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‡ Institut für Mathematik and RISC-LINZ, Johannes Kepler Universität, A-4040 Linz, Austria

(Received 18 December 2008)

In this paper we investigate the problem of determining rational parametrizations of
plane algebraic curves over an algebraic extension of least degree over the field of defini-
tion. This problem reduces to the problem of finding simple points with coordinates in
the field of definition on algebraic curves of genus 0. Consequently we are also able to
decide parametrizability over the reals. We generalize a classical theorem of Hilbert and
Hurwitz about birational transformations. An efficient algorithm for computing such
optimal parametrizations is presented.

1. Introduction

In ? we have described a symbolic algorithm for computing a rational parametrization
ϕ(t), χ(t), ψ(t) of a plane algebraic curve C of genus 0. Exactly these plane algebraic
curves have a rational parametrization. So we call a curve of genus 0 a rational curve.

If the irreducible projective curve C is defined as the set of solutions in the projective
plane IP2(K) of the homogeneous polynomial equation

F (x1, x2, x3) = 0

over the field of characteristic zero IK, i.e. F ∈ IK[x1, x2, x3] and K is the algebraic closure
of IK, then ϕ(t), χ(t), ψ(t) ∈ K(t), the field of rational functions over K, constitute a
rational parametrization of C iff, except for finitely many exceptions, every evaluation
(ϕ(t0) : χ(t0) : ψ(t0)) at t0 ∈ K is a point on C, and conversely almost every point on C is
the result of evaluating the parametrization at some element of K. The parametrization
problem for algebraic curves consists in first deciding whether the given curve C has such
a rational parametrization, and if so finding one.

If C has a rational parametrization, then in fact it has lots of them. So the issue is
to keep the degrees in the parametrization small and also to keep the coefficients in the
parametrization simple. The algorithms given by ?, ?, ? compute parametrizations with
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optimal degrees. In this paper we concentrate on the coefficients in such a parametriza-
tion. In fact, we show how to compute in an efficient way a parametrization with optimal
coefficients, i.e. coefficients in the field of definition IK or at most in a quadratic algebraic
extension of IK. The basic ideas and results in this paper have been available since 1993
(see the technical reports ?, 1993, and ?, 1994). Similar results can be achieved using the
algebraic approach in ?.

Let us demonstrate this problem by an example. Consider the curve C defined by the
homogeneous polynomial

F (x1, x2, x3) = x5
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in the projective plane over C. This curve is reconsidered as F9 in Section 4. C has
singularities at P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1), P4 = (1 : 1 : 1), where
P1, P2, P3 are 5-fold points and P4 is a 4-fold point. So the genus of C is 0, i.e. C has a
rational parametrization.

The problem of determining a parametrization with optimal coefficients, i.e. coefficients
expressible in a least degree algebraic extension of 0Q, reduces to finding a few simple
points of C with coordinates in a least degree extension of the ground field 0Q. So we have
to try to solve over IP2( 0Q) the diophantine equation

F (x1, x2, x3) = 0.

Indeed this equation has solutions in IP2( 0Q), e.g. (− 239
149 : − 239

731 : 1). Using this rational
point on C, we can get the following optimal parametrization of C:

ϕ(t) = 400t2−712t3+350t4+80t−32−83t5

−306t4−944t2+1048t3+272t+185t5−32

χ(t) = −400t2+712t3−350t4−80t+32+83t5

−946t4+2248t3+1360t−2832t2+217t5−160

ψ(t) = 1.

In this particular example it is not difficult to get a point on C with rational coordi-
nates, since the line through P1 and P4 must intersect C in a simple point with rational
coordinates. However, in general the situation will be less favourable.

2. Solving Diophantine Equations of Genus Zero.

Since the adjoint curves to a rational plane curve can be computed in a finite number of
ground field operations (see e.g. ?, 1991), the problem of parametrizing over an optimal
field extension of the ground field is reduced to the problem of determining rational
simple points on the curve, or equivalently to diophantine equations of genus zero.

The problem of solving diophantine equations of genus zero can be stated as follows: let
IK be a computable field of characteristic zero, then one wants to determine the nonzero
rational solutions (solutions over IK) of

F (x1, x2, x3) = 0

where F ∈ IK[x1, x2, x3] is an irreducible homogeneous polynomial of degree d, and the
plane curve defined by F is rational.
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In 1890, Hilbert and Hurwitz introduced a method for dealing with this problem. Ba-
sically, their main result states that there exist adjoint curves Φ1,Φ2,Φ3 ∈ IK[x1, x2, x3]
of degree d − 2 to F such that the rational transformation {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}
is birational, and the transformed curve of F is of degree d− 2. Furthermore, those ad-
joint curves not providing birational transformations satisfy certain algebraic conditions.
Thus, the method consists in applying a birational transformation, defined by adjoint
curves to F of degree d − 2, to map F onto a curve G of degree d − 2. Then, since the
transformation is birational, almost every rational point on C corresponds to a rational
point on the curve defined by G and viceversa. Hence, the original problem is reduced
to a diophantine equation of genus zero and degree d− 2. This process is continued until
one arrives at a curve of degree three or two, depending on whether the degree of the
original curve is odd or even, respectively. For rational cubics the problem is trivial, and
for conics over many interesting fields there are complete decision procedures. Once the
rational points on the birationally equivalent cubic or conic have been determined, one
can express all the rational points on C by inverting the birational map.

The main difficulty of this approach is that, in general, O(d) birational transformations
are required in order to reach a cubic, or a conic. This renders the method all but
impossible in practical applications to curves whose degree is not extremely small.

In this section we generalize the result of Hilbert and Hurwitz to linear subsystems
of adjoint curves. As a consequence, by controlling the dimension of a system of adjoint
curves one can solve the problem without executing any birational transformation (if the
degree of the equation is odd) or applying one birational transfomation (if the degree of
the equation is even). Moreover, in the next section it is shown how to use interpolation
to execute the birational transformation. More precisely, Hilbert-Hurwitz’s result can be
generalized as follows:

Theorem 2.1. Let C be a rational plane curve of degree d, Ha the linear system of
adjoint curves to C of degree a ∈ {d, d − 1, d − 2}, and H̃s

a a linear subsystem of Ha of
dimension s with all its base points on C. Then we have the following:

(i) If Φ1,Φ2,Φ3 ∈ H̃s
a are such that the common intersections of the three curves Φi

and C are the set of base points of H̃s
a, and such that

T = {y1 : y2 : y3 = Φ1 : Φ2 : Φ3}

is a birational transformation, then the birationally equivalent curve to C, obtained
by T , is irreducible of degree s.

(ii) Those values of the parameters for which the rational transformation T is not bi-
rational satisfy some algebraic conditions.

Proof. (i) Let D be the birationally equivalent curve to C. T determines a one-to-one
relation between the points of C and D, except for finitely many points on these curves.
We call these points the exception points. Since T is a birational transformation, D is
an irreducible rational curve; and therefore, one just has to prove that the degree of D
is s. Let n = deg(D) and let b ∈ IK such that Φ1 − bΦ3 intersects C at the base points
with minimal multiplity. We take a line L = {(b : t : 1)}t∈K (K the algebraic closure of
IK) intersecting D in n different simple points {(b : λi : 1)}i=1,...,n and such that none of
them is an exception point on D. Now, applying the inverse of T we obtain n different
points {P1, . . . , Pn} on C and on the curve M defined by M = Φ1 − bΦ3, that are not
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base points of H̃s
a. Hence, since the number of free intersections of C and M is at most

s, it follows that n ≤ s. On the other hand, let us assume that n < s. Then, we take an
additional common point Pn+1 of C and M, not being a base point of H̃s

a or an exception
point for T (note that this is always possible since the common intersection points of the
three curves Φi and C are the set of base points of H̃s

a, and since M and C intersect at the
base points with minimal multiplicity). If we now apply the birational transformation T
to {P1, . . . , Pn+1}, we obtain the (n+ 1) different simple points on D:

{ (b : λi : 1)}i=1,...,n ∪ {(b : µ : 1)} for some µ ∈ K

Therefore L cuts D in (n+ 1) points, which is impossible. Hence n = s.
(ii) We consider three elements Φi(x1, x2, x3,Λi) ∈ H̃s

a, i = 1, 2, 3, depending on three
different evaluations Λ1,Λ2,Λ3 of the undetermined parameters in the family H̃s

a. Let G
be the defining polynomial of the transformed curve of C under the rational transforma-
tion

y1 : y2 : y3 = Φ1(x1, x2, x3,Λ1) : Φ2(x1, x2, x3,Λ2) : Φ3(x1, x2, x3,Λ3).

Then, we first show that G ∈ IK[Λ1,Λ2,Λ3][y1, y2, y3], with some exceptions that cor-
respond to some values of the parameters that satisfy certain algebraic conditions A1.
Indeed, G can be interpolated by sending, with the rational transformation, points on
C to points on G; this can be done for all values of the parameters that do not make
the determinant of the corresponding interpolating linear system vanish. This determi-
nant belongs to IK[Λ1,Λ2,Λ3]. In addition, because of technical reasons, we also include
in A1 those algebraic conditions on the parameters that decrease the formal degree of
G. Furthermore, we observe that those values of the parameters that transform C into
a reducible curve G include values of the parameters that do not generate a birational
transformation; and therefore it is enough to look for algebraic conditions on these values
of the parameters.

Let (p1(t), p2(t), p3(t)) be a proper rational parametrization of C. Then y1 = q1(t,Λ1) = Φ1(p1, p2, p3,Λ1)
y2 = q2(t,Λ2) = Φ2(p1, p2, p3,Λ2)
y3 = q3(t,Λ3) = Φ3(p1, p2, p3,Λ3)

is a parametrization of some component of the curve G. In fact, one can assume that the
parametrization is proper, since the algorithm given by ? for reparametrizing can always
be applied, with the exceptions of those values of the parameters that satisfy certain
algebraic conditions A2 corresponding to some determinants.

Now, we want to formally implicitize the parametrization (q1, q2, q3). We take A3 as
the set of the leading coefficients w.r.t. t in q1, q2, q3. Then, since the parametrization
is proper, for all the values of the parameters that do not satisfy conditions A2 ∪ A3,
the implicitized curve M(y1, y2, y3) is – also under evaluations – the resultant w.r.t. t of
q3y1 − q1y3 and q3y2 − q2y3.

On the other hand, M is a factor of G. Hence, for all the values of the parameters that
do not statisfy conditions A1 ∪ A2 ∪ A3, it holds that G is reducible if and only if the
degree of the formal curve M is smaller than the degree of the formal curve G. Thus,
if A4 contains the algebraic conditions on the parameters that force M to decrease its
degree, we may conclude that those values of the parameters that do not satisfy conditions⋃4

i=1Ai generate irreducible transform curves, and thus birational tranformations. 2
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Remark 2.1. Note that statement (ii) in Theorem ?? guarantees that birational trans-
formations in statement (i) can always be obtained.

In order to apply efficiently the previous theorem to the diophantine problem one needs
to compute, using only ground field operations, linear systems of low dimension. For this
purpose, we introduce the notion of families of conjugate simple points and the concept
of rational linear subsystems.

Definition 2.1. Let F ∈ IK[x1, x2, x3] be a homogeneous polynomial defining a rational
projective curve C over the algebraic closure K of IK, and p1, p2, p3,m ∈ IK[t]. The set
of projective points F = {(p1(α) : p2(α) : p3(α)) / m(α) = 0} ⊂ IP2(K) is a family of s
conjugate simple points on C over IK if the following conditions are satisfied:

(1) m is squarefree and deg(m) = s,
(2) deg(pi) < deg(m) for i = 1, 2, 3, and gcd(p1, p2, p3) = 1,
(3) F contains exactly s different points of IP2(K),
(4) F (p1(t), p2(t), p3(t)) = 0 mod m(t),
(5) there exists i ∈ {1, 2, 3} such that ∂ F

∂ xi
(p1(t), p2(t), p3(t)) mod m(t) 6= 0. 2

We denote such a family by { (p1(t) : p2(t) : p3(t)) }m(t), and we refer to it as a family of
conjugate simple points. Analogously, one can introduce the notion of family of conjugate
singular points. For the symbolic manipulation of these families see ?.

Definition 2.2. Let C be a plane curve, H a linear system of curves in which all the
elements are of the same degree, H̃ the defining polynomial of a linear subsystem H̃ of
H, and let S̃ be the set of base points of H̃ that are not base points of H . Then, we say
that H̃ is a rational subsystem of H if the following conditions are satified:

(1) H̃ is defined over IK.
(2) For almost every curve Φ ∈ H, and Φ̃ ∈ H̃ it holds that

dim(H)− dim(H̃) =
∑
P∈S̃

(multP (Φ̃, C)−multP (Φ, C)),

where multP (C1, C2) denotes the multiplicity of intersection of the curves C1, C2 at the
point P . 2

Essentially, this notion requires that when a point or a family of points on C are used
to generate a subsystem H̃ of H (by introducing some points on C as new base points on
H with specific multiplicities) the linear system of equations containing the contraints is
over IK, and its rank equals the number of new known intersection points between C and
a generic representative of the subsystem. In the next proposition some special cases of
rational linear subsystems are analyzed.

Proposition 2.1. Let C be a rational plane curve of degree d, Ha the linear system of
adjoint curves to C of degree a ∈ {d, d− 1, d− 2}, and F = {(p1(t) : p2(t) : p3(t))}A(t) a
family of k conjugate points on C over IK . Then we have the following:
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(i) If F is a family of simple points, k ≤ dim(Ha), and H̃a is the subsystem of Ha

obtained by forcing every point in F to be a simple base point of H̃a, then H̃a is
rational, and dim(H̃a) = dim(Ha)− k.

(ii) If F is a family of r-fold points, r · k ≤ dim(Ha), and H̃a is the subsystem of Ha

obtained by forcing every point in F to be a base point of H̃a of multiplicity r, then
H̃a is rational, and dim(H̃a) = dim(Ha)− r · k.

Proof. Let Ha and H̃a be the defining polynomials of Ha and H̃a, respectively.
(i) First, we observe that the rank of the system of equations given by the condition
Ha(p1, p2, p3) = 0 mod A(t) is k: let us assume that the rank is k − ε, with ε > 0.
Then, dim(H̃a) = dim(Ha)− k+ ε > 0. Thus, one may take a new simple point P on C,
and force H̃a to have P as simple base point (this can always be achived since H̃a(P ) is
identically zero for finitely many simple points P on C; otherwise it would imply that H̃a

and C have a common component, which is impossible according to the irreducibility of
C if a ∈ {d− 1, d− 2} and to the construction of the Ha if a = d (see ?, 1991). Repeating
this process dim(Ha) − k + ε times one obtains a curve in Ha such that its number of
intersections with C is at least (d − 1) (d − 2) + dim(Ha) + ε = a d + ε > a d, which is
impossible according to Bezout’s Theorem.

Thus, H̃a is defined over IK and dim(H̃a) = dim(Ha) − k. Furthermore, since k new
additional simple base points have been introduced, for every P ∈ F it follows that
multP (Φ̃, C) = multP (Φ, C) + 1, for almost all Φ̃ ∈ H̃a,Φ ∈ Ha.
(ii) H̃a is obtained solving the system of equations given by the conditions

∂Ha

∂xi∂yj (p1, p2, p3) = 0 mod A(t) for i+ j = r − 1

(note that the points in F are already base points of Ha of multiplicity r− 1). Since the
equations are over IK, and the rank of the system is r · k (this can be proved as above),
it follows that dim(H̃a) = dim(Ha)− kr, and that H̃a is defined over IK. Moreover, for
every P ∈ F , and for almost all Φ ∈ Ha, Φ̃ ∈ H̃a one has that multP (Φ, C) = (r − 1)r
and multP (Φ̃, C) = r2. 2

The next theorem shows how adjoint curves can be applied to compute families of
conjugate points.

Theorem 2.2. Let C be a rational plane curve of degree d, and Ha the linear system of
adjoint curves to C of degree a ∈ {d, d− 1, d− 2}. Then every rational linear subsystem
of Ha of dimension s with all its base points on C provides curves that generate families
of s conjugate simple points over IK by intersection with C.

Proof. Let H̃a be a rational linear subsystem of Ha of dimension s with all its base
points on C. Let Φ be a curve in H̃a with no common tangents with F (F is the defining
polynomial of C) at the base points of the subsystem (i.e. Φ and F intersect with the
expected multiplicities at the base points), and such that all the x1-coordinates of all the
intersection points of Φ and F , that are not base points of H̃a, are different. Then, we con-
sider φ(x1, x2) = Φ(x1, x2, 1), f(x1, x2) = F (x1, x2, 1) and R̃1(x1) = resultantx2(φ, f),
R̃2(x2) = resultantx1(φ, f). Now, since Φ and F have no common tangents at the
base points, there exist R̄1, R1 ∈ IK[x1] and R̄2, R2 ∈ IK[x2] such that R̃1 = R̄1R1,
R̃2 = R̄2R2, gcd(R̄1, R1) = 1, gcd(R̄2, R2) = 1 and deg(R1) = deg(R2) = s (the factor
R̄i basically determines the xi-coordinates of the intersection points of C and H̃a that
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are not base points. For further details see ?). Furthermore, since all the x1-coordinates
of the intersections are different, R1 is squarefree. Thus, for every root α of R1 there
exists a unique root βα of R2 such that (α, βα, 1) is a simple point on C. Moreover, βα

can be expressed as a polynomial in α: (y − p(α)) = (y − βα) is the gcd of S(α, x2)
and R2(x2) in IK(α)[x2], where S(x1, x2) ≡ f(x1, x2) mod R1(x1). In general, R1 may
be reducible, but the gcd can be obtained either by dynamic evaluation (see ?, 1987)
or determining the first subresultant w.r.t. x2 of S(x1, x2) and R2(x2) modulo R1(x1).
Therefore, {(t, p(t), 1)}R1(t) is a family of s simple points on C.

Let H̃a(x1, x2, x3, λ1, . . . , λs+1) be the defining polynomial of H̃a. We observe that
curves Φ satisfying the above assumptions can be obtained because those values of pa-
rameters, for which the curves H̃a(x1, x2, x3, λ1, . . . , λs+1) violate the conditions, satisfy
certain algebraic constraints (basically, this can be reached by computing formally the re-
sultant of H̃a and F w.r.t. x1, crossing out the known factors to get R1(x1, λ1, . . . , λs+1),
and forcing R1 to vanish at x1 = a1 for every affine base point (a1, a2, 1) of H̃a and that
discrimx1(R1) = 0). 2

The next corollary states that there always exist families of conjugate simple points
of certain cardinality. D. Lazard in a personal communication has pointed out to us
that Theorem ?? may be applied to find families of two conjugate simple points on C
(statement (ii) of the corollary).

Corollary 2.1. Let C be a rational plane curve with defining polynomial over IK and
degree d. Then it holds that:

(i) C has families of (d− 2), (2d− 2), and (3d− 2) conjugate simple points over IK .
(ii) C has families of two conjugate simple points over IK .
(iii) If d is odd, then C has simple points over IK .
(iv) If d is even then C has simple points on an algebraic extension of IK of degree two.
(v) If d is even and C has a singularity over IK of odd multiplicity, then C has simple

points over IK .

Proof. For (i) apply Theorem ?? to a = d− 2, a = d− 1, and a = d.
(ii) We first apply statement (i) to obtain two different families of (d− 2) simple points.
Let Hd−1 be the system of adjoint curves of degree (d − 1). Applying Proposition ??
one has that the linear subsystem H̃d−1 obtained by forcing all the points in these two
families to be simple base points of Hd−1 is rational of dimension two. Thus, applying
Theorem ?? to H̃d−1 one obtains families of two simple points.
(iii) Applying statement (ii) one can determine d−3

2 different families of two simple points
on C. Let Hd−2 be the system of adjoint curves of degree (d− 2). Applying Proposition
?? one has that the linear subsystem H̃d−2 obtained by forcing all the points in these
families to be simple base points of Hd−2 is rational of dimension one. Thus, applying
Theorem ?? one concludes that C has simple points over IK.
(iv) This an inmediate consequence of statement (ii).
(v) Let P be a r-fold point of C over IK, with r odd. Let Hd−1 be the system of adjoint
curves of degree (d−1). Applying Proposition ?? one has that the linear subsystem H̃d−1

obtained by forcing P to be a base point of multiplicity r of Hd−1 is rational of dimension
k = 2d− 2− r. Now, since k is odd, one can compute k−1

2 families of two simple points,
that generate a rational subsystem of Hd−1 of dimension 1. 2



8 J.R. Sendra & F. Winkler

Since the previous proofs are constructive, one can apply them to present an improved
version of Hilbert-Hurwitz’s method for solving diophantine equations of genus zero. We
finish this section with an outline of this method.
Algorithm diophantine-solver(F )
Input: F (x1, x2, x3) ∈ IK[x1, x2, x3] is an irreducible homogeneous polynomial of degree
d, that defines a rational plane curve.
Output: The solution over IK of the diophantine equation of genus zero F (x1, x2, x3) = 0.

(1) Determine the singularities of the curve defined by F . Let A be the set of all the
singularities over IK.

(2) Compute the linear system H of adjoint curves to F of degree (d− 2).
(3) If d is odd, apply Corollary ?? (iii) to find (d− 3) simple points of F over IK.
(4) If d is even, apply Corollary ?? (ii) to find d−3

2 families of two simple points of F
over IK.

(5) Determine the linear rational subsystem H̃ obtained by forcing the points computed
in steps (3) or (4), respectively, to be simple base points on H.

(6) Take Φ̃1, Φ̃2, Φ̃3 ∈ H̃ such that the common intersections of the three curves Φ̃i and
F are the set of base points of H̃, and such that T = {y1 : y2 : y3 = Φ̃1 : Φ̃2 : Φ̃3}
is a birational transformation (Theorem ??).

(7) Determine the transformed curve G to F obtained by T (note that applying The-
orem ?? one has that G is either a conic or a line depending on whether d is even
or odd, respectively).

(8) If d is odd parametrize the line G over IK. Apply the inverse transformation T −1 to
find a parametric expression S(t) of the solutions over IK of F = 0. Return S(t)∪A.

(9) If d is even decide whether the conic G can be parametrized over IK. If so, parame-
trize G over IK and applying T −1 find a parametric expression S(t) of the solutions
over IK of F = 0. Return S(t) ∪ A. Otherwise return A.

Clearly this algorithm can be applied to the problem of computing optimal parametriza-
tions. In fact, if the curve defined by F can be parametrized over the ground field then
diophantine-solver returns an optimal parametrization. However, if the curve can not
be parametrized over the groung field then diophantine-solver returns the finitely
many rational singularities of the curve. In order to reach an optimal parametrization
in this case, one can adapt the algorithm to find one non singular solution of the equa-
tion over a two degree extension of IK, and use it as simple point in a parametriza-
tion algorithm. In the next section we collect all these ideas to construct an optimal
parametrization algorithm.

3. Optimal Parametrizations.

Theoretically, the problem of parametrization of plane curves is solved, and it is known
that the parametrizable curves are exactly the curves of genus 0. Furthermore, in ? a
symbolic parametrization algorithm is presented. However, achieving the theoretically
optimal form of parametrizations (an optimal parametrization is expressed in an algebraic
extension of the ground field IK as small as possible) has been a serious problem for
practical algorithms such as presented in ?, or ?. In this section, we show how the results
in Section 2 can be applied to compute optimal parametrizations of rational plane curves,
and how this can be achieved without excessive demands on computing time.
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Every rational plane curve is parametrizable over an algebraic extension of the ground
field of degree at most two. Furthermore, if the curve is of odd degree, then parametriza-
tions over the ground field exist. However, when the curve is of even degree a decision
problem appears, and the existence of parametrizations over the ground field depends di-
rectly on the existence of simple points on the curve over the ground field. More precisely,
one has the following classical theorem:

Theorem 3.1. Let C be a rational plane curve with defining polynomial over IK and
degree d. Then it holds that:

(i) If d is odd, then C is parametrizable over IK .
(ii) If d is even, then C is parametrizable over an algebraic extension of IK of degree at

most two.

Proof. See ?, or simply apply Corollary ??. 2

Algorithms for computing such parametrizations can be found in the literature. In ? the
problem is solved by means of the recursive application ofO(d) birational transformations
(d is the degree of the curve), mapping the original curve into a cubic or a conic, depending
on whether d is odd or even. Thus, this approach involves in general O(d) resolutions of
systems of algebraic equations in four variables. An alternative approach is presented in
? for the case of curves without neighboring singularities, that deals with linear systems
of curves of O(d2) degree; but ? shows that the degree of the linear system drastically
affects the complexity of our process, ?, and we have good reasons to expect that this
will be similar in Schicho’s approach.

In this section, we present an algorithm that uses linear systems of curves of degree
O(d) and that only needs one birational tranformation to obtain an optimal parame-
trization in the even case, and no one in the odd case. Moreover, when the birational
transformation is required, then the image curve is computed by simply solving a linear
system of five equations over IK.

To be more precise, let F ∈ IK[x1, x2, x3] be a homogeneous polynomial of degree
d defining a rational plane curve C. Let Hd−2 be the linear system of adjoint curves
to C of degree (d− 2). By Theorem ??, one has that the problem of computing optimal
parametrizations of C is reduced to the problem of computing a rational linear subsystem
of Hd−2 of dimension 1 or 2. If d is odd, applying Corollary ??, one can compute d−3

2
families of two points over IK that can be used to construct a rational linear subsystem of
Hd−2 of dimension 1 (see Proposition ??). Therefore, a parametrization over the ground
field can be determined. If d is even, applying Corollary ??, one can compute d−4

2 families
of two points over IK that can be used to construct a rational linear subsystem of Hd−2 of
dimension 2 (see Proposition ??). However, applying Theorem ?? to this subsystem one
can always find a birational transformation, defined by elements of the linear subsystem,
that maps C onto a conic. Hence, the optimality question is reduced to the existence
and computation of optimal parametrizations of the corresponding conic. Indeed, since
one has a subsystem of dimension 2, one only needs to lift a point on the conic with
coordinates over an optimal field extension to obtain a new subsystem of dimension 1,
and therefore to parametrize C over an optimal extension. Thus, the question now is how
to compute the birationally equivalent conic, and how to invert a rational point, when it
exists.
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3.1. Computation of the Conic

Let C and Hd−2 be as above (d is even) and let H̃d−2 be the linear subsystem of
Hd−2 obtained by forcing all the points in d−4

2 families of two conjugates simple points
on C over IK to be simple base points on H̃d−2. Now, by Theorem ??, we know that if
Φ1,Φ2,Φ3 ∈ H̃d−2 are such that the common intersections of the three curves Φi and C are
the set of base points of H̃d−2, and such that {y1 : y2 : y3 = Φ1 : Φ2 : Φ3} is a birational
transformation, then the birationally equivalent curve G(y1, y2, y3) to F (x1, x2, x3) is a
conic.

The basic idea for the computation of the conic is to interpolate it. For this pur-
pose, we consider a generic expression G(y1, y2, y3, µ1, . . . , µ6) of the conic depending
on undetermined coefficients. We take a line L = {(a1t + a0 : b1t + b0 : c1t + c0)}t∈K,
ai, bi, ci ∈ IK such that no base point of H̃d−2 is on L. Then, we consider the family
F = {(a1t+ a0 : b1t+ b0 : c1t+ c0)}m(t) of d conjugate simple points on C over IK where
m(t) = F (a1t+ a0, b1t+ b0, c1t+ c0) ∈ IK[t] (if d = 4, we determine two families of four
points on C, cutting with lines). Now, applying the birational transformation to F one
gets a family G of d simple points over IK on the conic

G = {(p1(t) : p2(t) : p3(t))}m(t)

where pi(t) ≡ Φi(a1t+a0, b1t+b0, c1t+c0) mod m(t). Therefore, we have detected more
than five points on the conic and by forcing G to pass through them, the birationally
equivalent conic is determined. Moreover, in order to effectively guarantee that the curves
Φi, taken in the linear subsystem H̃d−2, define a birational transformation, we test the
irreducibility of the conic by checking the rank of the corresponding quadratic form. It is
clear that the method can also be applied to odd degree curves, but this is not interesting
for our purposes.

Finally, we outline the algorithm that computes a birationally equivalent conic to any
even degree rational curve. We detone this algorithm by conic. In designing conic we
assume that the linear subsystem H̃d−2 has already been computed.
Algorithm conic(F, H̃d−2)
Input: F ∈ IK[x1, x2, x3] is a homogeneous polynomial of even degree d defining a
rational plane curve, and H̃d−2 is a rational linear subsystem of dimension two of the
linear system of adjoint curves to F of degree (d− 2).
Output: A birationally equivalent conic to F over IK, and the corresponding birational
transformation.

(1) Take a generic conic G(y1, y2, y3, µ1, . . . , µ6) depending on undetermined coeffi-
cients.

(2) Take three different elements Φ1,Φ2,Φ3 in H̃d−2.
(3) If d > 4 then

(3.1) Take a line (with defining polynomial over IK) not passing through any base
point of H̃d−2, and generate a family F = {(`1(t) : `2(t) : `3(t))}m(t) with d
simple points on F over IK.

(3.2) Compute pi(t) ≡ Φi(`1, `2, `3) mod m(t), for i = 1, 2, 3.
(3.3) Determine the linear system of equations S generated by the condition

G(p1(t), p2(t), p3(t)) ≡ 0 mod m(t).
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(3.4) If rank(S) 6= 5 go to step (2) and take three new curves in H̃d−2. Otherwise
solve S and substitute the solution in G.

(3.5) If the determinant of the associated matrix to G is zero go to step (2), and take
three new curves in the H̃d−2.

(4) If d = 4 then compute two families, of four different simple points each, as in step
(3.1), and proceed analogously to steps (3.2) to (3.5).

(5) Return G.

Now let us consider the problem of inverting points on the conic, i.e. mapping them
back to the original curve. First of all, we observe that we are only interested in inverting
rational points on the conic, because, if no rational point on the conic exists then we
take a point on the original curve over an algebraic extension of degree two as described
in Corollary ??. Let us then assume that Q = (q1 : q2 : 1) is an invertible rational
point on a conic G(y1, y2, y3) by means of the birational transformation {y1 : y2 : y3 =
Φ1(x1, x2, x3) : Φ2(x1, x2, x3) : Φ3(x1, x2, x3)}. Then, we want to compute the inverse
rational point P on F . Thus, one has to solve the system F (x1, x2, x3) = 0

M1(x1, x2, x3) := Φ3(x1, x2, x3) q1 − Φ1(x1, x2, x3) = 0
M2(x1, x2, x3) := Φ3(x1, x2, x3) q2 − Φ2(x1, x2, x3) = 0

We know that the system has a unique solution. Therefore, we can solve the system by
computing resultants and rational roots of univariate polynomials over IK.

3.2. Optimal Parametrization Algorithm

The previous ideas can be summarized in an algorithm that always outputs an optimal
parametrization, in the sense described above. We denote this algorithm by optimal-
parametrization. In the design of the algorithm we do not consider the trivial case of
rational curves that can be parametrized by lines. Furthermore, we assume that a method
for deciding the existence and computation of rational points on conics is provided (see
?, 1982), and we refer to ? for determining the standard singularity decomposition of the
curve.
Algorithm optimal-parametrization(F,G)
Input: F ∈ IK[x1, x2, x3] is a homogeneous polynomial of degree d defining a rational
plane curve.
Output: An optimal rational parametrization of F .

(1) Determine the standard singularity decomposition S of F , and compute the linear
system H of adjoint curves to F of degree (d− 2).

(2) free := d− 3.
(3) For every family G ∈ S containing s points do

(3.1) If the points in G are r-fold points (possibly neighboring singularities), and
free − s r ≥ 0 and free − s r is even then force the points in G to be base
points of multiplicity r of H, and set free := free− s r.

(4) If free is even apply Corollary ?? (ii) to produce free
2 different families of two

simple points over IK, and force all of them to be simple base points of H.
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(5) If free is odd then do

(5.1) Apply Corollary ?? (ii) to produce free−1
2 different families of two simple points

over IK, and force all of them to be base simple points of H.
(5.2) Apply algorithm conic to obtain a conic G birationally equivalent to F .
(5.3) Decide whether there exist rational points on G.
(5.4) If there exist rational points on G then compute one, map it back to obtain a

rational point P on F , and force P to be a simple base point on H.
(5.5) If there do not exist rational points on G then

(5.5.1) Apply Corollary ?? (ii) to generate a new different family of two simple
points F = {(a1t + a0 : b1t + b0 : c1t + c0)}m(t) over IK (note that m is a
quadratic polynomial).

(5.5.2) Force the points in F to be simple base points of H (now IK has been
extended to IK(α) with minimal polynomial m(t)).

(6) Ri :=resultantxi(F (x1, x2, 1),H(x1, x2, 1, t)) for i = 1, 2.
(7) Set R1 and R2 to their primitive part w.r.t. t, respectively.
(8) Solve the linear system {R1 = 0, R2 = 0} in the variables {x1, x2} and return the

solution.

In general the coefficients of the conic birationally equivalent to the original curve
can be large, and therefore the computation of rational points can be extremely time
consuming. To avoid this problem, and for practical implementations, we also consider an
algorithm that provides parametrizations (that we call nearly optimal parametrizations)
over the ground field for odd degree curves, and over an algebraic extension of degree two
of IK for even degree curves. Thus, the existence of rational simple points on even degree
curves without singularities with special multiplicities is not considered. More precisely,
one simply has to partially eliminate Step 6 in the previous algorithm. We illustrate
the algorithm by carrying out the parametrization process for the curve defined in the
introduction.
Example. Let C be the 10 degree curve given in the introduction. The singularities of
C are the points P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1) and P4 = (1 : 1 : 1);
where Pi, for i = 1, 2, 3 are 5-fold points, and P4 is a 4-fold point. Thus, C is rational.
Furthermore, in this special example, taking a line through P4 and any of the 5-fold
points, one obtains a rational simple point on C̄. Thus, the algorithm described in ? can
be directly applied to get an optimal parametrization. However, we want to illustrate how
the adjoints map birationally C onto a conic. Thus, we compute the defining polynomial
H8 of the linear system H8 of adjoint curves to C of degree d− 2 = 8:

H8 = t8x
4
3x

4
2 + 4x2

3x
3
1x

3
2 + t2x

4
3x

4
1 + x2

3x
2
2x

4
1 + t3x

4
1x

4
2 − x4

3x
2
1x

2
2 − 16 t2x3x

4
1x

3
2 −

6 t5x3x
4
1x

3
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4
1x

3
2 − 9 t1x3x

4
1x

3
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3
1x

4
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3x
3
1x

3
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4
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3
2 +
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4
1x

3
2 + 3 t6x3x

3
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3
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3
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3
1x

4
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3 t8x3
3x1x

4
2 + t5x

4
3x

3
1x2 − 6 t2x4

3x
2
1x

2
2 − t6x

4
3x

2
1x

2
2 − 3 t5x4

3x
2
1x

2
2 + t4x

4
3x1x

3
2

In this situation, one has to compute 7 simple points. For this purpose, one gets 3 families
of two points, as described above, and maps C onto a conic to find the remaining simple
point. Nevertheless, since P4 is a 4-fold point, we can find a family with six different simple
points on C. More precisely, we take the family F = { (1−2t, 1+2t, 1+4t) }A(t)=0, where
A(t) = 327 + 2965 t + 8762 t2 + 7240 t3 − 7808 t4 − 13936 t5 − 5984 t6. Then, by forcing
the system H8 to pass through F , one obtains the defining polynomial H̃ of the linear
subsystem H2

8 of dimension 2:

H̃ = −x3x
4
1x

3
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2x

4
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that only depends on two parameters t1, t4. We now take three curves Φ̃1, Φ̃2, Φ̃3 in
H̄2

8 (Φ̃1 = −H̃(t1 = 0, t4 = 1), Φ̃2 = −H̃(1, 0), Φ̃3 = −H̃(1, 1)), and we consider the
birational transformation (y1 : y2 : y3) = (Φ̃1(x1, x2, x3) : Φ̃2(x1, x2, x3) : Φ̃3(x1, x2, x3)).
Applying this transformation to C we get the birationally equivalent conic D defined by

G(y1, y2, y3) = −3y2
2 + 8y2y3 − 5y2

3 − 4y2y1 + y2
1 + 4y1y3

In this situation, inverting the transformation, one can lift finitely many simple points
on D, or even a parametrization. For instance, the simple point Q = ( 8

3 : 5
3 : 1) on D

corresponds to the simple rational point P = (− 239
149 : − 239

731 : 1) on C. Now, forcing H̄2
8

to pass through P one gets a linear subsystem of dimension 1, and computing the free
intersection point with the orginal curve one obtains the optimal parametrization

x1 = 400t2−712t3+350t4+80t−32−83t5

−306t4−944t2+1048t3+272t+185t5−32

x2 = −400t2+712t3−350t4−80t+32+83t5

−946t4+2248t3+1360t−2832t2+217t5−160

x3 = 1.

3.3. Parametrizing over the reals

As an application of the previous results, an algorithm for analyzing the existence of
real parametrizations, and for computing one if they exist, of rational plane curves with
defining polynomial over 0Q is presented (in fact, the following is also true for any rational
plane curve with defining polynomial over any computable subfield of the reals). If the
curve is given parametrically, techniques presented in ? can also be applied.

For this purpose, we now assume that the rational plane curve C is defined by a
homogeneous polynomial F (x1, x2, x3) over 0Q, and we want to parametrize over IR. For
odd degree curves this can always be achieved. In fact, parametrizations over 0Q can be
computed. However, for even degree curves, the existence of parametrizations over 0Q or
over IR depends on the existence of rational points or real points on a conic birationally
equivalent to C, respectively.
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The following theorem characterizes the existence of parametrizations over the reals
of rational plane curves over the rationals by means of the non-existence of birational
transformations over the reals (i.e. the rational functions defining the transfomations are
over the reals) mapping the original curve into a certain conic.

Theorem 3.2. A rational algebraic plane curve over 0Q is parametrizable over IR if and
only if it is not birationally equivalent over IR to the conic x2

1 + x2
2 + x2

3.

Proof. Applying the paper by ?, or the ideas in the previous sections, it is clear that
there always exists a birational transformation over the rationals that maps the given
curve into a conic. Furthermore, there exists a birational transformation over the reals
that maps the original curve into an irreducible conic G of the form x2

1 + δ1 x
2
2 + δ2 x

2
3,

where δi ∈ {1,−1}. Thus, there exist real simple points on the original curve (and
therefore parametrizations over the reals) if and only if there exist real points on G; i.e.
if and only if G(x1, x2, x3) is not the conic x2

1 + x2
2 + x2

3. 2

Therefore, applying algorithm conic the problem is computationally reduced to the
well known problem of deciding the existence of rational or real points on conics. Nev-
ertheless, inverting a real point on a conic can be expensive, since resultants and root
computations over a real algebraic extension of degree two (possibly with large integers
in the minimal polynomial) of the rationals are performed. In the following, a direct ap-
proach to compute real points on the original curve is described, that does not invert real
points. Let F ∈ 0Q[x1, x2, x2] be an irreducible homogeneous polyomial of even degree d,
and let H̃d−2(x1, x2, x3, λ1, λ2, λ3) be a rational linear subsystem of dimension 2 of the
system of adjoint curves to F of degree (d− 2). We compute the resultant

R̃1(x1, λ1, λ2, λ3) = resultantx2(F (x1, x2, 1), H̃d−2(x1, x2, 1, λ1, λ2, λ3))

and we consider the polynomial R1(x1, λ1, λ2, λ3) obtained by crossing out in R̃1 the
factors generated by the base points. Now, for every set of rational values of parameters
λ1, λ2, λ3 for which the leading coefficient of R1 does not vanish, R1 is the minimal
polynomial of a family of two simple points on F . Therefore those rational values of
parameters, that make the discriminant of R1 w.r.t. x1 non-negative, generate minimal
polynomials with real roots; and hence, real simple points on F . Observe, that taking
rational points out of a curve is computationally simpler than taking rational points on a
curve. Thus one can obtain a linear subsystem of H̃d−2 of dimension 1 over a real algebraic
extension of 0Q of degree 2. Hence real optimal parametrizations can be computed.

4. Complexity Analysis and Practical Implementation.

This section is devoted to the theoretical and experimental computing times of the
previous algorithms. First, we briefly comment on the theoretical complexity of the
parametrization algorithm, and then the section focuses on the implementation of a
prototype of the algorithm and actual computing times.

In ? a detailed theoretical complexity analysis of the parametrization algorithm in ?
is given. Basically, the conclusion in ? is that the worst case computing time functions of
the standard singularity decomposition and parametrization algorithms are polynomial,
if no neighboring expansion is required and rational simple points are freely available. In
general, curves with very deep neighboring graphs, containing neighboring points in high
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algebraic extensions, may appear. This might lead to exponential behaviour of the algo-
rithm. Many problems relating to complexity are still open, and a complete analysis is
lacking. However, practical examples suggest that the overall worst case complexity anal-
ysis is too pessimistic. In the sequel, the experimental computing times of two different
main procedures implemented in Maple V.2. are analyzed.

The first one is called parametrize and deals with the computation of nearly optimal
parametrizations of algebraic plane curves over the rationals. First, the standard singu-
larity decomposition is determined, and therefore the rationality of the curve is decided
(if the curve is not in regular position, see ?, a random change of coordinates is applied).
Then, a nearly optimal parametrization is obtained. The output is a parametrization
over IK for odd degree curves, and over a finite extension of IK of degree at most two, for
even degree curves. Nevertheless, the procedure analyzes the existence of rational inter-
sections from the singularities. Heuristics such as those mentioned in Section 2 or Step
4.1. in algorithm optimal-parametrization are used for trying to find rational simple
points. In many cases, though the curve is of even degree, the algorithm either does not
need to find rational simple points or it changes to need an even number of them. In
both cases, it parametrizes over the rationals. We have observed that these heuristics do
not lead to a relevant increase of the length of the coefficients of the linear system, and
therefore of the output parametrization.

The second implementation is called real-parametrize. Basically, it works as para-
metrize, but it takes care of parametrizing over the reals when this is possible. Thus,
real-parametrize parametrizes over 0Q for odd degree curves, and over an algebraic
extension of 0Q of degree at most two for even degree curves. Furthermore, the procedure
analyzes the existence of simple real points on the curve, and in the affirmative case, it
introduces a real algebraic number of degree at most two.

For demonstrating the performance of these implementations, let us consider the fol-
lowing example curve

F1(x1, x2, x3) := (x2
1 + 4x2 x3 + x2

2)
2 − 16 (x2

1 + x2
2)x

2
3

F2(x1, x2, x3) := x2 x
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1 x
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48027 x
3
1 x

2
3− 17264

16009 x
3
1 x2 x3 + 6976

48027 x
4
1 x3

+ 2624
2287 x

4
1 x2 + 118908

16009 x2
1 x2 x

2
3 − 46248

16009 x
2
1 x

2
2 x3 + 29360

48027 x
2
1 x

3
3 + 26600

2287 x2
1 x

3
2 − 15252

2287 x1 x
2
2 x

2
3

+ 10468
16009 x1 x

3
2 x3− 9372

2287 x1 x
4
2 + 22124

16009 x1 x2 x
3
3− 49160

48027 x1 x
4
3 + 1035

2287 x
5
2 + 22454

16009 x
3
2 x

2
3− 208

6861 x
5
3
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F4(x1, x2, x3) := 29493
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115 x1 x
4
2 x

2
3

− 22496
115 x2

1 x
3
2 x

2
3 − 5424

115 x3
1 x

2
2 x

2
3 − 32

23 x
4
1 x2 x

2
3 + 192x2

1 x
4
2 x3 + 17472

115 x3
1 x

3
2 x3 − 13824

115 x3
1 x

4
2

F6(x1, x2, x3) := − 155139
400 x1 x

4
2 x

2
3 + 40963

200 x1 x
3
2 x

3
3 − 19637

25 x3
1 x

4
2 + x4

1 x
3
3 + 17421

400 x4
2 x

3
3

+x4
1 x

3
2 + 104727

400 x2
1 x

2
2 x

3
3 + 28477

600 x3
1 x2 x

3
3 − 160421

150 x2
1x

3
2x

2
3 − 177781

400 x3
1x

2
2x

2
3 + 313519

300 x2
1x

4
2x3

+ 324763
300 x3

1 x
3
2 x3
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F7(x1, x2, x3) := − 64
3 x2

1 x
5
2 x3 − 8873052

5929 x3
1 x

3
2 x

2
3 − 511740

5929 x5
1 x2 x

2
3 + 336722448

41503 x3
1 x

2
2 x

3
3

+ 37077888
41503 x1x

4
2x

3
3 + 3718656

5929 x4
1x

2
2x

2
3 − 1479360

5929 x1x
5
2x

2
3 + 23765344

17787 x2
1x

4
2x

2
3 − 25912800

5929 x4
1x2x

3
3

− 65314160
11319 x2

1 x
3
2 x

3
3 + 34153200

41503 x5
1 x

3
3 + 2794752

41503 x5
2 x

3
3 + x5

1 x
3
2

F8(x1, x2, x3) := −2x1 x
4
2 x

4
3 + x4

1 x
5
2 + 12x4

1 x
3
2 x

2
3 + 12x2

1 x
4
2 x

3
3 − x3

1 x2 x
5
3 + 11x3

1 x
2
2 x

4
3 −

21x3
1 x

3
2 x

3
3−4x4

1 x2 x
4
3 +2x4

1 x
2
2 x

3
3−6x4

1 x
4
2 x3 +x5

1 x
4
3−3x5

1 x
2
2 x

2
3 +x5

1 x
3
2 x3−3x1 x

5
2 x

3
3−

2x2
1 x

3
2 x

4
3 + x3

1 x
4
2 x

2
3 + x5

2 x
4
3

F9(x1, x2, x3) := x5
3 x1 x

4
2 + x4

3 x1 x
5
2 + x5

3 x
2
1 x

3
2 + x3

3 x
5
1 x

2
2 − 19x3

3 x
2
1 x

5
2 − 53x3

3 x
3
1 x

4
2 +

x4
3 x

5
1 x2 + x5

1 x
5
2 + x5

3 x
5
1 + 43x4

3 x
3
1 x

3
2 + x3

3 x
4
1 x

3
2 + 12x2

3 x
4
1 x

4
2 + 57x2

3 x
3
1 x

5
2− 19x2

3 x
5
1 x

3
2−

36x3 x
4
1 x

5
2 + x5

3 x
5
2 + 21x3 x

5
1 x

4
2 − 15x5

3 x
3
1 x

2
2

Table 1. shows the computing times for these curves. Times are measured on a Decsta-
tion 5240, and given in seconds of cpu time.

Table 1. Computing times

Curve
Degree of
the curve

Degree of the
field extension

Time

F1 4 2 and real 21
F2 5 1 72
F3 5 1 17
F4 6 1 4
F5 7 1 5
F6 7 1 7
F7 8 1 28
F8 9 1 252
F9 10 1 461
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