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Solution of Equations I:
Polynomial Ideals and Grobner Bases

FRANZ WINKLER University of Delaware, Newark, Delaware

0. Introduction

The idea of using Grébner bases for solving equations which arise from a given poly-
nomial ideal is retatively new. Grébner bases have been introduced by B.Buchberger in
his dissertation in 1965, but only about ten vears ago has the computer algebra com-
munity become aware of them and packages for computing and using Grdbner bases

have only recently been added to existing computer algebra systems.

The problems, however, which can be attacked via Gr8bner bases have a long histo-
ry. In [Hilbert 1890] D. Hilbert investigates the problem of computing a basis for the
syzvgies of a finite set of polynomials over a field. Actually he considers a more general

problem, namely solving a system of equations
(1) fyzg) + o fz =0, {i=1,...,8).

By induction on the number of variables he shows how to construct a basis for the
space of all solutions of the system (1}. In {Hermann 26] G. Hermann uses Hilbert's
method to derive a bound for the degree of a basis for the solutions of {1). After a

slight correction, this bound is
n-1

mit,q,n) = 1/2 Z-:—O (2qt)2i,

where ¢ is the maximal degree of the f!.j’s and n is the number of variables. Hermann
goes on to show in Satz 4 that for every ideal I there exists a basis fj""’ft such that

every ¢ in [ can be represented by a linear combination

383
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(2) g= g/ + -+

such that the degree of every summand gifi. is bounded by the degree of g. She also
gives an algorithm for constructing such & basis from an arbitrary basis of the ideal I
The degree of such a distinguished basis can be bounded by m{l,qn), where g is the
maximal degree of the given basis polynomials. A basis for which (2) holds bas been
called an H-basis in [Macauley 16]. Obviously such a basis immediately leads to an al-
gorithm for deciding the ideal membership problem. In [Buchberger 65] Buchberger in-
troduces the concept of a Gr8bner basis, as a basis which allows to reduce all polynomi-
als in the ideal to 0. He also gives an algorithm for constructing such a basis. It turns
out that every Grébnmer basis is an H-basis, but not vice versa [Buchberger 81].
Hironaka’s definition of a standard basis {Hironaka 64] for an ideal in a regular local
ring is basically identical to Buchberger’s definition of 2 Grébner basis. However, Hiro-

naka does not give an algorithm for computing such a basis.

Gribner bases are useful in computer algebra systems at least in two different ways.
First, they allow to find solutions to a number of algebraic problems which are impor-
tant in their own right. Some of these problems will be discussed in this paper. For a
more extensive list of applications we refer to [Buchberger 83], [Buchberger 85},
[Winkler et al 85, [Trinks 78}, and {Mblier/Mora 86}. Secondly, Grdbner bases can be
used to simplify complicated partial resuits with respect to polynomial side relations.

Simplification is one of the main problems in computer algebra.

Grébner bases can be viewed in the context of equational theorem proving. Actual-
ly a Gr8bner basis gives rise to a canonical reduction relation for the ideal congruence.
Buchberger’s algorithm for constructing a Gridbner basis is essentiaily a completion algo-
fthm for the associated equational theory [Llopis 83], [Kandri-Rody/Kapur 83],
[Winkier 84]. This correspondeace has been helpful in tranferring computational im-
provements in the construction of a Gr8baer basis to the general situation of completing

a reduction systern for an equational theory [Winkler/Buchberger 83].

In this paper we concentrate on applying Grébner bases o solving equations that
arise from a given set of polynomials. In chapter 1 we specify the problems considered
in this paper, in chapter 2 we give the definition of a GrBbper basis and an algorithm
for constructing one, and in chapter 3 we deseribe how a Grébner basis can be used to

solve the problems stated in chapter 1.
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1. Problems

In this and the following chapters we assume that K is a field. Whenever we talk

x.

about polynomials we mean polynomials over K in the indeterminates L)y X,

1.1. System of algebraic equations

We suppose that we are given polynomials fl""’fs' We are looking for the common
zeros of the given polynomials in the algebraic closure X of the field K, i.e. we want to

solve the following problem:
(P1) given: a finite set Fm{fl(xl,...,xn),...,fs(ml,...,xn)} of polynomials,
find: the set of points (zl,...,zn) in X", for which all the polynomials in F vanish.
1.2. The equational theory associated with a polynomial ideal
For given equations f==0,...,f =0 we ask whether another equation f=0 can be
derived from them, using the following equational caleulus:

N for all /=¢ in the set of axioms,

f=g

g feg g==h
e meemh i polynomials fg.h
=7 e=f " /=R
fhi:gg;l ! f«!~h{:g§;h tor #ll polynomials /ol
f=f9=¢ [=[¢=¢

- : for all polynomials £,f,0,4"

Hoe=f+g  fo=[ly
f=:0 can be proved in this equational calculus if and only if fis in the ideal generated
by the pelynomials ],...,fs. The provability problem for the equational theory associat-
ed with a finite set of polynomials or the membership problem for the ideal generated
by a finite set of polynomials is the following:

{P2) given: polynomials f ,...,fﬂ, and f,
decide: whether f==0 can be proved in the equationai calcuius with the axioms
=01 =0,
or, stated as an ideal membership problem, whether f € ideal(fi,...,fa).
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1.3. System of linear equations with coefficients in K[zl,...,zn}

Information about the structure of an ideal given by a basis f,...,fs is provided by
the syzygies of this basis, l.e. the s-tuples (zl,...,zé) in I{E:ci,.,..:cn]s, for which
f;z1 + o+ fﬁzs == (.
More generally, we will consider the following problem:

(P3) given: polynomials f“,...,f fﬂ, ST and f ,...,ff in K[z:l,...,:cn],

find: {a description of) all s—tuples (":1"""2«} of polynomials in K[zl,...,a:n], such
that

o R\ (A h

3 8

R A ‘ fy
1.4. Membership in the radical of an ideal

Again we are given a finite set of polynomlals fl ,f and an additional polynomial
j. We ask whether the conditions f( }=0 ..., (%)= O for an n-tuple T in K" imply
fiz)=0. That means we want fo demde wheth;zr the polynomial [ vanishes on the
variety of tdeal{fl,...,fs}, i.e. whether [is contained in the radical of :deal(fl,...,fs)

(P4) Given: polynomials fl' ,f and [,
decide: whether [is conta,med in the radical of 1deal(f1, ,f}
or in other words, whether )"1( 7)=0 ,.., fg( }=0 ===> f{7)==0 for ali n-tuples T in
K"

2. What is and how can we construct a Grébner basis?

Before we show how Grébner bases can be used for solving various problems, let us
just say a few words about what a Grdbner basis is and how we can construct one. For
further details we refer to [Buchberger 76a,b] and [Buchberger 85).

Let > be 2 linear ordering on the power products of Ty 0Ty such that 1=x10...:cnﬂ
is minimal under 3> and multiplication by a power product preserves the ordering.

Examples for such an ordering are the lexicographic ordering or the graduated lexico-
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graphic ordering. Once the ordering >3 is fixed, every nonzero polynomial f has a
greatest power product (with nonzero coeflicient} occurring in it, the leading power pro-
duct of §, Ipp(f). The coefficient of pp{/} in [is the lcading cocflicient of f, le(f). The
polynomial which results from § by subtracting the leading power product muitiplied by
its coefficient is called the reductum of f, red!)).

Every nonzero polynomial f gives rise to a reduetion relafion -, on the ring of poly-
nomials in the following way: 9, =79 if and only if there is a power product p with a
nonzero coefficient ¢ in 9y ie. glmap+h. for some polynomial & which does not contain
p, such that Ipp(f} divides p, t.e. p=Ipp{[)q for some ¢, and gg=—(a/lc(f))-q-red(f)+h. HF
is a set of polynomials, the reduction relation modulo F is defined such that 9 ~p 9 if
and only if 9, 0 for some f € F. In this case 2 15 rcducible to g, by F. I there is
no such s Gy is irreducible modulo F. By — 7, — , and +— we denote the transitive,
reflexive-transitive, and symmetric-reflexive-transitive closure of —, respectively. For
every set of polynomials F the reduction refation —p is Noetherian, i.e. e\;er_\-' decreasing
chain terminates. We say that g is a nermal form of f medule F, i f—+F g and g is ir-

reducible modulo F. In general, normal forms are not unique.

Il two polynomiais f and g are given, we can reduce the least common multiple {{em)
of Ipp(f} and fpp(g) both by y and by —g The difference of the results is called the
S-polynemial (S-pol) of fand ¢ le.

S-pokf.g) == le{g)-(lem{Ipp(f).lpp(g))/ tpp{f)}-f - te{f)-(lem{lpp().ipp{a))/ tpp(f}) o-

A Grbhner basts for a polynomizal ideal I is a finiie set of polyromials G such that I
is generated by G, I=1idecl{(7), and every nonzero polynomial fin [ is reducible modulo
G. f\ccording to a theorem of Buchberger G is a Grdbner basis if and only if S-pa!{gl,gg)
-0 0 for ali 9,:99 € . Based on this theorem we get (a first, primitive version of) an
algorithm for computing a Grébrer basis. For more advanced versions we refer to
[Buchberger 76a] and [Buchberger 83].

Grébner basis algorithm:

input:  F, a finite set of polynomials,
outpui: G, a finite set of polynomials such that G is a Grébner basis for

the ideal generated by F.

G = F
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for ali pairs [91-'99) € GXGdo
A :== a normal form of Supol(gz,gz) modulo G
if k=40 then Gi= G U {h} endif

endfor e

For every input F the Gr8bner basis algorithm will terminate after a finite number
of steps {Buchberger 70]. Once a Gr8bner basis is computed, the polynomials in the
basis can be reduced with respect to each other and the teading coefficients can be nor-
malized to 1, leading to a uniquely defined minimal reduced Grbbner basis. Wheras in
general normal forms modulo a basis F are not unique, every polynomial [ has a unique
normal form modulo a Grébner basis G, i.e. the reduction relation -G has the

Church-Rosser property.

3. Application of the Grbbner basis method to the solution of equa-
tions z

3.1. Bystem of algebraic equations

Before we set out to generate the solutions to the problem (FP1) for given polynomi-
als fl,...,fa, we might want to know whether the system of equations
fi(zsi,...,xn} =) (f==1,,8)
has any solutions at all. This question can easily be answered once we have computed a

Grbbner basis for the given polynomials.

Theorem 1 Let F={f ,...,fs} be a set of polynomials and G the minimal reduced
Grdbmner basis for tdeal(F}). Then the system of equations

{3 _ fa ez ) =0 (i=1,..,5)
is unsolvable (in K} if and only if 1 € G.

Proof: If 1 € G, then 1 is in fdeal(F). So every solution of (3} is a solution of 1==0.
Thus, there is no solution of {3).

On the other hand, assume that (3) is unsolvable. Then 1 vanishes for every root of
(3). So by Hilbert’s Nullstellensatz |Waerden 37] there exists a positive integer m such
that 1™=1 € tdeal(F). So there has to be a polynomial in G which allows to reduce 1,
ie. 1 € G
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Now suppose that (3) is solvable. We might want to determine whether there are

finitely or infinitely many soiutions.

Theorem 2 Let F and G be as in Theorem 1. Then {(3) has finitely many solutions if
and only if for every i (i=1,..,n) there is a polynomial g, in G such that lpp(gi) is a
power of z.

Proof: The system of equations {3} has finitely many solutions if and only if the vector
space Klz,,..,z |/ideal(F) has finite vector space dimension {Gr8bner 49]. That is the
case if and only if the number of irreducible power products modulo G is finite, see lem-
ma 6.7 in {Buchberger 83]. From this condition, the theorem follows immediately.

For really carrying out the elimination process, we compute the Grdbner basis with
respect to the lexicographic ordering. The following elimination property of a Grébner
basis w.r.t. the ]exic:(;)graphic ordering has been observed in [Trinks 78|. It means that
the rth elimination ideal of a Grdbner basis  is generated by the polynomials in ¢

that depend only on the variables Tyrees e

Theorem §: Let G be a Grdbner basis w.r.t. the lexicographic ordering (without loss of

generality assume g, B> x> B ::1). Then
idead(G) N K[xl,...,x1.] = ideal{GﬂK[xi,...,zf.}) for r==1,...,n,
where the ideal on the right hand side is formed in K[z ,....z].

FProof: Obviously the right hand side is contained in the left hand side.

On the other hand, assume that f € ideal G){}Iq:cz,...,z{]. Then f can be reduced to

0 module & w.r.t, the lexicographic ordering. So all the polynomials occurring in this
reduction process depend only on the variables Ty and we get a representation of f
as a linear combination of polynomials in @, where all the summands in this representa-
tion depend only on the variables Ty
Ezample 1: Let Fm{fl, 2,)’3} C Q|[z,y.7] be the sel of polynomials

fl = zz-~- xy2 - 427 -}_‘,

f2 = y22+2$+l,

f3 = 22z + y2 + %z.
Let =3> be the lexicographic ordering with z 3> y >> 2. The Gribner basis algorithm



390 Winkler

appiied to F generates the minimal reduced Grdbner basis Gn{gl,g,,,ga}, where

64 .4 432 3 168 2. 354, 8
2 8 4 .5 3 8§ 2 17
9=V pr T omr s
5_27 .4 381 2 5
9 z 7 + 2z T +:c+——32.

Applying theorem 1 we gee that the system of equations fl =0, f2=0, fsr-—-{) is solvable in
the algebraic closure of Q (the field of algebraic numbers). Furthermore, by theorem 2,
this system of equations has finitely many solutions. The variables’in tbe Grdbner basis
& are totally separated. An approximation of a root of g up to + Wﬂ is -0.128475.
This solution of gB_mO can be continued to solutions of g,=0 and gle vielding the ap-
proximation (-0.128475, 0.321145, -2.356718) for the original system of equations. e

Ezample 2 The same method can be applied to algebraic equations with symbolic
coefficients. For example let F=={/ ,...,f4} ¢ Q{a,b,c,d) consist of the polynomials

fl e $4 - (b-d),

fy=z, + 2+ 2+ 2 + (~a-c-d},

fy = z,z + oz, + 51y (~ad-ac-ed),

fy = mzyz, + {-aed}.

Let >> be the lexicographic ordering with 7, >3 z, >z, 3> o3 The minimal re-
duced Grébner basis for ideal(F) is G={g,,.. ,g4} where

+ (b-d),

g, = Tz, 4 (- b +2bd- a’z}/[acd)zl2 + (-abc»abd%—ao:d-{—ctdg-bcd-i-<:-zi2)/(acd]a:1 + {-a-c-d),

g, = 1z, + {b2—2bd+d )/(acd}z12 + (cu‘)c-!—chﬁd—adg-l—bcd-.::dQ)/[acd):cj,l + {-b-+4),

g9, = :Cli + (a;:+aa’+cd)/(b—d)a:12 + (f.:agcci+acgd+accifz}/(bz—%d—’r—dz)x1 + (ake 2 )/(
36 d+3bd>- %),

Thus, the system has Snitely many solutions. A particuiar solution of g4ﬁ0 is {~ad)/(b-

d), whick can be continued to the solution

-ad  ab+b-bd .,
[W’T' e, -b+d}.

3.2. The equational theory associated with a polynomial ideal

Once we have computed a Grébner basis G for the ideal generated by F={/f ,...,fs},
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the provability of an equation f==0 in the equational theory associated with F, or in oth-
er words, the membership of [in ideal(F), can be decided by reducing f to the uniquely

defined normal form meodulo G.

Theorem 4: Let G be a Grdbner basis, f 2 polynomial. Then f € fdeef{G) if and only if f
e 0.

Proof: 1f § w»(; 0, then obviously f can be expressed as a linear combination of the ele-
ments of G.

On the other hand, if / € {deal{G) and j=£0, by the definition of a Grdbner basis f
can be reduced meodulo G, fwc [, where f € ideal(G). [ is also reducible modulo G,
leading to / and so on. Since —
be reducibie to 0. o

o is Noetherian, this process has to stop, i.e. [ has to

Ezample & Let, F=={ [, [, f3 }, where

fl T LTy T, - LT, + 7, - 2zix214 “+ 52132,

j’2 = :1:11'32314 - 3:223:3274 + x12x3x4 - x23zd -+ 22112254 -+ 3:22132 - 2:112:.:32,

fy == Ty - Ty 312% + 2"227“3 T E Tty

We want to decide, whether for

f= 23:13722'54 - 231212x4 - 3:13:1:4 -+ 11::221.33 - 2:7:24:c32 + 2:(:13:23:532 - 23122222:32 BN 3:19:2332 -
2x25:c3 + 52'.1:524:.:3 - 2:::12:1523:53 - 2:&233:3 + 3z1x22z3 - :r12x2:::3

the equation f==0 is provable in the equational theory associated with F, or whether [ €
tdeal{ F}.

A Grdbner basis for ideal(F), w.r.t. the lexicographic ordering T, B> oz, 3> ozy >

z,,i8 G={ g, g, 95, 9, }, where g =f, g)=/,,

- 2 2 1.3 H 2z 3 3 2. 1.2
Gy == T T Ty - ELE, - 520 SR DT - T, + 52y 1y - 5T, 5Ty

. 3 39 2 g 29 4 3. o2 2
Gy = LT,%,° 21"2 " + 2z, 7, z," - 2z1 TyZy" - 23:2 Ly + ngx,z Ty 2..':1 T, T,

[ is reducibie to 0 modulo G, so by theorem 4 the equation /=0 is provable in the equa-

tional theory associated with F. e
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3.3. System of linear equations with coefficients in K[:cj,...,:cn]

Let us first consider the case t=1, i.e. only one inhomogeneocus equation

{3 L et fz =
5] Gﬂ{gi,...,gm} is a Gribner basis, then 2 generating set for the solutions of the homo-
geneous equation

(4) g7 + o tg oz =10
eanr be computed by reducing the S-polynomials of G to 0 and storing the multiples of
the basis polynomials used in this process {{Buchberger 85]). We provide a correctness
proof for this method.

Theorem 5 Let Ga= {gl, g } be & Grébaer basis. For all 1<i<j<m, let Pip 9p
k L ok, 7" be such that

S-pol(g,, 9)—pug!-q”gj~“kw ke T
where k . k!. y are the polynomials extracted from the reduction of S-pol(g g; Yto G
For z——l ;m let e, denote the vector (0,.-.,0,1,0,...,0), where the I occurs at the i th po-
sition. Then 1

§ = {sz AU
S, .

4]
generates all the syzygies of G, i.e. the solutions of the homogeneous equation
907t g2 = 0 .

Proef: Obviously every element of § i a sysygy. On the other hand, let
H:(hl,...,hm)#((),...,O} be an arbitrary syzygy, i.e

(*) glhl + o4 g h =0
Let {1 <<y be those indices such that ipp[g h )—p, the maximal power product w.r.t.
> in (*). We have k22, Suppose k>2. By subtractsng a suitable muitipie of 5. "

we can reduce the number of positions in H that contribute to the highest power prok-
duct in (*). Iterating this process k-2 times, we finally reach a situation, where only two
positions in the syzygy contribute to the highest power p in (*). Now the highest power
product in (*) can be decreased by subtracting a suitable multiple of .5'1.1‘2.2. Since 3> is
Noetherian, this process has to terminate, leading to an expression of H as a linear com-

bination of elements of 5. ¢

Having solved equation (3) for a Gr8bner basis G for the ideal generated by F, we
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want to transform this solution to a solution of
(5) fizg e+ Jz =0
Such a transformation algorithm is given in |[Buchberger 85]. We provide a correctness

proof.

Theorem 6: Let F=={]. ,...,fs} be a set of polynomials and Gm{gz,...,gm} a Grébner basis
for 1deal{ F). We think of F and  as column vectors, i.e. F:(fl,.‘.,fs]'r, Gm{gz,...,gm)T.
Let the r rows of the matrix K be a basis for the syzygies of G, and lef the matrices X
YT be such that G=X"F and F=Y"G. Then the rows of ¢} are a basis for the syzygies
of F, where

I-vTxt
Q=1 cccorrrrirnnr.
RX"
Preoof: Let bi""’bs+f be polynomials, b:(bl,...,bﬁ_r).
(b Q) F =
. !T T - T « —
{ (bl""’bs) (I3 T} ,f( )k (bs+1,...,bs+r) RX 'r) F=
(bl,...,ba}-(F- V'X'F) + (bsﬂ,...,bﬁr)‘RX'_]F s (],
F G

So every linear combination of the rows of @ is a syzygy of F.

On the other hand, let H:(h.l,...,h.g be a syzygy of F. Then H YT is a syzygy of G
Sc for some H', H- Y= H“R, and therefore H: Y"X'"=KrrRXx. Thus,
H=H{ - Y'X") + B-RX" = (HI)Q,

ie. His a linear combination of the rows of ). e

What we still need is a particular solution of {3). (3) has a solution if and onty if f
€ ideal( F) = ideal(G). 1f the reduction of fto normal form module G yields f=£0, then
{3) has no solution (compare Section 3.2). Otherwise one can extract from this reduction
polynomials hl’,...,hm’ such that

glhl’ to kg h =
So £ X" is a particular solution of (3).

LinSolvel:

input: fl""’fs’ [, polynomials,
output: a polynomial vector @ of length s and a polynomial matrix A of
dimension (s,m) for some m, such that the set of solutions of
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compute a Grdbner basis {gj,. ) for {f,,..., ) along with the transforma-

tion matrices X' and Y7 (as in Theorem 6);

let [t be a basis for the syzygies of {gi,... g ) as described in Theorems 5;

let @ be the basis for the syzygies of (fl,.. ,f) constructed from X*, YT and

R as deseribed in Theorem §;

A= Qs
[ == normal form of [ module G,
if f=£0

then return unsolvable
else {let G (’E’l,.
9pretd in the reduction of fto 0;
3 (—’T X

return (2,A})} e

@ ’m)T be the polynomials used as multiplicands of

Ezample {: Let F and G be as in example 1. We want to compute a basis for the syzy-

gies of F, i.e. a basis for the solutions of the equation
flhl + .+ f3h3 = {.

From the Grébner basis algorithm we can extract the transformation matrix

T__
X —-(Xij}i=1.,,..3} FED PO
— _ 3% 22 16 324_9_6_ 8.2, _ 64 68 16 .4
Xi,1_ 9 V% -+ a:z +35yz xyz 172 35::z+ prd z + 52y +
@_zyz-'“y (2_2_5‘5-5213-1_9_?.32-2_%3_152,
35 455 5 5 35 455 5
_ %2 .32 3 .2 32 372 32,.%2 (164 16 2., 104 16 4,2
Kio= J28 F W - [TV o[ o[ Es G Ik e yIy
i_‘_]iyz_fiir-s_ﬁix 5548
35 5 65 455
32 2.2 16 .2 32 16 .2 2 16,2 64 2 + 488
= - = B 314 Eid 2 LTt A zz
X1!3 55 V7Y F 7 + J:yz+35:ryz+ vz - T2 T +
64 3 2 642216 256332214
b4 + . 4+ 28 g0 2.t 1t
T o’ 35 7 13’
I T
L= p¥ [y
e — . 4 3 4
2,2 3% 13
9
= L.



Solution of Eguations 385

X om e iytra bl L i 202 17
3.1 7 Y gEETI R T CFTh
a

¥ =L, .1 I ¢
3.2 7zz+7zz+gz +2x +28’

2. 1. 122 23 3
X o= oLl 1,1 - £ L g,
3,3 7” 2 T TI+28I

Reduction of the polynomizals of F to 0 modulo G yields the entries for the matrix

8
z -1 -2
5
Yi=f8 . 8,8, 8.2 10, z J812 3 3456 2 64, 18
13 13 TR 957 T 55 65 5
3 §4
z 1 65I

Reducing the S-polynomials of G to 0 we get the rows 1‘21,1{2,123 of R, which form a

basis for the syzygies of G.

2 8§ 4 543 8 2 17 64 4 432 3 168 .2 _ 354 _ 8
R = .8 54 3 8 7, .64 32 .3 168 354 .8
(¢ -Gz +57 -2 v 52 mgt Tt mgt TR 0)

R :(zs—g%x4+2x3«2—lrg+z+5— ,0,~z-§ix4+4%%z3-1~§§»z2+354 -8y,

2 16 3 55 85 85 s
== 527 4 3.2 IR S S L P RN S VA
By=(0,z cT + 2 TR IR T E AR+ E A X 13:.).
Now according to theorem 6, the rows Qi""’QB of
L YXT
[
RXT
form a basis for the syzygies of F.
2 2 2 2 4 a2 2 3 3
Q1= (1/383) (32 xy z ~ 1i2x z -383x3y z+H08x y z~8y 2+88x z
T2 2 4 3 2 a 2 2 5

+#84x 2 -40x3-112x y -88x y =-84x y + 40 T 7 + 224 x

3 2
+ 88 x + 1923 zx + 7O T + 208 x + B3,
4 3 3 2 4 2 2 2 8 3
-~ 32 x z -%2 x z +32x ¥y 2z +32xX ¥ z+16x z +24x z-0H0x2
3 2 3 2 2 a 4 3

+ 112 T 37 + 112 x y + 104 x5y + 448 z + 478 x + 444 T + 28,

2 2 2 2 3 4 3 2 2 3
32 x Yy % + 112 xr4% -33x y z~18zx y z-120xy 2z + 64 x 2

2 3 4 4 2 3 2 2 13 4
- 488 * 2 - 28 z - 1ll2 2 ¥y -~ 448 x ¥ =84 x ¥ + 12 x ¥ - 258 z

1
3 2
+ 160 x - 18 x + 10 x }
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4 2 2 3 2 2 2 2 12 2 2
(22 = (1/6018) (3328 x y 2 - 22484z y t + 3328 x y z = 5838 xy z
) 4 2 3 2 2 2 4 4
. 11848 * z + 7BG24 T z - 11848 1 z + 12378 x z - 3328 x ¥ 2
3 4 a2 4 4 5 3 4z

+ 22464 T ¥ T - 3I328 % ¥y z + J¥Iex y z + 8BB4 T ¥ Z - 87362 x ¥y %

3 2 1 2 2 2 g 3
9472 x y z - 782 x y =~ 833 X7 Z 4 Afd ¥ 2 o+ BB24 X ¥ - I2838 x 2z

4 3 2 8 4 4 4
- 44384 T 2z + 06108 x 2z - 11232 x I + 4420 x z -~ 11648 x y + 78B4 x ¥

3 4 a 4 8 1 B 2 4 2
. 11648 T ¥y + 120786 T y - 8824 x y 4+ 32088 x y + 43284 x* ¥

3 2 2 2 2 8 T 6
- 28548 x vy + 10112 x y + 3140 £ y 4 20298 x =« 151424 x + 3952 %
8 4 ] 3 2
- 145808 x ~ L7300 * - 158640 x - 20370 x - 17878 x ~ B8Ya8,

7T 2 g 2 5 2 4 2 3 3 2 2
- 3398 x z 4 224684 r z -~ 86368 ¢ z + 26000 2 = - 3328 x T + 38386 x =

o2 a 2 3 2 4 2 3 3
+ 3328 ¢ ¥y z ~ 22464 T y =+ 863G T ¥ 2 - 28000 * y == + 3328 x ¥y 2z

2 2 3 7 ] 3 4
- 3638 x y 2z + 1684 x T - 11282 1 7 + 340 r ¥ — 164858 * z ~ TBOG T =

3 2 8 2 T 2 8 2
+ BBO00 x % - 9984 T =z + 10808 T z + 11848 ¥ y - 78624 x ¥ + 23208 x ¥

3 2 4 2 3 3 2 4 2
- 91000 x y + 22484 x y - 88384z y + 10818 =z y - 11482 2z ¥

9 -] 7 g 3 4
» 46502 x - 314488 x + DBD9S x - JE3856 x + 98B00 x - 371848 x

3 2
+ 489680 r -~ 67854 x + 2704 x - 2875,

8 2 2 4 2 2 3 3 2 2 2 2 4 '2
3328 T y % - 22484 x y % + 3328 x y % - 3338 x y z + 11843 x z

3 2 3 2 2 8 4 4 4
- 78624 T 2z + 116848 x 2z -~ 12378 x z - 332 x ¥y % + 22484 x ¥ Z

3 4 2 4 6 2 5 2 4 2
- 3328 x y z 43530 % y z-1884ax y z+ 11232 % y z - 13824z ¥y zZ

3 2 2 12 2 8 3
+ BZB48 x y 2z -~ 12480 x y 1z + 13280 xy % + 6638 x T -~ g8880 = 2
'

4 3 2 4 4
+ 349932 > z - 80818 r z + 88020 T z -~ 2012 x z + 3094 z - 11848 = ¥

5 4 4 4 I 4 7 4 8 2
+ 78624 x* y - 11648 x y + 12878 x y -~ 48892 x F <+ 307840 * ¥

8 3 4 2 3 2 2 2z 7 a
- 418 ¥ + 34424 x y + T200 x y + 8204 X F - 28824 © + 1898362 =

:] 4 3 3
- 130088 * + 4BBG0 x + 2798 x + 3828 x + 788 x)

- 2 2 3 3 3 2 4 3 2 2
Cga - (1/488) (418 x y =z -14%8 r z -~ 418 x ¥y z + 1248 T y 2z -8B4T ¥ 2z

4 3 2 3 4 4 2 3 3
+wae x T + 832 %X z -880zx z - l4s8 x y -T2 xT ¥y -~ 802 % ¥

2 2 2 g .} 4 3 2
+8530x ¥ ~ 140y + 2812 x + 728 x + 2486 x + 988 x 4 2784 x + 828 zx,

5 a 3 2 8§ 2 3 2 8 4
- 418 x 2z ~418x z + 418 x y z + 418 x y z + 208 x 2z + 272 x =

2 g 2 4 2 2 2 7 3
- 1288 X z + 1486 x y + 1488 x ¥y + 1332 x ¥y + 3824 x + 0188 x
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3 3 2 2 2 2 3 4 4 2
+ 83812 2 + 348 x, 418 T -y z + 48§ x z -4186x y =z - 208 x ¥y 3

2 2 4 3 4 4 % 2
~ 1520 x ¥ 2+ 832 x 2z - 6344 T z - 224 x z - 1458 x y - 8824 x ¥

4 2 3 2 2 8 4 3 2
- 832 x y + 188 x y - 140 xy - I32\ x + 2W0B0 X - 12 T - 410 x - 3%

4 3 4 2 2 3 2 3 2 3 12 2
Q?4 = {1/485) (~418 y z + 288 x ¥ z -~ 1728 x y 2z + 288 x y z + 1184 Xy 1z

5 2 4 2 3 3 2 2 8 4 4
- 8588 x z + G048 x 2z -~ 888X 3 + 0623 x z + 418y z -~ 238 x ¥ =

3 4 2 4 4 & 2 4 3
+ 1728 x y z -286x ¥ -G xy 2z + 788 x y z - B8lB4x ¥ z

3 3 a2 2 2 2 a8 8
#7888 x y z - 1844 x ¥ T -~ B0 XYy ZzZ +T44 F Z + 448 2 2 - 2812 x 2

4 3 3 8 ]
- 0882 x 2+ 3708 x =z - 1CB8 X 2 4+ 1088 x 3 + 1486 x 3y - 898 x ¥

4, 4 3 4 1 4 4 + 6 2
+ 8048 x ¥y - 898 x y + 1880 x y + 832 x 7 - TH Y - 448z ¥y

|- 2 4 2 3 a3 2 2 2 2
+ 2312 2 y + 418 x y -2924 x y - 18680 x ¥ + 722y -~ 3138 ¥

a T g8 8 4 3 3
+ 1793 x - 11848 ¥ + 304 z -~ 11216 x - 1252 x - 12338 x - 1010 x

3 2 2 2 3 T o2 8 3 5 2
« 1120 x, 416 x ¥ 2 +4l6xy z -2586x 2z + 1728 x z - 613 x =

4 3 3 2 2 2 3 4 % T 2
+2000x =z ~-286x z + 273 x z -418x y z -418xy z + 256 ¥y z

8 13 8

2 4 32 3
~ 1728 x y z+ 812X ¥ 2 ~2208x ¥y z+ 258 x

2 2 2

Yy 2 -4803% ¥y %
3 8 7 8 9 4

+ 1382y z + 128 x z -~ 8684% %+ 28z z~1000x z-704x 2

3 2 4 4 3 4 4
+ 5820 x % - 832 x z 4+ 1024 x %~ 1488 x y - 1488 x y - 13823 ¥y

& 2 T a a a s 2 4 3 3 2
+8968x y -8048 Xx.y + 1993 T ¥y - 12824 x y + 1738 x ¥y - 12832 x ¥

2 3 2 ? -] T a 8
+ 832 x ¥y - 6432 xy + 3BB4 2 - 24152 % + 7302 x - 20613 x + 78B4 X

4 3 2
-~ 28838 x + 4000 x - 4390 x + 224 ¥,

4 2 3 2 2 4 2 2 3 a2 2 2 32 2
~4l18 xy z +288x y z.~172B = ¥y 2 + 238 2 y % - AvAx y %

2 2 4 2 3 2 2 2 2 a8
- 14568 y =z + 898 T T - B048 ¥ z + A8 x z - B9 Xz z + 418 X ¥ T

3 4 L | 3 4 2 4 4
~ 288 x y =z + 1728 y % - 256 x ¥y z + 480*xT ¥ 3z + 488 y =z

a4 2 5 2 4 2 T 2 2 2
-~ 128 x y z+8B84x ¥y z -1024 % ¥y z +8Bl84 X ¥y 7z - 1728 x ¥ 2z

2 8 8 4 3 2
T8 x ¥ T + 812 x ¢ - TIB0 x 2z + 28864 x T - 44480 ¥ 7 + 4148 T 2

+

2 8 8 4 1 4 4 4 3 4
- 490 2 + 1488 1 y - 8868 x y + 0048 X y - 888 ¢ y - GYI8 x ¥

2 4 4 T a2 6 I 8 2 4 3
+832 2 y -3¢ xy - 3084 x y > 23080 x y - 32 x y + 2048 x b4

I 2 2 2 2 2 T 8 a
+ 3744 x ¥y - 10688 x y - 224 Ty + 400 7 -~ 2048 = + 12104 x -~ L0885 x

4 3 2
+ 2672 x 4+ 3032 x - 1888 x + 2089 x - 7H4)
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g a2 2 4 4 2 3 2 3 2 2 2
Qgs == (1/7280) (- 8688 2 y 2 + 44028 % ¥y z ~- 13312z ¥y 2 + @Y X y 2

2 2 a 3 8 2 4 2 3 2
- 8838 =y =z s 23298 ¥ z -~ {87248 x 2z + 44B02 x 7T - JIOSTA 2

2 2 G 4 4 4 3 4 2 4
+ 23208 x z + BBIB X y 3z - 44928 x y Z + 13J12 X ¥y 2z - BT38 x ¥y 2

4 4 8 2 8 2 4 2
+ 66828 xy 2z + 1040y z - 19988 x y z + 134784 X Yy 2z - 38912 x vy z

3 2 z2 2 2 2 7
#19288 2y z - 17280 % y z - 5144 x ¥y z + 16884 ¥y z - 11848 x 3

a8 8 4 3 2
« 63312 x z + TTIR0 x =z - 82818 X z + 24704 x 2z -~ 286812 x =z + 8320 2 2

a6 4 5 4 4 4 3 4 2 4
+ 23208 = y - 187248 x y + 40893 x y - 30878 x y + 253208 x ¥

4 T 3 4 2 8 2 4 2
5640 xy + 11848 x y - 68313 x y =~ T4B8C T ¥ + 67408 x ¥

+

3 2 a2 3 ] 3 @ 8
- 20224 x y + 10032 2 ¥ - 4000z 7y =~ 18680 3y - 48583 x <+ 302848 x
T 8 B 4 3 3
~- 54498 x + 2016168 x - 49018 x + 252528 * ~ 41208 x + 14224 x ~ 31738 X

8 2 T 3 6 2 5 2 4 3
- 1081€, 86568 x 2 - 44028 2z 2z 4+ 15968 x =z - BI8B4 T E + 19888 x =
3 3 a 2 4 2 7 2 8 2
-~ 8738 x = + 86888 r 2z - 86868 X ¥ 2 + 44928 x yF % - lEg8d =z ¥y =z
B 2 4 3 3 3 a 2 2
+ 836884 x Yy 2z - 19088 x y z + 7608 x y z - 686888 x y z - 1040 2y %

g 4 7 8 & 4
- 3328 x z + 22464 x 2 - 11008 x 2 + 3344 x 2z + THI8 x z - IB323I2 x 2

3 2 9 2 8 2
+ 35884 x zZ - 28888 % z + 19988 x z - 2328 x F o+ 187248 x ¥
v o2 5 3 8 2 4 2 3 2
~ 89688 x y + 187824 x y -~ 91820 x ¥y + 172982 x ¥y -~ 66880 x ¥
2 2 2 2 10 9 8
+ 24752 x y - 21832 zy - 3880y - 93184 x + 828002 x -~ 2885878 x
T 8 8 % 3 2
+ TS0808 = -~ 385792 x  + TB3884 3 - 201820 T o+ 143888 -~ 103328 x

g 21 3 4 3 2 4 2 2
+ 4538 = - 5408, -~ 6808 x ¥y =z + 44828 x y z - 13312 x Yy =

3 2 2 2 2 2 5 2 4 3 § 2
+ 8738 x y 2z -~ 668858 x ¥y 2z - 23208 x z + 1BY248 z 2z - 46392 x 2

3 2 2 8 4 3 4 4 4
+ 30878 x 2z - 23288 x z + B6B8 x y =2 ~ 44928 x Yy =z + 13312 x ¥y =z

3 4 2 4 4 T 2 a 2
- 8738 2 y z + 8B08 T y -7 + 040 xy z + 3328 x ¥ z - 22484 x Yy =

6 2 4 2 3 2 2 2
+ 30978 x y =z - 188028 x y z + B2608 x y =z + J20B0 X ¥y =z

2 ) 7 g 8
+ 249680 x y 3 + 3640 y z - 13312 x =z + 191380 x z - T11TYB x =z

4 3 2 T 4
+ 224084 x 2z - 170728 * z + 110912 x* =z - B284 x z + 8B24 z + 23298 x ¥

8 4 s 4 4 4 3 4 2 4
- 187248 T y + 46892 x y - 30878 ¥ y .+ 23298 x y « 3840 x ¥

a 2 7T 2 a 2 g 2 4 2
« B3184 x y ~ 6185680 x y + 94016 x y -~ TEB32 x ¥y + 729680 = ¥

3 2 2 2 2 a T 8
+ 18028 ¢ ¥y + 1824 x ¥y - 980 x y + 03248 x -~ 192704 x + 333184 x

] 4 3 3
-~ 143713 x + 68024 x - 23968 z ~ B0B3 T + 8780 x + 1288)
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4 4 2 3 3 2 2 3
QSZ (1/1458) (208 ¥ % -~ 128 x y z + 684 % ¥ 2z - 128 x ¥ z - B82 xy 2z

8 4 3 a3 % 3 2
+ 428 x zZ - 3024 x z + 448 x z - 478 X Z + TRB X Y + 448 x ¥

2 2 3 3 B 4 3 2
- 2860 x y + B84 xy -~ 372y -~ 2WBx + 432 x - 1700 x -~ 1024 x

3 2 2 k¢ 4] B
- B34 %, -R08x y z-208xy z+ 128 3 z -884x%x 2z + 28 x 2

4 3 2 4 2 2 2 2 8
- 1000z z+ 128 x 2 - 138 x 2 -720x vy -7 x y - 678y - 448 x

] % 3 2
+ 112 x - 480 x - 2788 x - 32 x - 612 =x,

+ 5 2 4 2 3 2 2 2z 2
W8 xy z-12862 y z+884x y 2-128x y z+ 138 x ¥ zZ + 728y =

4 3 2 2 4 4 2
-~ 448 x z 4+ I024 x 3z « 443 T % + AV8 X z + VEB x Yy + 448 x ¥

3 23 2 2 2 8 8 4 5
~llax y +804x y -180xy - 288 x + 3486 x* ~ 11020 x + 3868 z

3
~ 2828 x + 1568 x + 246}

Let us now deal with the general case where we have £ linear inhomogeneous equa-
tions. The idea is to solve the first equation and substitute the solution into the second
eguation. So the number of equations has been reduced by one. Iterating this process,
the problem of solving a system of equations can be reduced to the problem of solving a
single equation.

Theorem 7 Let fll'“" o o ey f1"“’ft be polynomials. Let Eﬂ{El,...,Tzs)T be a

polynomial vector and

fy o fm

a ... 4a
1s ms

a polynomial matrix such that every solution z::[zl,...,z VT of

Lo oo Ty # A
*) . -
fii1 furs Z, fuy
is of the form
z=F 4+ Afc e )
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for some polynomials Chumemil
Let E:(bl,...,b )T be a polynomial vector and

m
bi'l e bml

bl‘s bms
a polynomial matrix such that every solution zz[zi,...,zm)T of
EEd 0 —

where g, == Ej-xolf ca.., 7=1,..,m and g = f, - 33’=01f¢;3,-: is of the form

4oy’
p= b+ B(d,..,d)"
for some polynomials dz""’dk‘

Then every solution of
: fu o A 1 /y
{***) ) " :

f

fﬂ Ca ft z f:
is of the form
te= (G + AD) + (ABy(epne)’

for some polynomials e ,...,e

LA
Proof: Let z be of the form 2 = {3 + Ab) + {A'B)'(el,...,ek)T for some polynomials
€€y Then z = @ + A{b + B'(el,...,ek)T), 30 zis of the form @ + A'(cl,...,cm)T, and
therefore z solves the first &1 equations i (

(Fygrefydz = Uyoedy ) (@ AD) + (AB){epre)T) =
poresfd @+ (Fgf, ) A0 + Be)e)’) =

fi-9+ (gl,...,gm)‘ (6 + B'(el,...,ek)f) =

fi-a+g9=1;

So z also solves the t-th equation in (

**x)

***}'

On the other hand, let z be a solution of (***). Then z is a solution of (*), and
therefore it is of the form
z=1a -+ A-(cl,...,cm}T, for some polynomials Cyrern€

zis also a solution of the i-th equation im (***), so

(fyrml @+ {fu’"'!f“)'A'(Cl,u-,cm)T =]
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4G1
and therefore
T
(g Jle e ) =1, - g
So [cl,...,cm)T is a solution of (*¥), i.e.
(cl,...,cm)T = b+ B-(d’l ..... dk)T, for some polynomizls di""’dk'
Thus,
ze= a4 A(b+ Bld,,d)") = (@ + AD) + (AB)(d,,..d)". °
Based on Theotem 7 one gets the following recursive algorithm for solving (P3}:
LinSolve:
input: fll""’ o il"”’fts’ f e/, poivnomials,
output: a polynomial vector E:(E{,...,ES)T, and 2 polynomial matrix of
dimension (s,m) for some m, such that the set of solutions of
(P3)is {@ + A'{cl,...,cm)T f¢ne, polynomials }
or unsolvable.
if t=0
then return ({0,...,0), T )
else { (2'4) = LinSolve(fH,...,ls, ’fbll""’ff-ls’ 1o H) (if the
resutt is unsolvable then return unsolvable);
m ;== number of columns of 4’;
(g]v'gm) = (fﬂ’":.ffs}-A’;
g:= fi- Uy )@
(6,B) := LinSoIvel(gl,...,gm, g) (if the result is unsolvable then re-
turn unsolvable);
return ( @+Ab, A™B) } .
FErample 5: We want to find the solutions of the system
z
1
(6) (fn f1g fis) s - (’r]
fll fl? f13 z f?
3
where zx:c~z2f~'—=x:c-zx f:a::c-x2
11 17372 12 174 7278 13 274 73
— 2 — - - -
Sy =%y 2y Ty Jog=8 Ty EyTy Sy 0Ty 3 2
. 3 2.9
i =2mmy 4 mz -z A
— 4 2 3.2 2.2 2 2_2 2_12 2 5
f2 ——‘2.11.7:~1 - 212 z,” - QIIzg " - 211 T, 1"+ LI, + oz, 7, - 3T, 212 Z <+

= 4 :
5z,1,°2 -2z "z "z -nga:

3 17273 3
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The power products are ordered lexicograpbically, with T, 3> T, 32 o1 > .

(f“,fm,flg) are already a Grbbner basis. Reducing the S-pelynomials of this basis to
0, we get a basis [or the solutions of the homogenous equation associated with the first

equation in (8) as the columns of the matrix A"

Ty Ty ®y Iy
AT == -1, 20 zy
g Ty "Iy -

The reduction of f, to normal form modulo this basis yields 0, and we get the particular
solution 5’2(132, 2, 0)7 of the first equation in (6).

Substitution of the general solution of the first equation into the second equation of
(6) leads to

(T} 9,2 + 9% + 037 = 0,
where

i

2 2

gy == LyTaT, - T T, + 7,7z, - 2x1z2:c4 + 7"
2 2 2 3

gz = -.1;11:3 x4 + ..':2 5334 -+ 1:1 $324 + :c2

2 2
gy = "1 LTy L T,T, T 2z2 Tyt LT
2.3 2 3 2
1% % 3 T 255 %

A Grébner basis for ideal(gl,ga,gB} is (91’ Tyr Gy gs), where

_ 2. 2. 1.3 1 23 3, .9, _1_ 2
gy = 7T, T, T Ty T, Ezl T + 51i12x3 Ty Tq + 55\:122 Z, 2:vsl Z)%q

_ 3 3.2 3 12 2 2 4 3. .22
G = Ty TyT," - 2z, 2" + 2z, 7,7, - 2:cjL ZyT," - 2:52 T + 5::1.7:2 z 2z, "2, "z,

Compare Example 3. The transformation matrices between the basis (91s92’93) and the

2 2 2
Ty - 23:12:2 T, T, T + 22,7,

2Ty
2 2 2 5 ” 4 2.3
-Qxix:t -2z2x3+a:1:x2:-2$1x

and g = z -2:':2‘4:1: g Ty 1% % )

g -

Grébrer basis (gl,g3,g4s§5) are

1 0 0
i 090 0
0 0 i
X7 = Yl |2z 2z, 0 0
1 1 1 2 3
251 0 5% T 5%
2 , ) 0 10 O
T T Tm T 0 ZoTq" Ty z,+1, —Qzng

The syzygies of [91’93’94’95} are the rows Rl,...,Rﬁ of the matrix K, where

R = [-3:1 » Z-z, , 2, 0),
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. 1.2 1
= (Ila: FLIRNEE A S r§),

2 27271 073
2 2 2 2 3 il 2
= in - - -9 -1 - - T -7 -
R3 {:r']z3 212 Ty =T Ty Ty +2z1x2 A A A A 4;5 T, 21 1 Ty T, I,
:':1],
42 232 1
Hd e {1:1 ) By 5T s Bom1, -3 ,-5),
- 2 2
5 = (& fz, T, xlxgxg , :1:,,:53 L0, 3:4},
WEM ) 3 _22-5“;3_3 32,2 5 3,
g = (Ii Tq 2x2 z, 31‘1 r21'3 + z, g, Iz, -s?zl Ty 37 Ty 75 1 ;5T T 2x, ",
1 4 3 3 2 3 2 2 2
0wy 4T ’"zv%“%zs STy Ty g, YoEy2e)).
Collecting the linearly independent columns of
I - }J’TXT T
B
RX"
as the columns 51,52 of the matzix B, we get
By = oy, 1, -z
. 2
BZ"‘ 1231 +r 2z, 4z :: —2::: z +E, T8, o, “TyT, T, T T, LT, +2$1z23:4
Ty 3

Collecting the linearly independent columns of A5 as the columns of the matrix A, the

columns of A form a basis for the solutions of the homogeneous system associated with

(6}. «xxxz-i-zrzz-i-rz +Jzzgz zgx-zzxx o e i ~€~3:r2
17374 17274 i 273 74 1 374 7273 4 1727374 273
— 2 2 2 3 2 2 2
A == xlxs T, T, 1334 —a:l 131:4 xg 24 +‘2zlxz r4 +32 3:3 113:29:3
2 2 2 2
-y T, +2$1.2:2 7, -2, 1T, +zir2:c3 2: '7"3 +x1$2 Z,

Reducmg g to 0 modulo the Grébner basis (g1 199040 95) we get the particular solution
= (0,0,0,z ) of the equation
912 F Oy TGyt 057 =40
So a particular solution of (7) is
2 2
Tz, ~T.7,° -5 °%
- - 17273 "172 172
b= (0"X") = 0
2 3
Ty Ty T TyLy FI, «2;:1::2
Thus, a particular solution of (8) is

2

2 2 2 2 2 3 2
_ LT T T, :clz2 Ty -2," 2,2, -2, Zy +Iix213 +13 2, T, +2£I$2 Z
a=a'+A"b= 3 2

sz3 -H: z, —H: 2yt +:c —21':12:2 +2

2 '3 2 2
2,72y, 2:'::5 +:c z,
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3.4, Membership in the radical of an ideal

The radical of an ideal I, rad(f}, consisis of all polynomials f such that e Ifor
some m>1. For a polynomial ideal I, the radical of I has a geometric meaging. If
fl,...,fs generate an ideal I, then [ € rad(J) iff f vanishes on the algebraic curve deseribed
by I. The set of points in K" on which ail the polynomials of the ideal [ vanish is called
the varrely of L

Theorem & Let f,.‘.,,fs, § be polynomials, f & raed{/ ,...,fs) if and only if f vanishes on
the variety of :'deal'{fl,‘..,fs).

Procf: By Hilbert's Nullstellensatz [Lang 84|, if f vanishes on the variety of :'deaf(fl,...,fo)
= I then f € rad({l).

On the other hand assume that f € rad(f). So there is an m>1 such that ™ € L
So for every T € K" in the variety of J we have 0 = f7(F) = (f(£))", and therefore f{Z)

=0. °

In order to test whether a polynomial f vanishes on the variety of an ideal I, we can

adapt Rabinowitsch’s method of proving Hilbert’s Nullsteliensatz.

Theorem & Let f ,...,,fs, { be pelyaomials, f vanishes on the variety of ideal(jl,...,fa) == I
if and only if 1 € z'deai(fi,...,f‘,f'z-l}, where z is a new variable.

Proof: f vanishes on the variety of I if and oaly if the system of equations
flﬂo, e sf‘,!:Oy fml
has no solution in K""!. This is the case if and only if :'deal[fl,...,fa,f‘z-l) is the unit

idea! [van der Waerden 67}, l.e. [ contains 1. ®

This geometric interpretation of the radical of an ideal I can be employed for au-
tomatizing the solution of a class of geometric problems. In the sequel we present a sim-
ple example. For further details the reader is referred to {Chou 84], [Wu 84],

[ICutzler/Stifter 86], and {Kapur 86].
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Ezample 6: We want to prove the geometric theorem that for every triangle ABC the
lines which are orthogonal to the sides of the triangie and pass through the midpoints of

the associated sides have a common point of intersection.

v 4 ¢ (b,c)
~ . f
20 T -l 1 ‘¢
~ ’
-..\\ : P
-.\\4’/
/!“‘-..
7/ -
s |
. i |
i ! -
a | 0,0 P E B (a,0) x

Before we can express this theorem algebraically, we have to place the trizngle in a two
dimensional coordinate system. Without loss of generality we can assume that A is
placed at the origin and that the side AB is parallel to the z-axis. Now a point {Z,7) lies
on the line that is perpendicular to AB and passes through the midpoint of AB if and
only if the polynemiai
fl(x,y} = r- %a

vanishes on (Z.%). A point {%,y) lies on the line that is perpendicular to AC and passes
through the midpoint of AC if and only if the polynomial

fyf=9) = Wz3h) + elv-ze)
vanishes on (Z,9). (%) lies on the line that is perpendicular to BC and passes through
the midpoint of BC if and only if the polynomial

foy) = [aub){r-li(w%b}) + c(y—%c)

vanishes on (z,7). So in order to prove the theorem, we have io prove that f vanishes
on the variety of t'deal(fl,f2), or in other words that f € rad(fl,fg). Computation of a
Grdbner basis for tdeallf .f,.f #1) yields the basis (1). So [ vanishes indeed on the

variety of {deai[fl ’fz)’ and therefore the theorem holds. e
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