r linearly independent
solution vectors o, ..., oV of (*#) [let t1 be the
trivial solution (1. 0. ..., 9}]. So there are p7 solutions
of (**) and r irreducible factors of A(x}.

3. If r = 1 ther A(x) is irreducible, so sei FAC-
TORS « [A(x)] and exit. Otherwise compute
ged{Alx), VEIxY — s]for 0 = s = p — | and add the
resulfing factors to the list FACTORS. If FACTORS
has fewer than r elements, compute ged{V¥(s) — s,
Fx), for Fix) € FACTORS, 0 =s=p— 1, k=
3, ..., r, and add the resulting factors to FACTORS,
until FACTORS contains exacily r elements.

“ Alx) is a square-free polynomial in Z,lx], and FAC-
TORS is the list of prime factors of A(x).

powers x% x? 26 X% x'? are reduced module
A(x), vielding the entries of the matrix Q. The
triangularized form of @ ~ I'is T.

1000 0] 00000
D001 0 0 0 [ 0
Q=101 21 2| T={001 10
G 11 22 001 10
(2 0 2 1 1 100 0 0

So r = 2 and A(x) has two prime factors. Fur-
ther, vl = (1,0,0,0,0), v!3¥ =0, 0,2, 1,0), and
ged[A(), VI3(x)] = x2 + x + 2, ged[ALx), VER)
+ 1] = x* + 2x2 + 1. The prime factors of A(x)
are Péxy =+ x + 2and Po{x) = x* + 243 + 1.

B. FACTORIZATION OF UNIVARIATE
INTEGRAL POLYNOMIALS

The problem is to factor a polynomial A(x) in
Z[x] into its content and all its prime irreducible
polynomial factors. The content of A is readily
available as the ged of the coefficients of A. The
algorithm in Algorithm 8 can be used to achieve
a square-free factorization of A{x), that is, a rep-
resentation of A(x) in the form

r

Ax) = ] (47

=1

where the 4;(x) are relatively prime square-free
polynomials and A,(x} is noncenstant. So the
problem is reduced to factoring a primitive
square-free polynomial, which can be done by
the Berkiekamp~Hensel algorithm given in Al-
gorithm 9. In the worst case the Berlekamp-
Hensel algorithm is exponential in n, the degree
of the input polynomial A(x). On the average,
however, the algorithm performs quite well. In
step (4) of the Berlekamp-Hensel algorithm, the
Hensel Lemma is used,

The Hensel lemma (for univariate polynomi-
als) is as fotlows. Let A(x) be an integral polyno-
mial and p a prime number. Let A(x) = F(x)G{x)
{mod p), where F(x} and G(x) are relatively
prime in Z,[x}. Then for every natural number &
there are polynomials FY(x) and G*(x) in Z,4[x)
such that A(x) = FO)G*x) (mod p*) and
F®() = Fix)(mod p), G¥() = GlxXmod p).

An algorithm for computing the polynomiais
F®(x) and G*Yx) can be found in the chapter on
polynomial factorization in Buchberger er al.
(1983).

D. R. Musser has generalized the Hensel
lemma to obtain a multivariate factorization ai-
gorithm. In 1982, A. K., Lenstra, H. W. Lenstra,
and L. Lovdsz detected an algorithm for factor-
ing univariate polynomials in polynomial time,

ALGORITHM 8. Square-Free Factorization Algorithm for Univariate Integral Polynomials

FACTORS <~ Squarefree(A(1})

1. Set A(x) « A(x),
As e ged[Ax), A0,
ke 2.
2. while Gi(x) # 1 do

Ay ged[A,(x), Al
Gatx} — ALWASx),

(;](.\') — A 1(.\')/:‘11 3(.\').
Fylx) — Gy (xVGalx).

{Arer = ged{A . (x), AL ), G b)) A falAgalx),

Filx) < GulxVGray(x), k &k + 1},

* A(x} is a primitive integral polynomial, FACTORS = (F, ..., F,). such that the F,, | =i = r, are
square-free, relatively prime polynemials, and A{x) = F{x) ... Fi{x).



VI, FACTORIZATION AND REAL ROOT ISOLATION

347

ALGORITHM 9. Berlekamp-Hensel Algorithm

FACTORS «- Berlekamp-Hensel{A(x))¢

1. Choose a prime p that does not divide Idef(4) and so that A(x) mod p is
square-free.

2. Call the Berlekamp algorithm to compute )(x), ..., U4} in Z,[x] such that
1deftl/;} = IdeftA)mod p), Idef(l/y) = - = Idef{U,) = L. and Udx) - - Ulxdisa
complete factorization of A{x)modulo p.

3. Compute a bound b(A) for the absolute values of the coefficients in the fac-
tors of A, for instance b(A) = 2%a; + ... + @™

4, [quadratic Hensel lifting] Set ¢ «— p.

for k = i, 2, ... until ¢ = 25(4) do

ig <« ¢* compute polynomials U6 in Z,[x} such that UF(e) - -
UPxy = AY) (mod ¢), 1defUT) = WdefiA)mod ¢), and UP(x) = L)

(mod pj}.

5. [trial factor combinations? H(x) «— A(x); C« {2, ..., rhi 5 « O

while C #{ }do
florm =1, ..., [C] do
forall {i,, ..., 5, C Cdo

test whether F(r} = pplidef(H U ... Ubtxy mod p*'} divides A(v).

i

where & is the number of iterations in step (4) and the coefficients arc
balanced around 0 before taking the primitive part. If so, then leave

both for loops.

s+ 5 + 11 Fx) « Flx}y Hix) « H(x)/F(x); delete the subset of C, which

determines F, from C};
55+ B Floy = Hx).

@ A(Y) = g + o+ au + g is a primitive square-free integral polynomial, FAC-
TORS = (F,, ..., FJ) such that the F;, 1 = { = s, are primitive irreducible polynomi-

als, and A(x) = Fi(x) ... Fy(x).

and E. Kaltofen showed how to reduce the prob-
iem of factoring multivariate polynomials to un-
ivariate factorization, also in polynomial time.
In practice, however, the Berlekamp-Hensel
approach s still preferred, and a variant of it is
used as the standard multivariale factorization
algorithm in Macsyma. References for factoring
polynomials aver algebraic extensions of € can
ke found in the chapter on polynomial factoriza-
tion in Buchberger ef al. (1983).

C. ReAL ROOT ISOLATION

Let A(x) = qx" + - + @;x + ay be an integral
polynomial and & a positive rational number.
The problem is to compute a sequence of dis-
joint intervals of length less than e, each con-
taining exactly one real zero of A and together
containing all real zeros of A.

First, using the square-free factorization algo-
rithm in the previous section, A is written as

A(x) = cont{A) H (A=)}

where A;(x) is a primitive square-free polyno-
miat for § = { = r. The probiem reduces 1o the
problem of isotating the real roots of the primi-
tive square-free polynomials 4;(x), | =7 =r.
There are various algorithms for isolating the
real roots of a primitive square-free polynomial.
A survey, including Kronecker’s algorithm,
Sturm’s algorithm, and an algorithm using
Rolle’s theorem, can be found in the chapter on
real zeros of polynomials in Buchberger {1983).
The most efficient algorithm scems 10 be the
modified Uspenski algorithm, whose original
version was given by Uspenski in 1948 and mod-
ified (eliminating the exponential computing
time) by Collins and Akritas in 1976, It suffices
to isolate the positive zeros of A(x), since the
negative zeros of A(x) are the positive zeros of
A{—x) and A(®) = 0 if and only if ¢y = 0.
Some notation is useful at this point. Let p(A}
be the number of positive zeros of the polyno-
mial A, multiplicities counted. If (15, ..., &) is a
sequence of real numbers, (i, ... it;) the subse-
quence of all nonzero numbers, then varu). ...
w) = {11 =i <t, wju;y < O}, the sign variation



348  COMPUTER ALGEBRA

ALGORITHM ). Modified Uspenski Algorithm

L« Modified-Uspenski(A(x))®

1. Let #'(A) be a bound for the absolute values of the roots of A, for instance,
BHAY = 1+ (maxfe, o, ..., aopiied. Let 5% = b'(4).
2. If k = 0 set Blx) = A(2%y), otherwise st B{x) = 27#A(2%) {1 is now a rool

bound for B.]

3. Call Roots01 Lo compule the list L' of isolating intervals for the real zeros

of Bin (0. 1).

4. Tel L be the list containing (2*c, 2%d) for every (¢, d)in I,

+ [ e RootsGl{Alx)P

1. Set A* = {x + [MA[V(x + D] {The zeros of A in {0, 1) are transformed onto

the zeros of A* in (0, =)}
If var(A*™) = 0 then set L < (

) and exit.

Otherwise, if var(A*®) = 1 then set L « [{0, 1)] and exil.

2. If A(H) = 0 then include (4, §) in L and replace A by A/Q2x — 1}

3. Set A' « 2"A(x/2) |the zeros of A in (0, ) are transformed onto the zeros of
A’ in (0, [3). Apply Roots0l recursively to A7 with resuft L'. Replace every inter-

val (¢’ d’)Yin L' by (¢'/2, d'/2)in L.

4. Set A"« A'(x + 1) ithe zeros of A in (4, 1} are transformed onto the zeros
of A" in (0. D1, Apply Roots01 recursively to A" with result L". Replace every
interval (¢", d”yin L" by [(¢” + 1¥2, (d” + 1)2)in L.

Q A(l} = ([H_.r:: Lo

+ dry is & primitive square-free integral polynomial and L is a list of

isofating intervals for the positive real zeros of A.

bA(.\'} = gt + o

of A. For a polynomial A, let ds, the seminorm
of A, be the sum of the absolute values of the
coefficients of A.

By Descartes’s rule, var{4) = vara,, .... &)
= p(A} + m for some even nonnegative inte-
ger m. So if var(4) = 0. then p(4) = ¢, and if
var(A) = 1 then p(4) = 1. If A is a nonzero real
polynonial with no zeros in the right half-plane,
then var(A4) = 0. Let A be a nonzero real polyno-
mial of degree n = 2. Let TiA)(x) be 2*A(x/2) or
2A[(x + 1)/2]. Then the polynomial THA),
k= O[aL{d4)} has al most one zero ¢, in (0, 1)
and for all other zeres ay. ..., &, , real or com-
plex, io;] > », = O(r?. For the polynomial
A*) = (v + DPTHAN 14x + 1Y), one has var(A¥)
= 1. These observations are the basis for the
madified Uspenski algorithm given in Algorithm
10.

Vii. Arithmetic in Basic Domains

This chapter deals with arithmetic in some of
the basic domains of computer algebra. These
are the integers Z, the rationals @, the integers
modulo some natural number m. p-adic aum-
hers, aigebraic extensions of &, polynomials
over these domains, and power series. In con-

+ ¢q is & sguare-free integral polynomial. £ is a list of isolating
intervals for the real zeros of A in (0. 1}

trast to the approach in numerical mathematics,
all these domains are represented exactly. So
the computationsl problems, although similar to
the ones considered in numerical mathematics,
have quite a different flavor. In the previous sec-
tions, many applications of the arithmetic in
these basic domains have been described for
which it is absolutely essential to compute exact
results. Only a brief account can be given here.
For more details the reader is referred to the
chapter on arithmetic in algebraic domains in
Buchberger et al. (1983} and to the appropriate
chapters in Knuth (1981).

A. THE INTEGERS

The elements of Z are represented in a posi-
tional number system with a base or radix §
{(=2). A positive integer « is represented by the

unique sequence @y, = (dy. ..., @,-) Of nonnega-
tive p-digits, such that a,_, > 0 and a = Zj;

a;3L Nonpositive 8-digits are used for represent-
ing negative integers. The empty sequence rep-
resenis the integer 0. For a # 0, represented as
{ags ..., Gu—1), 1 13 called the B-length of «, writ-
ten as Lg(a). Let Lg{0) = 1. Lg(a) is essentiaily
the B-logarithm of la, and since Lgla)/L(a) is



VIL. ARITHMETIC IN BASIC DOMAINS

349

constant for different bases 8 and y, one some-
times just speaks of L{a), the length of a.

A careful analysis of the propagation of car-
ries shows that the sum of two integers ¢ and b
can be computed in an average computing time
proportional to minfL(a}, L(H)].

The “‘classical”” algorithm for multiplying two
integers @ and b has a computing time propor-
tional to L(a) - L(b}. For long integers {a realistic
tradeoff point seems to be 200 decimal digits), an
algorithm attributed to A, Karatsuba may be
used. The basic idea for Karatsuba’s algorithm
is to bisect the two integers a and b into two
parts each, @ = A% + Aq, b = Bif* + By,
where k is about half the maximum length of «
and b. Then the product ¢ = @ - b can be com-
puted as

c = (A1 BB¥ + [{A, + Add(B; + Bo)
— ABy — AaBelBt + (AgBo)

That means one of the four multiplications can
be replaced by additions and shifting operations.
The computing time for Karatsuba’s algorithm
is proportional to max[L(a), L{b)]°e2? A,
Schénhage and V. Strassen have devised an
even faster algorithm with computing time
mL{m)LIL(m)1, where m is the maximum of the
lengths of the multipticands. The practicality of
this algorithm still has to be determined.

Often it is necessary to compute the greatest
common divisor of two integers ¢ and b together
with integers « and v such that ged(a, b) =
a1+ b u. The extended Euclidean algorithm
does precisely that (see Algorithm 100, In 1938,
D. H. Lehmer improved the Euclidean algo-
rithm. His idea was to consider short integers a'.
b, a”, b" such that a’/b’ << afb < a"fb" {one can
use approximately rounded versions of the first
few digits of @ and h) and carry out the Euclid-

ALGORITHM 11, Exiended Euclidean Algorithm

(c, u. v) «— Extended-Eunclidean(a, b3

1. iy, w2, 13) e (sign{a), 0, iad);
(). v2, Us) = (0, sign{h}, ib);
2. while v; # 0 do
{let g be the integer guotient of u; divided by
[
(ty, 12, 13) < (ryy M, des) = {ur, U2 UY) -
(ty, tz, H2) = (U, val i)l
(v, vs, 03} < (1), 13 )
3.Selce—ti, 0l U U

e g and b are integers. ¢ = ged{a. by = - nw + b - v

ean algorithm on (&', b') and (¢, b") instead of
on{a. b). As long as the intermediary results are
the same, one can be sure that they are identical
to the intermediary resuits for (e, »). If a dis-
crepancy occurs, new values for ¢', &', «”, and
b can be computed from the last correct inter-
mediary result.

B. THE RATIONAL NUMBERS

In @ one is essentially interested in efficient
aigorithms for addition and muitiplicatior. In or-
der to compute the sum (or product) of the two
rational numbers a/f and o/d, one can of course
compute (ab + bc)bd (or ac/bd) and reduce the
resuit to lowest terms, that is, eliminate the ged
of the numerator and denominator. In 1956, P.
Henrici pave a more efficient method for addi-
tion and multiplication. The idea is not to do one
ged calculation involving the relatively large nu-
merator and denominator of the final result, but
to do several ged calculations on smaller inter-
mediary results. In a similar way one gets
Henrici algorithms for addition and multiplica-
tion in €(x) from the basic operations in Zix].

C. INTEGERS MODULO m

There are two natural choices for representa-
tives of the residue classes of Z modulo a posi-
tive integer m, namely {0, 1, ..., m — 1} and
{a: —mi2 < a < m/2}. Let H,, denote the func-
tion that returns the representative of the resi-
due class to which its input belongs. The sum,
difference, and product of two residue classes
with representatives ¢ and b can be computed as

a +, b= H,la +b) a =y b= H{a b
o b= Hyla - b).

Division of « by b is defined only if there is a
unigue ¢ such that @ = bc, and then ¢ is the
quotient a/b. An efficient way of computing a/f
is to use the extended Euclidean algorithm with
inputs m and b, which produces ged(mi, by = m -
i + b - v, Then a/b is defined if and only if
ged(m, B) = [ and then ¢ = a - H,{v).

A typical application for modular arithmetic is
that one wants to replace a computation in £
(with possibly huge intermediary results) by a
number of computations with respect to rela-
tively prime moduli. So it is essential to be able
to combine the partial results with respect to the
various moduli and thus get the desired result in
Z. This feads to the so called Chinese remainder
problem:



350 COMPUTER ALGEBRA

ALGORITHM 12, Chinese Remainder Algorithin

< Chinese-rem2(r, my, r2, ma)*

¢ e m; F mod m; {use the extended Euclidean algarithm); ry < r; mod a2
§ iy — ry mod n) - cmod pisp ey 45 .

r e Chinese-rem{sn, (ry. ... r), (oo )y

A e ntyy r < rpmod a1y
for k = 2 to n do

{r «= Chinese-rem2(r, M’, ri, i M7 — M - my}.

gy, ity £y, g are integers, pntE Qo #= 0, pedrL m) = Lr=pforl €05 2
By, ..., Py are integers, myy, ..., are nonzero, relatively prime integers. r = 1 {mod

miyfor 1 =i=n.

For given integers ry, ..., r,, and nonzero, rela-
tively prime integers »t;, ..., m,, find an inte-
ger r such that r = r(mod my) for 1 =i = n.

An algorithm for solving the Chinese remainder
problem is given in Algorithm 12. For gencral-
izations and details, the reader is referred to
Lipson {1981).

D, POLYNOMIALS

Whenever R is a ring with effective basic
arithmetic operations, then so is Rlxy, ..., X,
the ring of polynomiais over R in s indetermi-
nates. There are essentially four different repre-
sentations of polynomials. In a sparse represen-
tation, A(xy, ..., &, is represented as a list
containing the nonzero coefficients in A together
with the corresponding exponents. In a dense
representation, all the coefficients of A, down
from the leading coefficient, are recorded. Both
sparse and dense polynomials can be repre-
sented recursively—that is, a polynomial in
Rlx, ..., x,] is represented as a polynomial in
the indeterminate x, over Rlx,. ..., X,_i]—or
distributively—that is, as a list of exponent vec-
tors and coefficients in R.

For dense polynomials, fast multiplication al-
gorithms have been developed. They are based
on the Karatsuba method or the fast Fourier
transform. The tradeoff points for thesc fast ai-
gorithms, however, are rather high.

For univariate polynomials over a field, there
is the well-known division algorithm that, for
given polynomials A(x) and B(x), yields a unique
quotient Qx) and remainder R(x) such that
Ax) = Q(x)B(x) + R(x)and R(x) is the zero poly-
nomial or deg(R} < deg(B). There is no cosre-
sponding division algorithm for Zix]. For most
applications, however—for instance, for the
computation of polynomial remainder se-

guences—it is sufficient to have a pseudo-divi-
sion, which vields a unique pseudo-quotient
(x) and pseudo-remainder R(x) such that
ldefiBym+14(x) = QU)Bx) + R(x) and R{x} is
the zero polynomial or deg(R) < deg(B). where
m = deg(A) = deg(B) = n. Pscudo-division can
be carried out in £[x].

If R is a field, then R[x)is a Euclidean domain,
so the Chinese remainder algorithm (Algorithm
12) can be employed for solving the problem:

For given polynomials A,(x), .... A,(x) and
nonzero, relatively prime polynomials Pi(x),
.., Pux), find a polynomial A(x) such that
Al) = A (OImod Py for 1 = § =n.

A solution to this Chinese remainder problem
for polynomials is needed for the proof of the
Berlekamp algorithm.

VIH. Program Systems for
Computer Algebra

Very early in the history of computer algebra,
program systems were constructed to carry out
the newly developed algerithms. Many of these
early systems were programmed in FORTRAN,
notable among them Brown’s ALPAK (1963)
and Collins’s PM (1966). Today there is a large
number of computer algebra systems. The ma-
jority of them are devoted to special applications
like high-energy physics, celestial mechanics, or
general relativity. The most influential among
the general-purpose systems probably are Mac-
syma, Reduce, SAC/ALDES, and mu-Math,
every one for different reasons. All of them have
originated more or less between 1970 and 1980.

Macsyma, developed at MIT under §. Moses,
is certainly the most comprehensive system.
Most of the algorithms presented in the previous
chapters are implemented in some way in Mac-



Vill. PROGRAM SYSTEMS FOR COMPUTER ALGEBRA

351

syma. It has only recently become available to a
large number of users. From the early begin-
nings, Reduce has always put a high emphasis
on portability and it is probably the full-fledged
computer algebra system with the widest distri-
bution. Reduce has been developed at the Uni-
versity of Utah under Hearn. Colling's SAC/
ALDES system is the best documented of the
major computer algebra systems. Its algorithms
form a huge ‘‘library’” of algebraic programs,
which are frequently used as a basis for new
implementations. Stoutemyer of the University

of Hawaii was the first to write a computer alge-
bra system for a microprocessor. His mu-Math
is able to perform most of the symbolic calcula-
tions for high-school mathematics. New com-
puter algebra systems are currently developed,
among them Scratchpad, SMP, and Maple.

The following is a conversation with Mac-
syma. The lines starting with (c ...} are input and
the ones starting with {d ...} are responses of the
system. Comments are placed between /* and #/.
The symbol % refers 1o the expression in the
previous line.

(cl) /* Macsyma 1s able t0 handle arbitrarily long iategers */

(132x+453°3 * (214*x-28*y) 2 * (17*x+R2¥*y+12™x"y)"3;
b

Time= 150 msec.

(di)
(c2) expand(%);

Time= 4233 msec.

8 5 5
(d2) 23YeY60000 x ¥y -+ 39561210000 ¥

3 B
296174871875 = ¥

+

5
+ 8780851758285 ¥

4
- 4525668693000 T ¥

2 4
- 34195733596575 x ¥

7

3 6 3
+ RY26150259456 ¢ y o+ 17B51662617V3540 x ¥y

¢ 3
+ 109187302390365 = ¥

8 2
+ 738907835328 = ¥

5 2
+ 1595676800863065 x ¥y

8
+ 1046786100048 z

<] 4
+ 111396003677582 x ¥y + 810549058674248 x

@
+ 4905132302148 x

3 2
(13 x + 43) (214 x - 2B/ y) (2 =z y + 2%y + 17 =)

+ 2030599884375 x ¥

7

4
- 40621651200 = ¥y

4 %
- 16222173247125 x ¥

-~ 14897323886075 = ¥
+ 1053285518685001 =z ¥y

T 2
+ 10412748356400 x ¥

+ 216419303850655 = ¥

8
+ 162246B8B384028 X

3

5 4 5
+ 272845462500 =z ¥

2 5 5
+ 2191214075625 x ¥

6 4
-~ BBYRO3B85300 x ¥

g 4
- B2402693073685 X ¥

4 8 3
+ 173860867138 x ¥

5 3
+ BBYLTHES3200945 = ¥

3 B3 2 B
+ 41201957968451 = ¥y

6 2
+ B801B0B0580645 = ¥y

4 2 3 B
+ 1157Y02080622163 ® ¥

7 G
v + 12627113405192 x ¥y + 565B3575068488 x ¥y

8
v + 404315658356 x

5
+ 178887T369362386

(¢3) /* multivariate integral polynomials can be factored and their

god computed */
factor(%);

Time~= 18866 msoC.

3
(43} (13 = + 43)

(26 vy - 214 x)

2 3
(12 xy + &7 y + 17 %3

(o4 (1B*x+43)"4 * (214*x-26*y) * (5*x"2-27x+1);

Time= 116 msec.



352 COMPUTER ALGEBRA

4 2
(d4) (13 x + 43) (5 x - 2x + 1) {14 x - 25 y)

(e5) expand(%):
Timé= 650 msec.

G 5 4 3
{a5) - 3570185 x y — 4580Y450 x vy - 2181808Y% x vy - 432408300 x ¥y

2 T s
- REYH04075 x vy + BY580950 x y -~ 85470025 y + B0BB02Y0 x  + 392111772 =
5 4 3 2
+ 1880808722 x + 3702185448 x  + 2280834882 x -~ BYB48R832 x  + 731623414 x
(e8) god(d2,d5);
Time= 655G msgec.
3 2 4 3
(dB8) (54925 x + 545025 x + 1802775 x + 198V6Y5) v - 4701868 X - 4665414 x
2
- 18431754 x - 17014498 x=
(c?) factor(%);
Timg= 883 msec.

3
(av) {13 % + 43) (25 y - 214 =)

(¢8) /* the resultant and discriminant computed in the following lines are
needed in the example in Chapter II */

¥R £ X7 - 4;

Time= 16 msec.

2 2
{483 ¥y + X -4
(0®) ¥°2 — 2%z + 2;
FTime~ 33 msec,

2
(383 Yy -2x%+38
(c10) resultant(ds8,d9,¥):
Time~ 1018 msec.

2 2
(a10) {(x +2x-8)
(eil) poly_discrimirvant(ds,y);
Time= BE msec.

2

{dii) 186 -4 =

(@l2) /* algebraic equations can be solved */
(Z-b-a"2)*(x-b-2*a)*(x+3*a-b"2);

Time= 8% msec.

{diz) (x ~b-2a)(x-Db -~ az) (x - b2 + 3 &)
{13} exzpand(%);
Time= 668 msec.
3 2 2 2 2 2 2 3 2 2 2 2
(413) x - b ¥ - 2bxX -8& X + 8% +2b ZT+a b x+2ab x+Db x

2 3 2 4 e 3 3 5 2 2
+a8a bx-4abx-38 x-68 x-b» ~-a b ~—-2ab -28 b +3ahb

3 2 &
+3a b+Ba b+ 8a



Vill. PROGRAM SYSTEMS FOR COMPUTER ALGEBRA

353

(cle) solve(%,x);
Time= BR86 msec.

2 2
(d14) fz=b+23a, =5 ~-3a, 2=D0b=+al

(18} 7% in some cases closed form solutionsg to indefinite summation
problems can be computed */

simpsum @ trues
Time= O msgec.
{18} sum(i"3 + 371,4,0,n);

Time= 566 msec,

(¢z8y mmmemeeeee F o e

{ei?) sum(i~2,1,1,4) * sum(l/478,1,1,inf);

Time=~ 766 msec.

2
(arv} 5 %pi
(e18) /* derivatives can be computed */
X"E"x%;
Time= O msec.
x
X
(a18) b4
(¢19) diff(%,x);
Time= 100 msec.
x
= x x -1
(a19) x  (x log(z) (log(x) + 1) + x )

{ep0) /* the result is checked by integration */
integrate(%,.x);
Time~ 15800 msec.
x log(=x)
log(xz) %e
(420} %e
(e21) /* simplification yields the original formula */
radcan(%);
Time~ 800 msec.
4
x

(d=21) x

{o22) /* the following examples should illustrate some of the features
of Hacsyma’'s integration package */

1/(x"3+a*x"2+x);

Time= 33 mseo.

fée2y mmmmmemmmeee o

(083) integrate(%,z);

2
Is & -~ 4 positive or negative?

positive;



354

COMPUTER ALGEBRA

Time=

(ag3)

(cz4)

Time=

{d24)
{c25)

Time=

(dass)
(cr8)

Time=

(aas)

(27}

Time=

(agv)

(c28)

Time=

(a28)

(cr9)

Time=

(d2¢)

(e30)

Time=

(d30)

{e31)

Is a

1085 msec.

2 2
2z + sqrt{a =~ 4) + & log{x + &= + 1)
e m + log(x)
R 2
2 sqrtl{a - 42
%e"x"(1/8);
33 mgec.

sqrt(=)
%e

integrate(%,x);
1250 msec.

sqre(=x)
2 (sqrt(z) - 1) %e

x/(x"2-1);

35 msec.

integrate(%,x);

133 msec.

(log(x)-13/(Rog(x) 2 ~ x°2);
83 msec.

log(x) - 1

i
43

2
log (x)
integrate(%,.x);
2216 msec.
log{log(xz) + =)  log(logl(x} - %)
/* definite integration from O to a */
1/{a"2-2"237{1/2);

33 msec.

integrate(%,x,0,a8);

positive or negative?

positive;

Time=

(d31)

{oBz)

31933 msec.

%pi

1/(x"2~a"2);



Vil. PROGRAM S5YSTEMS FOR COMPUTER ALGEBRA 355

Time= 50 msec.

(asz e

(c33) integrate(%,x.8,.D);

Is (b - a) (b + a} positive or negative?

positive;

INTEGRAL IS DIVERGENT

Time~ 5vY66 msee. g0 far

(eB4) /* definite integration from O to infinity */
%e"(-x)*x"n; ‘

Time= 66 msec.

n - =
{az4) x %o
(¢B5) integrate(%,x,0,inf);

Is n + 1 positive or negative?
positive;

Is n positive or negative?

positive;

Is mn an integexr?

yes;

Time= 38888 msec.

(ass) ol

(cB6) /* Macsyma has a package for solving ordinary differential
equations. The solution contalns a parameter %c */

x 2 diff{y,.x) + 3*x*y = gin(x)/=x;
Time~ 83 msec.
2 dy sin(x)
{d36) Z --+ 3 RY e
ax x
{cav) odeR(%,y,x);

Time= 2033 msec.

%c - cos(x)
{da7) Yo e

{¢38) (1+x"2)* diff(y.x.3) - 2%y = 0;
Time= 50 mgec.
2
2 d v
(a58) {(x + 1) »»~ -2y =0
2
dx
{cB9) ode2(%,y,x):

Time~ 6483 msec.

2 2
(a39) ¥ o= %kl (x + 1) (meemene R Yo+ ¥k2 (x o+ 1)
2

(c40) 'diff(y,.x,8) - 2*'diff(y.x,1) - 2*y = 0,



356  COMPUTER ALGEBRA

Time= 66 msec.

(d40)

(41} ode2(%,y,%);

Time= 1200 msec.

{2 sgqri(3) + 8% =

(a41) v = %El %e

(e42) quit();

(& - 2 sqet{3)) =

BIBLIOGRAPHY

Arnon, D. S, Collins, G. E., and McCallum, S. (1934).
SIAM J. Compui. 13(4), 865-889.

Atkinson, M. D., ed. (1984). *'"Computational Group
Theory.” Academic Press, New York.

Buchberger, B., Collins, G. E., and Loos, R. (1983).
“Computer Algebra—Symbolic and Algebraic
Computation,” 2ad ed. Springer-Verlag, Wien-
New York.

Huet, G., and Qppen, D. C. (1980). Equations and
Rewrite Rules: A Survey, In “Formal Language
Theory' (R. V. Book, ed.}). Academic Press, New
York. 349-405.

Journal of Symbolic Computation, Academic Press,
1985,

Special Volume on Decision Methods for Real Closed
Fields, Journal of Symbolic Computation, Aca-
demic Press, 1986.

Knuth, D. E. (1981). “The Art of Computer Program-
ming,”” 2nd ed., Vol. 2. Addison-Wesley, Read-
ing, Massachusetts.

Lipson, J. D. (1981). “Elements of Algebra and Alge-
braic Computing.”’” Addison-Wesley, Reading,
Massachusetts.

Pavelie, R., ed. (1985}, "“Applications of Computer Al-
gebra.”” Kluwer Academic Publishers., Boston-
Dordrecht-Lancaster.



