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Abstract. If algebraic varieties like curves or surfaces are to be manipulated by computers,
it is essential to be able to represent these geometric objects in an appropriate way. For some

applications an implicit representation by algebraic equations is desirable, whereas for others

an explicit or parametric representation is more suitable. Therefore, transformation algorithms
from one representation to the other are of utmost importance.

We investigate the transformation of an implicit representation of a plane algebraic curve

into a parametric representation. Various methods for computing a rational parametrization,
if one exists, are described. As a new idea we introduce the concept of working with classes of

conjugate (singular or simple) points on curves. All the necessary operations, like determining

the multiplicity and the character of the singular points or passing a linear system of curves
through these points, can be applied to such classes of conjugate points. Using this idea one

can parametrize a curve if one knows only one simple point on it. We do not propose any new
method for finding such a simple point. By classical methods a rational point on a rational

curve can be computed, if such a point exists. Otherwise, one can express the coordinates of

such a point in an algebraic extension of degree 2 over the ground field.

I. Introduction

An algebraic variety V , the main object of study in algebraic geometry, can be repre-
sented in various different ways, for instance as the set of zeros of finitely many polynomial
equations

V = {(x, y) | 2x4 − 3x2y + y2 − 2y3 + y4 = 0, x, y ∈ C},

or as the set of values of rational functions

V = {(φ(t), χ(t)) |φ(t) = −
18t4 + 21t3 − 7t− 2

18t4 + 48t3 + 64t2 + 40t+ 9
,

χ(t) =
36t4 + 84t3 + 73t2 + 28t+ 4

18t4 + 48t3 + 64t2 + 40t+ 9
, t ∈ C}.

We call the first representation implicit and the second explicit or parametric.
The representation of choice is of course determined by the operations one wants to

perform with the variety. For determining whether a given point is a point of the variety,
or for computing singular points of the variety, the implicit representation is more desirable
than the parametric one. On the other hand, the parametric representation lends itself

∗ This research was partially supported by the Austrian Fonds zur Förderung der wissenschaftlichen

Forschung under Projekt Nr. P6763. The work described herein was carried out while the first author

was visiting the Research Institute for Symbolic Computation (RISC-LINZ).



2

very easily to the determination of the curvature, to tracing of varieties, and in particular
to visualizing them on a computer screen. The intersection of varieties can be determined
rather easily if one of the varieties is given implicitely and the other one explicitely. For
this reason it is essential to be able to switch between different representations.

In Arnon & Sederberg (1984) the problem of computing the implicit equations from a
given parametric representation is investigated. The reverse problem, namely computing
a rational parametrization from the given implicit equations, especially for plane curves,
is a classical problem in algebraic geometry, see Walker (1950), Schafarewitsch (1972),
van der Waerden (1953). Theoretically the problem of parametrization of plane curves is
solved, and it is known that the parametrizable curves are exactly the curves of genus 0.
In Walker (1950) also an algorithm is suggested for computing a rational parametrization.
In Abhyankar & Bajaj (1988) basically this same algorithm is used for parametrization.
Intuitively speaking, a curve is parametrizable if it has enough singularities. The method
suggested in Walker (1950) and elaborated in Abhyankar & Bajaj (1988) proceeds by
computing these singularities and sufficiently many simple points on the given curve of
degree d. Through these points a pencil of curves of degree d − 2 is passed, such that
every element of the pencil intersects the given curve in exactly one additional point.
A formula for this additional intersection point can be determined, yielding the desired
parametrization of the curve.

We show that it is also possible to work with pencils of degree d−1 and d. In fact, these
pencils are more attractive from a computational point of view. When exact computation
is desired additional problems arise, which do not appear in numerical computation. In
particular, the determination of simple points on the curve introduces a lot of algebraic
numbers. If they are not controlled, the computation soon becomes too inefficient. One of
our new results is that a pencil can be passed through a set of points on the given curve
without having to compute these points explicitly. This means that the necessary field
extension for the parametrization can be kept small and any subsequent computations
with the parametrization involve only algebraic numbers of low degree.

Let K be an algebraically closed field of characteristic 0. We will denote by A
2 and

P
2 the affine and projective planes over K, respectively. As usual the affine plane A

2 is
embedded into P

2 by identifying the point (a, b) ∈ A
2 with the point (a : b : 1) ∈ P

2.
These points are sometimes called the points at finite distance of P

2. In addition to the
points at finite distance P

2 contains points at infinity, namely the points with projective
coordinates (a : b : 0).

An affine algebraic (plane) curve over K is the set

C = {(a, b) ∈ A
2 | f(a, b) = 0}

for a nonzero polynomial f(x, y) ∈ K[x, y]. The curve C is said to be irreducible iff it can
be defined by means of an irreducible polynomial f . Unless explicitly stated otherwise,
we will always work with irreducible polynomials defining our curves. In this case the
polynomial f is uniquely defined up to a multiplicative constant in K and it is called the
polynomial defining C. We will write f in the form

f(x, y) = fd(x, y) + fd−1(x, y) + · · ·+ f0(x, y),

where fk(x, y), 0 ≤ k ≤ d, is a homogeneous polynomial of degree k, and fd(x, y) is
nonzero. The polynomials fk, 0 ≤ k ≤ d, are called the homogeneous components of f ,
and d is called the degree of the curve C.



3

Associated with f(x, y) there is a homogeneous polynomial F (x, y, z) of degree d, the
homogenization of f ,

F (x, y, z) = fd(x, y) + fd−1(x, y) · z + · · · + f0(x, y) · z
d.

The projective algebraic (plane) curve corresponding to C is defined as the set

C∗ = {(a : b : c) ∈ P
2 | F (a, b, c) = 0}.

Every point (a, b) on C corresponds to a point (a : b : 1) on C∗ and every additional point
on C∗ is a point at infinity. In other words, the first two coordinates of the additional
points are the nontrivial solutions of fd(x, y) = 0. So the curve C∗ has only finitely many
points at infinity. By a suitable change of the coordinate system, i.e. an invertible linear
homogeneous transformation, every point at infinity can be transformed to a point at finite
distance.

DEFINITION: The irreducible affine curve C defined by the irreducible polynomial f(x, y) ∈
K[x, y] is rational iff there exist rational functions φ(t), χ(t) ∈ K(t) such that
(1) for almost all (i.e. for all but a finite number of exceptions) t0 ∈ K, (φ(t0), χ(t0)) is a

point on C, and
(2) for almost every point (x0, y0) on C there is a t0 ∈ K such that (x0, y0) = (φ(t0), χ(t0)).
If φ, χ satisfy the conditions (1) and (2), (φ, χ) is a rational parametrization of C. ⊔⊓

The notion of rationality for affine curves can be extended in a natural way to a
notion of rationality for projective curves. This is achieved by introducing a third rational
function ψ(t) and postulating the conditions (1),(2). With this terminology we can state
the problem of parametrization.

Parametrization problem:
given: an irreducible polynomial f(x, y) ∈ K[x, y] defining an irreducible affine algebraic

plane curve C
decide: the rationality of C
find: (if C is rational) rational functions φ(t), χ(t) ∈ K(t) such that (φ, χ) is a rational

parametrization of C. ⊔⊓

In the sequel we exclude the cases where the degree of the polynomial f defining the
curve C is less or equal 2, i.e. where C is a line or a conic. Obviously in these cases the
parametrization does not present a problem.

We want to emphasize the fact that computing points with small algebraic degree on
an algebraic curve is a costly operation. Our aim is to reduce the number of simple points
needed in the parametrization algorithm. We show that if a pencil of curves of the same
degree as C is used in the parametrization algorithm then only one simple point suffices.
Of course, there are special cases in which a different approach might be preferable, e.g.
when C is a quartic curve and a pencil of degree 2 is used. A practical implementation of a
parametrization algorithm should take such special cases into account. Our aim, however,
is not a treatment of these special cases, but a general algorithm.
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II. Rational curves

A singular point P of multiplicity r on the affine curve C defined by f(x, y) is an
ordinary singular point iff the r tangents to C at P are distinct. Otherwise P is called
non–ordinary. The property of a singular point P of being ordinary or non–ordinary is
called the character of P .

Since every point P at infinity can be transformed to a point at finite distance by a
suitable change of coordinates, all these definitions also apply to points on a projective
curve C∗.

An important result about singularities (see e.g. Walker (1950)) is the fact that if C
is an irreducible projective or affine curve of degree d having multiplicities rP at points P ,
then

(d− 1)(d− 2) ≥
∑

P∈C

rP (rP − 1).

In particular, this inequality implies that an algebraic plane curve can have only finitely
many singular points.

If f(x, y) has no terms of degree less than r and has some terms of degree r, i.e.

f(x, y) = fd(x, y) + · · ·+ fr(x, y),

then the origin is an r–fold point of the curve defined by f , and the curve defined by
fr(x, y) = 0 has as its components the tangents to f at the origin. If r ≥ 2, then the origin
is an ordinary singular point of C if and only if the discriminant of fr(x, 1) is not zero.

An outline of the algorithm computing the singularities of an irreducible plane curve,
defined by the irreducible polynomial f(x, y), and their character can be given as follows:
the singularities of the affine curve C given by f(x, y) are the solutions of the system of
algebraic equations

f(x, y) = 0,
∂f

∂x
(x, y) = 0,

∂f

∂y
(x, y) = 0.

Similarly the singularities of the projective curve C∗ given by F (x, y, z), the homogeniza-
tion of f(x, y), can be computed by setting one of the variables x, y, z to 1, thus getting
affine curves Cx, Cy, Cz, and computing the singularities of these three affine curves. The
corresponding systems of algebraic equations can be solved either by resultant computa-
tions or by the Gröbner basis method, as described in Buchberger (1985). Now successively
each singular point P is moved to the origin and the multiplicity and character of P are
determined by the preceding considerations.

The rationality problem for an affine curve is equivalent to the rationality problem for
the associated projective curve.

LEMMA 1: Let C be an irreducible affine curve and C∗ its corresponding projective curve.
Then C is rational if and only if C∗ is rational, and a parametrization of C can be computed
from a parametrization of C∗ and vice versa.

Proof: Let (x(t) = u1(t)/u2(t), y(t) = v1(t)/v2(t), z(t) = w1(t)/w2(t)) with ui, vi, wi ∈
K[t] be a rational parametrization of C∗. Observe that w1(t) cannot be identically equal
to zero. Hence (x(t) = u1(t)w2(t)/u2(t)w1(t), y(t) = v1(t)w2(t)/v2(t)w1(t)) is a rational
parametrization of C. The same argument also holds for u1 and v1.
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Conversely, a rational parametrization of C can always be extended to a parametriza-
tion of C∗ by setting the z–coordinate to 1. ⊔⊓

Observe that, as we have just proved, one can always assume that the rational func-
tions giving the parametrization of a projective curve are not identically zero. Conse-
quently, in the sequel we will always refer to a normalized parametrization of a projective
curve, in the sense that the rational function giving the z–coordinate is the constant 1.

By Lemma 1 it is clear that deciding the rationality of an affine curve or a projective
curve are equivalent problems. Moreover, their parametrizations are essentially the same.
Therefore, we will work, without loss of generality, only with projective curves.

In the special case of an irreducible projective curve C∗ having only ordinary singu-
larities one can characterize the rationality as follows. If r1, . . . , rn are the multiplicities
of the singular points of C∗, C∗ is rational if and only if

(d− 1)(d− 2) =

n∑

i=1

ri(ri − 1).

In the general case, for characterizing the rationality of a plane curve one usually introduces
the concept of neighbouring points.

The tranformation of the projective plane P
2 defined by x′ = yz, y′ = xz, z′ = xy,

where (x : y : z) and (x′ : y′ : z′) are the coordinates of a point of P
2 in two different

coordinate systems, is called a quadratic transformation. For the special points (1 : 0 :
0), (0 : 1 : 0) and (0 : 0 : 1) the quadratic transformation is not defined. These points
are called the fundamental points of the transformation. Every point lying on one of the
lines x = 0, y = 0 or z = 0 is sent to the point (1 : 0 : 0), (0 : 1 : 0) or (0 : 0 : 1),
respectively. These lines are called the irregular lines of the transformation. One can
easily prove that this transformation defines a one to one correspondence between points
of P

2 not on irregular lines.
Now we study the action of a quadratic transformation on an irreducible projective

curve C∗. Let C∗ be defined by the homogeneous polynomial F (x, y, z). Then the polyno-
mial G(x, y, z) = F (yz, xz, xy) is called the algebraic transform of F . However, although
F is irreducible, G may have some irregular line as a factor. The quadratic transform of F
is defined as the irreducible factor of G that is not an irregular line. We will denote it by
F ′, and we will also say that the curve C′∗ defined by F ′ is the quadratic transform of C∗.

The importance of quadratic transformations stems from the fact that by a finite
sequence of quadratic transformations and changes of coordinates (i.e. moving certain
points to the origin) the singularities of any irreducible plane curve can be resolved, i.e.
the curve can be transformed into one having only ordinary singularities. Moreover, the
rationality of the irreducible curve is invariant under these transformations. For future
reference we quote a theorem from Walker (1950) which states how the singularities of a
curve are effected by a quadratic transformation.

THEOREM 1: Let C∗ be a curve of degree d defined by F and having (1 : 0 : 0), (0 : 1 : 0)
and (0 : 0 : 1) as points of multiplicity r1, r2 and r3, respectively (ri ≥ 0). Let F ′ be the
quadratic transform of F and C′∗ the curve defined by F ′. Then if no tangent at any of
these points is an irregular line, the following holds:
(1) The degree of F ′ is 2d− r1 − r2 − r3 and F ′(x, y, z) = F (yz, xz, xy)/xr1yr2zr3 . Fur-

thermore, if F (x, y, z) = fd(x, y) + · · ·+ fr3
(x, y)zd−r3 , then

F ′ = xd−r3−r1yd−r3−r2fr3
+ · · ·+ zd−r3−1x1−r1y1−r2fd−1 + zd−r3x−r1y−r2fd.
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(2) There is a one to one correspondence, preserving multiplicities, between the tangents
to C∗ at (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) and the non–fundamental intersections of
C′∗ with the irregular lines x = 0, y = 0 and z = 0, respectively.

(3) An r–fold point of C∗ not on an irregular line is transformed into an r–fold point on
C′∗, and the tangents at these two points correspond in multiplicity. In particular,
the character of the r–fold point is preserved.

(4) C′∗ has multiplicity d−r2−r3, d−r1−r3, d−r1−r2 at (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1),
respectively, the tangents being distinct from the irregular lines and corresponding to
the non–fundamental intersections of C∗ with x = 0, y = 0, z = 0, respectively. ⊔⊓

We describe an outline of a method for obtaining this sequence of quadratic transfor-
mations resolving the singularities of a given irreducible curve C∗:
(1) Choose a non–ordinary singularity of C∗ and make a change of coordinates such that

the singularity is moved to (0 : 0 : 1), none of its tangents is an irregular line, and no
other fundamental point is singular.

(2) Apply the quadratic transformation to C∗, getting the transform curve C′∗.
(3) Check whether there exists a non–fundamental intersection of C′∗ and z = 0, being

a non–ordinary singular point. If this is the case, apply (1) and (2) to C′∗ and this
non–ordinary singular intersection point. Otherwise, choose any other non–ordinary
singularity and repeat the process, until there are no non–ordinary singularities left.

This method selects a coordinate system, and also the order in which the non–ordinary
singularities of the curve are moved to the fundamental points. One can prove that inde-
pendent of these selections, the method always achieves an irreducible curve having only
ordinary singularities in a finite number of steps. In the sequel, when we will speak about
finite sequences of quadratic transformations reducing a given curve, we will assume that
these sequences are obtained by the preceeding method.

Thus, theoretically, the rationality of a curve can be decided. However, the problem
can be solved computationally in a more convenient way. For this purpose we introduce
the concept of neighbouring points.

Let C∗ be the irreducible curve of degree d defined by F (x, y, z), and T = (T1, . . . , Tn)
a finite sequence of quadratic transformations constructed as it has been described above
and reducing C∗ to a curve which has only ordinary singularities. We adopt the convention
that Ti represents the composition of the quadratic transformation with a suitable change
of the coordinate system that moves one of the singularities to a fundamental point. Let
us also assume that T generates the sequence of irreducible curves

C∗ = C∗
0

T1−→C∗
1

T2−→· · ·
Tn−→C∗

n,

where C∗
i+1 is the quadratic transformation obtained from C∗

i by Ti+1, for 0 ≤ i ≤ n− 1.
Given an r–fold point P on C∗, suppose that during the process described by T the point
P has not been translated to a fundamental point till the action of the i–th quadratic
transformation. Then the first neighbourhood of P with respect to T is defined as the set
of all the non–fundamental intersections of the curve C∗

i+1 with the irregular line z = 0,
assuming that P was moved to (0 : 0 : 1) by the according change of coordinates. Similarly,
we take the non–fundamental intersections of C∗

i+1 with x = 0 or y = 0 if P was translated
to (1 : 0 : 0) or (0 : 1 : 0), respectively. The points in the first neighbourhood of P with
respect to T are called the neighbouring points of P at its first neighbourhood. Using the
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fact that every neighbouring point P ′ of P at its first neighbourhood is a point on C∗
i+1,

one defines the multiplicity and the character of P ′ as the multiplicity and character of
P ′ as a point on C∗

i+1. Similarly, if {P ′
1, . . . , P

′
s} is the first neighbourhood of P with

respect to T , we get the second neighbourhood of P with respect to T as the union of
the first neighbourhoods of P ′

k, k = 1, . . . , s. The points in the second neighbourhood of
P with respect to T are called the neighbouring points of P at its second neighbourhood.
The multiplicity and character of points at the second neighbourhood are defined in a way
analogous to the one for points in the first neighbourhood. But, one must realize that now it
may happen that not all the neighbouring points are lying on the same curve. These notions
are easily extended to neighbourhoods of arbitrarily high order. In general, we will call
any point in one of the neighbourhoods of P a neighbouring point of P . The neighbouring
points of P with multiplicity higher than 1 will be called the singular neighbouring points
of P .

Let P be a singular point of C∗, T the sequence of quadratic transformations as above.
Then the neighbourhood tree of P w.r.t. C∗ and T is the tree that has P as its root and the
neighbourhood trees of the singular neighbouring points in the first neighbourhood of P
as its subtrees. Finally, we define the neighbourhood graph of C∗ w.r.t. T as the collection
of all the neighbourhood trees of singular points w.r.t. C∗ and T .

If a fundamental point P , say P = (0 : 0 : 1), is an r–fold point of the projective curve
defined by F (x, y, z) = fd(x, y)+ · · ·+f0(x, y)zd and if the polynomial fr(x, y) factors over
K as

fr(x, y) = (a1x− b1y)
r1 · · · (asx− bsy)

rs

then the first neighbourhood of P is {Pi = (ai : bi : 0)}i=1,...,s. (I.e., the neighbouring
points are determined by the tangents.) To prove this, let u and v be the multiplicities of
(0 : 1 : 0) and (1 : 0 : 0), respectively, on the curve. The quadratic transform of F satisfies

F ′(x, y, 0) = xd−v−ryd−u−rfr(y, x)

(see Theorem 1), and therefore the non–fundamental intersections are given by the factors
of fr(x, y).

The neighbouring points of simple points are always simple points, and if P is an
ordinary r–fold point its first neighbourhood contains exactly r simple points. Therefore,
whenever a neighbourhood tree contains an ordinary singular point P , then the associated
branch of the tree terminates in P . So the neighbourhood graph of any curve is finite.

Let us continue using the notation introduced above. That is, C∗ is an irreducible
projective curve, T = (T1, . . . , Tn) is a sequence of quadratic transformations reducing C∗

and C∗ = C∗
0 , . . . , C

∗
n is the sequence of projective curves generated by T . Let di denote

the degree of C∗
i , Si the set of singularities of C∗

i and Ni the neighbourhood graph of C∗
i

w.r.t. T . Also, for simplicity, when we work with a point P in either Si or Ni we will
denote by rP its multiplicity on the corresponding curve.

THEOREM 2: (1) C∗ is rational if and only if (dn − 1)(dn − 2) =
∑

P∈Sn
rP (rP − 1).

(2) For every i, 0 ≤ i < n,

(di − 1)(di − 2) −
∑

P∈Ni

rP (rP − 1) = (di+1 − 1)(di+1 − 2) −
∑

P∈Ni+1

rP (rP − 1).

(3) C∗ is rational if and only if (d− 1)(d− 2) =
∑

P∈N0
rP (rP − 1).
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Proof: (1) The rationality is invariant under the action of a quadratic transformation.
Therefore, C∗ is rational if and only if C∗

n is rational. But since all the singularities of C∗
n

are ordinary, the curve C∗
n is rational if and only if (dn − 1)(dn − 2) =

∑

P∈Sn
rP (rP − 1).

(2) Let Si = {P1, P2, P3, . . . , Ps}, where P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1). By
abuse of notation we include all the fundamental points in Si, even if they are not singular
points of the curve C∗

i . That, however, does not affect the count in the equation. The points
in Si+1 are the singular neighbouring points of P1, P2, P3 at their first neighbourhood w.r.t.
T , the transformed points Ti+1(Pk) of Pk, 4 ≤ k ≤ s, and possibly three new ordinary
singularities Q1, Q2, Q3 (Theorem 1(4)). Again w.l.o.g. we include Qj in Si+1, even if it is
a simple point. The quadratic transformation does not affect the character and multiplicity
of Pk, 4 ≤ k ≤ s, so we identify Pk and Ti+1(Pk), 4 ≤ k ≤ s. The points Qi, 1 ≤ i ≤ 3, do
not have any neighbouring singularities. So the equation is equivalent to

(di − 1)(di − 2) −
3∑

j=1

rPj
(rPj

− 1) = (di+1 − 1)(di+1 − 2) −
3∑

j=1

rQj
(rQj

− 1)

(compare Fig. 1). But this follows immediately from the relations

di+1 = 2di −
3∑

j=1

rPj
, rQj

= di −
3∑

k=1

k 6=j

rPk
, 1 ≤ j ≤ 3.

(3) The statement follows immediately from (1) and (2). ⊔⊓

Neighborhood graphs:

Ni :
P1 P2 P3 P4 Ps

• • • • · · · · · · •

Ni+1 :
P4 Ps Q1 Q2 Q3

◦ ◦ ◦ • · · · · · · • • • •

Fig. 1

In general, we will not compute the whole sequence of transform curves of the given
curve C∗. Instead, we will act in an equivalent way: Let {P1, . . . , Ps} be the set of all
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the non–ordinary singular points of the curve C∗ of degree d. It is clear that for every
Pk there always exists a sequence of quadratic transformations T (Pk) = (T1,k, . . . , Tnk,k)
reducing C∗ to a curve having only ordinary singularities and such that Pk is moved to
a fundamental point by the action of T1,k. Then, for every Pk, we only compute the
sequence T (Pk) till all the neighbouring points of Pk w.r.t. T (Pk) have been determined,
that is till another Pk′ is moved to a fundamental point. Let us say that this sequence is
T ∗(Pk) = {T1,k, . . . , Trk,k}, rk ≤ nk, and it generates the sequence of curves

C∗T1,k

−→C∗
1 (Pk)

T2,k

−→· · ·
Trk,k

−→C∗
rk

(Pk),

where in general C∗
rk

(Pk) can have non–ordinary singularities, but these are not singular
neighbouring points of Pk. Then at the end of this process we have

C∗ −→ C∗
1 (P1) −→ · · · −→ C∗

r1
(P1),

· · · · · · · · ·
C∗ −→ C∗

s (Ps) −→ · · · −→ C∗
rs

(Ps).

LEMMA 2: Let P1, . . . , Ps be the singularities of the projective curve C∗. Let S =
{P1, . . . , Ps} ∪N(P1) ∪ . . . ∪N(Ps), where N(Pk) is the set of all the neighbouring singu-
larities of Pk w.r.t. T ∗(Pk) as above. For every P ∈ S let rP denote the multiplicity of P .
Then C∗ is rational if and only if (d− 1)(d− 2) =

∑

P∈S rP (rP − 1).

Proof: Taking into account the result stated in the third statement of Theorem 2, it is
enough to note that the multiplicity of a neighbouring point does not depend on the
reduction process of other singularities. ⊔⊓

Thus, the rationality of an irreducible affine algebraic plane curve C can be determined
computationally by analyzing the multiplicities of the singularities and neighbouring sin-
gularites of its associated projective curve C∗.

Algorithm RATIONALITY
The input is an irreducible algebraic plane curve C of degree d, defined by the irreducible
polynomial f(x, y), and the output is the decision of the rationality of C.

(1) Compute the homogeneous polynomial F (x, y, z) corresponding to f .
(2) Determine, using the quadratic transformation techniques explained above, the neigh-

bourhood graph N of the projective curve C∗ defined by F , computing also the mul-
tiplicity rP of every point P in N .

(3) Set g = (d− 1)(d− 2) −
∑

P∈N
rP (rP − 1).

(4) If g = 0, then return “C is rational”, otherwise return “C is not rational”. ⊔⊓

III. Parametrization methods

In this chapter let us assume that the irreducible curve C∗ of degree d defined
by F (x, y, z) = 0 is rational. We describe methods for actually computing a rational
parametrization.

If C∗ has a (d − 1)–fold point, then it is rational and a parametrization can be de-
termined by cutting C∗ with lines passing through this (d − 1)–fold point. By Bezout’s
theorem there will be exactly one additional intersection point depending on the slope of
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the line, yielding the desired parametrization. This idea may be generalized. In the general
situation one can also construct a pencil of curves such that for almost every curve in the
pencil all its intersection points with C∗, except one, are predetermined. Moreover, all the
predetermined intersection points are the same for every curve in the pencil. Thus, if one
computes the intersection points of a generic element of the pencil with C∗, the expression
of the unknown intersection point gives the parametrization of the curve by means of the
parameter defining the pencil.

Let us assume that D∗ is a generic representative of a pencil of curves of degree a.
Then in general D∗ has a · d intersections with C∗. We postulate that D∗ satisfies the
properties:

(1) every r–fold singular point on C∗ is an (r − 1)–fold point on D∗,

(2) every s–fold singular neighbouring point of C∗ is an (s−1)–fold neighbouring point
of D∗ w.r.t. the same sequence of transformations,

(3) there exist ad− (d− 1)(d− 2) − 1 simple points on C∗ that are also simple points
on D∗,

(4) C∗ and D∗ do not have a common component.

In this way, we force D∗ to have some specific common points with C∗. In the sequel, we
will refer to these points as the fixed common points of C∗ and the pencil. The intersection
multiplicity of C∗ and D∗ at the singular points P of C∗ (including the neighbouring ones)
is at least

∑
rP (rP − 1) = (d − 1)(d − 2), where rP is the multiplicity of P on C∗. So

by condition (3) we fix just so many simple intersection points of C∗ and D∗ as to leave
at most one intersection point undetermined. This approach of course works only if the
formula in (3) is nonnegative, i.e. if a ≥ d− 2.

Pencil of degree d− 2 or d− 1

Since C∗ is irreducible and the degree of D∗ is less than d, condition (4) is obviously
satisfied for any pencil of degree d−2 or d−1. One can prove as follows that almost every
curve in a pencil satisfying the requirements (1) – (3) has exactly da−1 intersections with
C∗ at the fixed common points, and therefore (by Bezout’s theorem) almost every curve
in the pencil meets C∗ in one additional point.

LEMMA 3: The pencil of curves D∗ of degree a ∈ {d − 2, d − 1} satisfying (1) – (4)
can be effectively computed and the coefficients of the pencil are polynomials in one free
parameter. Almost every curve in the pencil intersects C∗ in one additional point and for
every simple point Q on C∗ which is not one of the fixed common points there exists a
curve in the pencil intersecting C∗ at Q.

Proof: By S let us denote the set of singularities of C∗, including the neighbouring singular-
ities. By rP we denote the multiplicity of a point P in S (on either C∗ or the corresponding
quadratic transformation of C∗). Then if N is the number of intersections of C∗ and D∗

at the fixed common points, N is bounded from below by

N ≥
∑

P∈S

rP (rP − 1) + ad− (d− 1)(d− 2) − 1.

Since C∗ is rational we may substitute (d− 1)(d− 2) for the sum in the formula, thus
getting N ≥ ad− 1. On the other hand D∗ satisfies (4). Therefore, according to Bezout’s
theorem,

da− 1 ≤ N ≤ da.
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Now let us deal with the actual construction of the pencil. In order to describe the
process for obtaining the pencil of degree a we suppose that Q is a fixed simple point on
C∗, that P is an r–fold point of C∗ (r > 1), and that P ′ is an s–fold neighbouring point of
P (s > 1), lying on some transform of C∗. (Observe that condition (4) is always satisfied.)

Note that a curve of degree a has m = (a+1)(a+2)/2 coefficients. Let u1, . . . , um be
the power products of degree a in the variables x, y, z. Then, ifH denotes the homogeneous
polynomial defining a generic curve D∗ in the pencil, H may be written as

H(x, y, z) = a1u1 + · · ·+ amum,
where the ai are undetermined coefficients.

First we force Q to be a point on D∗ by setting H(Q) = 0. We force P to have
multiplicity at least r − 1 on D∗, and P ′ to be a neighbouring point of P of multiplicity
at least s − 1 on D∗. This is achieved by setting the appropriate derivatives of H or its
transform at P or P ′, respectively, equal to zero. All these conditions lead to exactly m−2
linear equations in the coefficients of H.

On the other hand, the number of independent coefficients defining D∗ is m−1 (one of
the coefficients in the homogeneous polynomial H can be chosen to be 1). Consequently,
if we prove that the obtained linear system of m − 2 equations has maximum rank, a
solution of it by means of a parameter t will achieve the expression of the pencil depending
polynomially only on t. To justify that the m−2 equations are independent, let us assume
that the rank of the system is m− ǫ, with ǫ > 2. Then ǫ−2 equations can be deleted from
the system. Solving the new system, we obtain a pencil depending on ǫ − 1 parameters.
So if we take two new simple points lying on C∗, and since the pencil depends on at least
two parameters, we can force the pencil to pass through these two new simple points. But
then any curve in the pencil cuts C∗ at least da+ 1 times, which is impossible according
to Bezout’s theorem.

Now we see that the linear conditions derived from the fixed common points imply
that Q is a point of multiplicity 1 on D∗, that P is an (r−1)–fold point on D∗, and that P ′

is an (s− 1)–fold neighbouring point of P on D∗. Suppose that one of the fixed common
points has a higher multiplicity than the desired one. This implies that although we have
the same number of independent equations, C∗ and D∗ meet on the fixed common points
at least da times. Thus, we can apply the same argument as above, taking a new simple
point on C∗ and forcing D∗ to pass through it. Therefore, all the fixed common points
have exactly the desired multiplicity on D∗.

Finally, if for a given curve D∗ in the pencil N = da, C∗ and D∗ must have a common
tangent at some fixed common point. But this situation can occur only in finitely many
cases, because we have fixed only finitely many common points and the coefficients of D∗

are polynomials in one parameter t. Therefore, almost every curve in the pencil intersects
C∗ in one additional point.

Since D∗ depends on one parameter t, we can force D∗ to pass through any simple
point P on C∗ which is not a fixed common point. ⊔⊓

Pencil of degree d

We show that it is also possible to work with a pencil of curves of degree d.

LEMMA 4: The pencil of curves D∗ of degree d satisfying (1) – (4) can be effectively
computed and the coefficients of the pencil are polynomials in one free parameter. Almost
every curve in the pencil intersects C∗ in one additional point and for every simple point
Q on C∗ which is not one of the fixed common points there exists a curve in the pencil
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intersecting C∗ at Q.

Proof: Let H be the homogeneous polynomial defining D∗. Then the number of coefficients
of H is m = (d + 1)(d + 2)/2. From the conditions forcing all the simple, singular, and
neighbouring fixed common points to have at least the required multiplicities on D∗ we
obtain a linear system E in the coefficients of H with m− 3 equations.

So now let us see how the condition (4) can be fulfilled. We assume that P is the
subvectorspace of K

m defined by the solutions of the linear system E. It is clear that the
dimension of P is at least three and that the vector c formed with the coefficients of C∗

belongs to P. In order to see that dim(P) = 3, let V = {v1, . . . , vk} be a basis of P. There
exist λ1, . . . , λk ∈ K, not all zero (say λ1 6= 0), such that c = λ1v1 + · · · + λkvk. Now if
k > 3, consider the vector c′ = t2v2 + · · · + tkvk, with ti some parameters. Since λ1 6= 0
and V is linearly independent, for no set of values for the parameters t2, . . . , tk does there
exist a µ ∈ K such that c = µc′. Therefore, since C∗ is irreducible, for no values of the
parameters do the curves C∗ and C∗′ have a common component, where C∗′ is the curve
defined by c′. Thus, according to Bezout’s theorem, C∗ and C∗′ have d2 intersections.
But this is impossible, because they already have (d − 1)(d − 2) + 3(d − 1) = d2 − 1
fixed intersections and C∗′ depends on at least two independent parameters. Therefore,
dim(P) = 3 and V = {v1, v2, v3}. Now we let D∗ be the pencil of curves of degree d
whose coefficient vectors belong to the subvectorspace of K

m generated by V ′ = {v2, v3},
where c = λ1v1 + λ2v2 + λ3v3 and λ1 6= 0. In this way, every curve of D∗ depends on two
parameters. Since we are working with homogeneous polynomials, we can always consider
that one of those parameters (e.g. the one associated with vs) is 1. Therefore, D∗ depends
on only one independent parameter t. In this way we have forced the pencil D∗ to satisfy
the condition (4), because C∗ cannot be a curve in the pencil.

To prove thatD∗ is exactly the required pencil, it only remains to show that the simple,
singular, and neighbouring fixed common points have exactly the required multiplicities
on D∗. The argument is the same as the one for the pencil of degree d− 1 or d− 2 and it
is left to the reader.

Again by the same argument as in the previous section, one proves that for almost
every curve in the pencil its number of intersections with C∗ at the fixed common points
is exactly d2 − 1. Finally, we remark that since D∗ depends on one parameter t, for every
point P on C∗ but the fixed common ones, there exists a curve in the pencil passing also
through P . ⊔⊓

In the sequel, when we will refer to a pencil D∗ of curves of degree a, where a is d, d−1
or d−2, we will assume that such a pencil has been constructed in the way described above.

Determination of intersection points

Having determined the pencil D∗, we want to compute a formula for the unknown
intersection point of an arbitrary curve in the pencil with the given rational curve C∗. By
resultant computations we will derive the rational parametrization from this formula. First
we quote some results giving information on how a common point of two curves affects
the resultant of the polynomials defining the curves. Later we will apply these results to
give a complete factorization of the resultant of F and H, where F defines the curve C∗

and H defines the pencil D∗. In the sequel we denote by Resv(A,B) the resultant of the
polynomials A and B w.r.t. the variable v. For future reference we quote a statement from
Walker (1950).
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LEMMA 5: Let f(x, y) and h(x, y) be the polynomials defining the affine curves C1 and C2,
respectively. Then if C1 and C2 have no intersection point on the x–axis except possibly
at the origin, the resultant of f and h with respect to x has 0 as a root of multiplicity
equal to the number of intersections of C1 and C2 at the origin. ⊔⊓

For technical reasons we need the following lemma.

LEMMA 6: Let F (x, y, z) and H(x, y, z) be polynomials over K having no common factor.
Then the resultant w.r.t x of F (x+ λy+ µz, y, z) and H(x+ λy+ µz, y, z) is independent
of λ and µ.

Proof: Let R(y, z, λ, µ) be the resultant of F (x + λy + µz, y, z) and H(x + λy + µz, y, z)
w.r.t. x. F and H have no common factor, so Resx(F,H)(y, z) does not vanish and hence
is a polynomial over K. Thus, since R(y, z, 0, 0) = Resx(F,H)(y, z), R can be written as

R(y, z, λ, µ) = U(y, z) +R′(y, z, λ, µ) ∈ K[y, z][λ, µ],
where U(y, z) 6= 0 and R′(y, z, 0, 0) = 0. (Note that U(y, z) = Resx(F,H)(y, z).) Now let
us assume that R′ is not identically zero. Then R′ depends on at least one of the variables
λ and µ, say µ. Thus, R′ is a univariate polynomial of positive degree in µ, with coefficients
in K[y, z, λ]. Therefore, there exist y0, z0, λ0 ∈ K such that

U(y0, z0) ·R
′(y0, z0, λ0, µ) 6= 0.

R(y0, z0, λ0, µ) ∈ K[µ] and degµ(R(y0, z0, λ0, µ)) ≥ 1. Since K is algebraically closed,
there exists µ0 ∈ K such that R(y0, z0, λ0, µ0) = 0. Thus, the polynomials F (x +
λ0y0 + µ0z0, y0, z0) and H(x + λ0y0 + µ0z0, y0, z0) have a common root, and hence
F (x, y0, z0) and H(x, y0, z0) also have a common root. This, however, is impossible since
Resx(F,H)(y0, z0) = U(y0, z0) 6= 0. ⊔⊓

Now, returning to our problem, let C∗ be an irreducible projective rational curve of
degree d with defining polynomial F and let D∗ be the generic representative of the pencil
of a–degree curves with defining polynomial H, where a ∈ {d− 2, d− 1, d}. Let t be the
independent parameter of D∗. Let us also suppose that

Pi = (λi, µi, ρi), 1 ≤ i ≤ n,
are the singular points of C∗, where Pi is a point of multiplicity ri on C∗, and that

Qi = (λ̄i, µ̄i, ρ̄i), 1 ≤ i ≤ ad− (d− 1)(d− 2) − 1 =: M(a)
are the fixed common simple points of C∗ and D∗. Let

r̄i := ri(ri − 1) +
∑

P∈N(Pi)

rP (rP − 1), 1 ≤ i ≤ n,

where N(Pi) is the set of neighbouring points of Pi w.r.t. C∗ and some sequence of
quadratic transformations and where rP is the multiplicity of the neighbouring point P .
With this notation we can formulate the theorem giving the complete factorization of the
resultants of F and H.

THEOREM 3: With the notation introduced above, there exist polynomials mi(t), ni(t),
1 ≤ i ≤ 3, in K[t], such that for almost all t ∈ K the following holds:
(1) If (1 : 0 : 0) is not on C∗, then

Resx(F,H) =
n∏

i=1

(ρiy − µiz)
r̄i ·

M(a)
∏

i=1

(ρ̄iy − µ̄iz) · (m1(t)y − n1(t)z).

(2) If (0 : 1 : 0) is not on C∗, then

Resy(F,H) =
n∏

i=1

(ρix− λiz)
r̄i ·

M(a)
∏

i=1

(ρ̄ix− λ̄iz) · (m2(t)x− n2(t)z).
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(3) If (0 : 0 : 1) is not on C∗, then

Resz(F,H) =

n∏

i=1

(µix− λiy)
r̄i ·

M(a)
∏

i=1

(µ̄ix− λ̄iy) · (m3(t)x− n3(t)y).

Proof: We will only prove the first part of the theorem, parts (2) and (3) can be obtained
analogously.

Almost every curve in the pencil D∗ intersects C∗ in the fixed common points exactly
da− 1 times. So for almost every t ∈ K there exists exactly one new common point of C∗

and D∗. Let us assume that wt = (wt
1 : wt

2 : wt
3) is the expression of this new point, where

wt
i are some functions depending on t.

Since C∗ and D∗ have no common components, the resultant of F and H w.r.t. x
is not identically zero, and hence Resx(F,H) is a homogeneous polynomial of degree da.
Resx(F,H) factors into linear factors over K.

If Resx(F,H)(b1, b2) = 0 for some b1, b2 ∈ K, with b1 and b2 not simultaneously zero,
then F (x, b1, b2) and H(x, b1, b2) have a common factor. But K is algebraically closed, so
this common factor has a root b0 ∈ K, and (b0 : b1 : b2) is a common point of C∗ and D∗.
Conversely, if (b0 : b1 : b2) is a common point of C∗ and D∗, Resx(F,H)(b1, b2) = 0 with
(b1, b2) a non–trivial solution, because it has been assumed that (1 : 0 : 0) is not on C∗.
Consequently, the resultant can be factorized as

Resx(F,H) =

n∏

i=1

(ρiy − µiz)
ǫi ·

M(a)
∏

i=1

(ρ̄iy − µ̄iz)
δi · (wt

3y − wt
2z)

γ ,

where ǫi, δi and γ are some positive integers.

Now, let us consider a factor (b2y − b1z) of Resx(F,H). W.l.o.g. we suppose that
b2 6= 0. There exists at least one fixed common point P = (b0 : b1 : b2) generating this
factor. Furthermore, there exists a line L : c0x+ c1y+ c2z = 0, c0 6= 0, such that P is on
L and L does not pass through any other common point. By the change of coordinates

x′ = c0x+ c1y + c2z, y
′ = y − (b1/b2)z, z

′ = (1/b2)z

the point P is sent to the origin and L is sent to the x–axis, i.e. the image of no other
common point has the x–coordinate 0. On the other hand, by Lemma 6, the resultant
w.r.t. x′ of the transformed polynomials is Resx(F,H)(y′+b1z

′, b2z
′), which has the factor

y′ to the same multiplicity as Resx(F,H)(y, z) has the factor (b2y − b1z). Let us assume
that f(x′, y′) and h(x′, y′) are the polynomials obtained when z′ is evaluated to 1 in the
transformations of F and H, respectively. Thus, the affine curves defined by f(x′, y′)
and h(x′, y′) have no common point on the x′–axis, with the exception of the origin.
Therefore, according to Lemma 5, these affine curves meet at the origin as many times
as the multiplicity of y′ in Resx′(f, h)(y′) = Resx(F,H)(y′ + b1, b2). Thus, the number of
intersections of these affine curves at the origin is the multiplicity of the factor (b2y− b1z)
in Resx(F,H)(y, z). Finally, since the number of intersections at P for almost every curve
in the pencil and C∗ is either r̄i or 1, depending on whether P is a singular or a simple
common point, it follows that the multiplicity of (b2y − b1z) is the claimed one.

What remains to be seen is that the functions wt
i are polynomials. But this follows

from the fact that F,H ∈ K[t][x, y, z], and hence Resx(F,H) ∈ K[t][y, z]. ⊔⊓
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COROLLARY: Let f(x, y) = F (x, y, 1), h(x, y) = H(x, y, 1). Then

Resx(f, h) =
n∏

i=1

(ρiy − µi)
r̄i ·

M(a)
∏

i=1

(ρ̄iy − µ̄i) · (m1(t)y − n1(t)),

Resy(f, h) =

n∏

i=1

(ρix− λi)
r̄i ·

M(a)
∏

i=1

(ρ̄ix− λ̄i) · (m2(t)x− n2(t)).

m1(t), m2(t) are not identically equal to zero.

Proof: The factorization of the resultants follows immediately from Theorem 3 and the
evaluation homomorphism z = 1, which can be applied before or after the resultant com-
putation. m1(t) cannot be identically equal to zero, for otherwise at the roots of n1(t) one
could choose any value for y to get an intersection point of C and D(t). ⊔⊓

THEOREM 4: Let C∗ and D∗ be as above, and f(x, y) = F (x, y, 1), h(x, y) = H(x, y, 1). If
(u(t)x− v(t)) and (ū(t)y− v̄(t)) are the factors of Resy(f, h) and Resx(f, h) depending on
t, respectively, then

(
x(t) = v(t)/u(t), y(t) = v̄(t)/ū(t), z(t) = 1

)
is a parametrization of

C∗.

Proof: As can be seen from the Corollary to Theorem 3, the factors (u(t)x − v(t)) and
(ū(t)y− v̄(t)) of Resy(f, h) and Resx(f, h), respectively, correspond to a common point of
C∗ and D∗ for almost every value of t. Therefore, there exist functions A(t), B(t) such
that for almost every t ∈ K, the point (v(t) : B(t) : u(t)) = (A(t) : v̄(t) : ū(t)) is on
the curve C∗. So for almost every t ∈ K there exists a non–zero constant ρ such that

(v(t), B(t), u(t)) = ρ · (A(t), v̄(t), ū(t)). This leads to B(t) = ρ · v̄(t) = u(t)
ū(t)

· v̄(t). Thus, for

almost every t ∈ K, the point

u(t) · (
v(t)

u(t)
:
v̄(t)

ū(t)
: 1) = (

v(t)

u(t)
:
v̄(t)

ū(t)
: 1)

is on C∗.
On the other hand, for every point P on C∗ distinct from the fixed common points

one can obtain a curve in the pencil D∗ such that P is the new intersection point between
C∗ and the chosen curve in the pencil. To achieve that, one just has to evaluate the
polynomial H defining D∗ at the point P and determine a root t0 of the result. Then the
point P is

(
v(t0)

u(t0)
:
v̄(t0)

ū(t0)
: 1). ⊔⊓

To finish this chapter, we give an outline of an algorithm for computing a rational
parametrization of an irreducible affine rational curve.

Algorithm PARAMETRIZE
The input is an irreducible affine rational curve C of degree d, defined by the irreducible
polynomial f(x, y). The output is a rational parametrization of C.

(1) Compute the homogeneous polynomial F (x, y, z) corresponding to f(x, y).
(2) Determine the singularities of the projective curve C∗ defined by F , including the

neighbouring ones, and their multiplicities. (Note that if the rationality of C has
been decided using the algorithm RATIONALITY, this information has already been
obtained.)
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(3) Choose a in {d− 2, d− 1, d}, and determine ad− (d− 1)(d− 2) − 1 simple points on
C∗.

(4) Determine the pencil D∗
a as it has been described above. Let H(x, y, z) be the poly-

nomial defining the pencil, and h(x, y) = H(x, y, 1).

(5) Let S1(y) be the primitive part of Resx(f, h) with respect to t, i.e. view Resx(f, h)
as a univariate polynomial in t and eliminate the common factors of the coefficients;
let S2(x) be the primitive part of Resy(f, h) with respect to t. By the Corollary to
Theorem 3 S1(y) is linear in y and S2(x) is linear in x.

(6) Solve the linear system of equations S1(y) = 0, S2(x) = 0, where x, y are the un-
knowns. Let (R1(t), R2(t)) be the solution.

(7) Return the parametrization (R1(t), R2(t)). ⊔⊓

The algorithm PARAMETRIZE always returns a proper parametrization in the sense
of Sederberg (1986). Let the curve C be defined by the polynomial f . If P = (x(t) =
u1(t)
v1(t)

, y(t) = u2(t)
v2(t)

) is the parametrization of C computed by PARAMETRIZE, then u1, v1
are relatively prime, u2, v2 are relatively prime, max{degt(u1), degt(v1)} = degy(f) and
max{degt(u2), degt(v2)} = degx(f).

IV. Symbolic treatment of the rationality problem

In this chapter and also in the subsequent ones we start with an irreducible curve
C given by a polynomial f(x, y) ∈ F[x, y], where F is a computable field of characteristic
0, i.e. all the field operations are computable. We do not assume that F is algebraically
closed.

The algorithm RATIONALITY computes the neighbourhood graph of a curve and
decides its rationality depending on the multiplicities of the points in the neighbourhood
graph. Therefore, one only needs to compute the singular points of the curve, including
the neighbouring ones, their multiplicities and characters.

For symbolically treating the rationality problem we decompose the set of singularities
of the given curve as a union of special families of points such that the neighbourhood
graph, and therefore the genus, can be computed without introducing algebraic numbers.
We call such a decomposition a “standard decomposition”. The basic idea of this approach
is to work simultaneoulsy with all the points in the same family, determining a symbolic
neighbourhood graph for each family.

Standard decomposition of the set of singularities

We deal with the affine singularities of the curve C∗ (for singularities at infinity one
just has to dehomogenize the defining polynomial F suitably). So in fact we consider the
singular points of C. For this purpose let us assume w.l.o.g. that the defining polynomial
f satisfies the conditions

• the coefficient of yd in f is nonzero,

• if f(x0, yi) = ∂f
∂x

(x0, yi) = 0 for i = 0, 1 then y0 = y1.

This situation can be achieved algorithmically by a suitable change of coordinates, see
for instance Sakkalis & Farouki (1990).
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Now for i ≥ 1 let us consider the polynomials

B̄i = gcd(Resy(f,
∂f

∂xi
),Resy(f,

∂f

∂xi−1y
), . . . ,Resy(f,

∂f

∂yi
)),

Bi =
B̄i

gcd(B̄i, B̄′
i)
,

Āi =
Bi

Bi+1
.

Note that since C has finitely many singularities there can only exist finitely many non–
constant polynomials Āi. The x–coordinates of the (i + 1)–fold affine points of C are
exactly the roots of Āi. Finally, we factorize the polynomials Āi to detect the rational
singular points of the curve. In fact, all the subsequent operations can be carried out
without this requirement, but we do not want to investigate this here.

The next step consists of applying the Gröbner basis algorithm or polynomial remain-
der sequences, Kalkbrener (1990), to the systems

{f = 0,
∂f

∂x
= 0, Āi = 0}

to express the affine singularities of C as

⋃

i∈I

{(
α,
mi(α)

ni(α)

)}

pi(α)=0
,

where mi, mi, pi ∈ F[x], pi is irreducible, and each family of points contains only affine
singularities of the same multiplicity. Repeating this process for singular points at infinity,
we finally get a decomposition of the set of singularities of the projective curve C∗ as

⋃

i∈I

{
(m

(1)
i (α) : m

(2)
i (α) : m

(3)
i (α))

}

Ai(α)=0
, (∗)

where m
(1)
i , m

(2)
i , m

(3)
i , Ai ∈ F[x], Ai is irreducible, and each family of points contains only

singularities of the same multiplicity. We will then say that the set of singularities is
decomposed in standard form, (∗) is a standard decomposition of the set of singularities of
C∗, and the families of points in (∗) are standard families.

Character of standard families

In order to compute the neighbourhood graph of C∗ we still need to know the character
of the singularities. However, this can be achieved easily because each standard family can
only contain singularities of the same character. More precisely, we give the following
algorithmic criterium: Take a generic representative Pα of the family Fi of r–fold points
defined by Ai(α), and move Pα to the origin (we assume for simplicity that the points of Fi

are not at infinity). Let F1(x, y, z, α) be the transformation of F (x, y, z) after this change
of coordinates, and let T (x, y, α) be the coefficient of zd−r in F1. Compute DT (α) =
discriminantx(T (x, 1, α)). Now, since Ai is irreducible, the family Fi contains only points
of the same character. Furthermore, Fi is a family of ordinary singularities if and only if
DT (α) 6= 0 (mod Ai).
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Expansion of the neighbourhood graph

Finally, we deal with the computation of the neighbourhood graph. Given a family
F of singular points of C∗, the idea consists of computing the neighbourhood graph of F ,
that is a generic representative of the families of graphs derived from the points of F .

To be more precise, let F = {(m(1)(α) : m(2)(α) : m(3)(α))}A(α)=0 be a family of
r–fold non–ordinary points in the standard decomposition of the set of singularities of C∗.
We take a generic representative Pα = (m(1)(α) : m(2)(α) : m(3)(α)) of F and apply a
change of coordinates such that Pα is moved to the origin, no irregular line is a tangent
to C∗ at Pα, and the irregular points (0 : 1 : 0), (1 : 0 : 0) are not points of C∗. Let us
denote by F1(x, y, z, α) the polynomial defining the transformed curve, and by T (x, y, α)
the coefficient of zd−r in F1. Then the first neighbourhood of Pα can be expressed as

{(β : 1 : 0)}A1(β,α)=0 ,

where

A1(x, α) =
T (1, x, α)

gcd(T (1, x, α), ∂T (1,x,α)
∂x

)
.

Hence, the set of all the singularities in the first neighbourhood of every point in F can be
written as

F1 =
{
{(β : 1 : 0)}A1(β,α)=0

}

A(α)=0
.

We say that F1 is the first neighbourhood of F .
In order to compute the second neighbourhood of F we need to obtain the standard

decomposition of F1 as well as the character of the corresponding families. To achieve this,
one can apply the previous argument to the quadratic transform of C∗. However, since F1

has a very special structure, one can achieve these results more efficiently by taking into
account that a polynomial G ∈ F[x, y, z] vanishes on all the points of F1 if and only if the
remainder w.r.t. s of dividing G(s, 1, 0) by A1(s, α) is zero modulo A(α).

Analogously, one can determine the neighbourhoods of F of higher order. Finally, the
i–th neighbourhood of the family F will be decomposed as a union of families of the form

{· · · {{(αi : 1 : 0)}Ai(α1,...,αi)=0} · · ·}A1(α1)=0 ,

where Ai ∈ F[x1, . . . , xi], Ai is irreducible, and all the singularities in the family are of the
same multiplicity.

V. Symbolic treatment of the parametrization problem

The input of PARAMETRIZE is an irreducible rational affine curve C of degree d,
defined by the irreducible polynomial f(x, y). Let C∗ be the projective curve associated
with C and F ∈ F[x, y, z] its defining homogeneous polynomial. We assume that the sin-
gular points of C∗, including the neighbouring ones, and their multiplicities and characters
have already been determined by an application of the algorithm RATIONALITY.

The difficulties appear in the construction of the pencil used in the parametrization
algorithm. More precisely, difficulties can appear in:
(1) the selection of the fixed simple points on C∗,
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(2) passing the pencil through the fixed simple points on C∗,
(3) passing the pencil through the singularities of C∗, including the neighbouring ones.

Let us start with the selection of the fixed simple points on C∗. In the study of this
situation, let us assume that D∗

a is the pencil of curves of degree a, a ∈ {d−2, d−1, d}, that
we have to construct, and that H is its definining homogeneous polynomial. In determining
H, we must guarantee that C∗ and D∗

a have exactly M(a) = (a − d+ 2)d+ (d− 3) fixed
common simple points in addition to the common singular points. A very first approach
to compute the M(a) simple points may be the following process:
(1) Take a line L = (a1 + b1t : a2 + b2t : a3 + b3t) not cutting C∗ only at singular points.
(2) Cut C∗ with the line L, that is compute p(t) = F (a1 + b1t, a2 + b2t, a3 + b3t).
(3) Compute an irreducible monic factor q(t) of p(t) such that none of the values of t

corresponding to a singular point is a root of q(t). Then (a1+b1β : a2+b2β : a3+b3β),
where q(β) = 0, is a simple point on C∗.
Repeating this process M(a) times, one obtains all the necessary simple points, each

one of them depending on a different algebraic number β of degree at most d.
On the other hand, one can also apply the classical method of Hilbert & Hurwitz

(1890) and Poincaré (1901), based on birational transformations, to compute the M(a)
fixed points. Using this approach one only introduces algebraic numbers of degree at most
2. However, both methods can be very expensive. In the following we describe a process
based on the idea of working with whole classes of conjugate points. Thereby the problem
of constructing the common simple points is reduced to the determination of only one
simple point on the curve C∗. This point may be computed by means of the methods
mentioned above.

Until now we have been speaking about a pencil D∗
a of degree a, where a could be

d−2, d−1 or d, but we have made no remark about the advantages of using one or the other
degree. Moreover, we have presented the algorithm PARAMETRIZE for an arbitrary a
in {d − 2, d − 1, d}. If we are working numerically, we obviously choose a = d − 2, since
d− 2 is the smallest degree of the pencil and the number of simple points that have to be
determined is the lowest for this choice of a. If we work symbolically and use any of the
methods above for determining the simple points, we also want to choose a = d− 2, since
this leads to the lowest number of points. However, we will show that although a = d
forces us to work with curves of higher degree and although the number M(a) of common
simple points is higher, only one simple point on C∗ has to be computed explicitly. In the
case a = d− 1 one needs two simple points, and in the case a = d− 2 three simple points
have to be determined, as shown in Sendra & Winkler (1989).

In the sequel we focus on the selection of a pencil of degree d (for pencils of degree
d − 1 and d − 2 the problem can be dealt with analogously). Since a = d, we have to
determine M(d) = 3(d−1) simple points on C∗. Three different whole classes of conjugate
simple points are constructed, each one of cardinality d − 1. First we explain how to
construct these classes of simple points, and afterwards we will show how to deal with
these classes of points in the parametrization problem. The algorithm constructing the
classes of conjugate points works as follows.

Algorithm SIMPLE
The input to SIMPLE is an irreducible rational curve C∗ defined by the polynomial
F (x, y, z) ∈ F[x, y, z] of degree d. The output consists of three distinct whole classes
of conjugate simple points on C∗ of the form {(λiγi + b1 : µiγi + b2 : νiγi + b3)}qi(γi)=0,
i = 1, 2, 3, where qi ∈ F(β)[x]. Each class contains d− 1 points. By classical methods the
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degree of β can be bounded by 2.
(1) Let S be the set of singularities of C∗ (not neighbouring ones).
(2) Let P = (b1 : b2 : b3) be a simple point on C∗. The coordinates of P might be in an

algebraic extension F(β) of F.
(3) Choose λ1, λ2, λ3, µ1, µ2, µ3, ν1, ν2, ν3 ∈ F, such that

(a) P + (λi, µi, νi)s, i = 1, 2, 3, are three different lines,
(b) Ress(q̄i(s), q̄

′
i(s)) 6= 0 for i = 1, 2, 3, where q̄i(s) = F (λis + b1, µis + b2, νis + b3)

and q̄′i denotes the derivative of q̄i w.r.t. s.
(4) For i = 1, 2, 3 set qi(s) := q̄i(s)/s.
(5) Now

{(λiγi + b1 : µiγi + b2 : νiγi + b3)}qi(γi)=0, i = 1, 2, 3

are three distinct whole classes of (d− 1) simple points each on C∗. ⊔⊓

In order to prove the correctness of the algorithm SIMPLE, we first need the following
technical lemma.

LEMMA 7: Let P be a simple point on C∗. There exist at most d(d− 1) tangents to C∗ at
a simple point and passing through P .

Proof: Since the property is geometric, we assume w.l.o.g. that P is the origin (0 : 0 : 1).
If a tangent to C∗ at the simple point Q = (a1 : a2 : a3) passes through P , the coordinates
a1, a2, a3 have to satisfy

∂F

∂z
(a1, a2, a3) = 0, F (a1, a2, a3) = 0.

Since F (x, y, z) is irreducible and since ∂F/∂z has total degree d−1, according to Bezout’s
theorem there are at most d(d− 1) different solutions. ⊔⊓

LEMMA 8: The algorithm SIMPLE is correct.

Proof: Steps (1) and (2) are obviously correct.
Step (3): (b) guarantees that the line Li = P+(λi, µi, νi)s, 1 ≤ i ≤ 3, is not a tangent to C∗

and does not pass through a singular point of C∗. Step (3) can be carried out effectively if
there exist only finitely many elements λi, µi such that q̄i(s) has multiple roots. If q̄i(s) has
multiple roots, the line Li intersects C∗ on a simple point with multiplicity of intersection
higher than 1. Therefore, this can only happen if the line Li is tangent to C∗ at the simple
point. Now we apply Lemma 7 and we see that this can happen only d(d− 1) times.
Step(4): Note that P is one of the d intersection points of C∗ and Li. In q the parameter
value corresponding to P is eliminated.
Step (5): We show that in total the classes of points {(λiγi+b1 : µiγi+b2 : νiγi+b3)}qi(γi)=0

contain exactly 3(d−1) different points. For this purpose we observe first that no singular
point belongs to these families. degs(qi) = degs(q̄i)− 1 = d− 1, so in every class there are
at most d− 1 different points. But q̄i(s) has no multiple root (by (3b)), and therefore also
qi(s) has no multiple root. Thus, every class contains exactly d−1 different simple points.
Finally, since the three lines L1, L2, L3 only intersect at P , all these 3(d− 1) simple points
are different.
Hence, the algorithm SIMPLE is correct. ⊔⊓

In the previous section we have seen how to express the neighbourhood graph of C∗ by
means of classes of conjugate points. Now, also the set of the common fixed simple points
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is expressed in terms of classes of conjugate points by the algorithm SIMPLE. Therefore, in
order to make algorithm PARAMETRIZE work efficiently, we have to be able to pass the
pencil H through any class of conjugate points of C∗, with any multiplicity. The following
theorems deal with this problem.

THEOREM 5: Let F = {(m(1)(α1) : m(2)(α1) : m(3)(α1))}A(α1)=0, m
(1), m(2), m(3), A ∈

F[x], be a class of conjugate points, and G ∈ F[x, y, z]. Then G vanishes on all the points
of F if and only if A(s) divides G(m(1)(s), m(2)(s), m(3)(s)).

Proof: For every root s0 of A, let Ps0
= (m(1)(s0) : m(2)(s0) : m(3)(s0)) be a point of F .

Then G vanishes on Ps0
if and only if s − s0 divides G(m(1)(s), m(2)(s), m(3)(s)). Hence,

G vanishes on the whole family F if and only if A(s) divides G(m(1)(s), m(2)(s), m(3)(s)).
⊔⊓

THEOREM 6: Let F = {· · · {{(αi : 1 : 0)}Ai(α1,...,αi)=0} · · ·}A1(α1)=0, Aj ∈ F[x1, . . . , xj]
for 1 ≤ j ≤ i, i > 1, be a family in the standard decomposition of some (i − 1)–st
neighbourhood of C∗, and G ∈ F[x, y, z].
(i) ideal(A1, . . . , Ai) ∩ F[xi] is generated by a single nonzero element of F[xi].
(ii) Let H(xi) be a generating element of ideal(A1, . . . , Ai) ∩ F[xi]. Then G ∈ F[x, y, z]

vanishes on all the points of F if and only if H divides G(xi, 1, 0).

Proof: (1) Since F is 0–dimensional, there must be a nonzero polynomial in xi vanishing
on F . In F[xi] every ideal is a principal ideal.
(2) Since A1, . . . , Ai are irreducible and determine a 0–dimensional variety V ,
ideal(A1, . . . , Ai) is radical. So g(xi) = G(xi, 1, 0) vanishes on every point in V if and
only if g(x1) ∈ ideal(A1, . . . , Ai) = ideal(H). ⊔⊓

Remark: For i = 2 a resultant computation yields the polynomial H generating
ideal(A1, A2) ∩ F[x2]. However, if i > 2 there might be extraneous solutions in the re-
sultant

Resx1
(Resx2

(. . .Resxi−2
(Resxi−1

(Ai, Ai−1), Ai−2), . . .), Ai).

In this case, a Gröbner basis calculation of A1, . . . , Ai with respect to the lexicographic
ordering with x1 > x2 > · · · > xi yields the generating polynomial H.

From Theorems 5 and 6 it is clear that one can pass a pencil through the singularities,
including the neighbouring ones, and through the simple points, without introducing alge-
braic numbers. Furthermore, the obtained relations among the undetermined coefficients
of the generic representative of the pencil are linear.

Now let us present a new version of the algorithm PARAMETRIZE, where all the
symbolic considerations are incorporated. We consider a d–degree pencil in the process.
For degree d− 1 or d− 2 the algorithm can be designed analogously.

Algorithm PARAMETRIZE-1
The input is an irreducible affine rational curve C of degree d, defined by the irreducible
polynomial f(x, y) ∈ F[x, y]. The output is a rational parametrization of C.
(1) Compute the homogeneous polynomial F (x, y, z) corresponding to f(x, y).
(2) Determine the standard decomposition of the set of singularities of C∗, representa-

tives for the neighbourhood graphs of the standard families, and the multiplicities of
the standard families. (With this information the genus of the curve can be deter-
mined.)
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(3) Let D∗
d be a linear system of curves of degree d, with undetermined coefficients.

(4) (4.1) Using algorithm SIMPLE, compute three different classes of simple points on
C∗, each class containing d− 1 points:

{(λjγj + b1 : µjγj + b2 : νjγj + b3)}qj(γj)=0, j = 1, 2, 3.

(4.2) Determine the linear relations between the coefficients of H (H is the defining
polynomial of the d–degree pencil D∗

d) derived from the fixed common singular
and neighbouring points of C∗ and D∗

d. (Use Theorems 5,6.)
(4.3) Determine the linear relations between the coefficients of H derived from the

fixed common simple points of C∗ and D∗
d by equating

remainders(H(λjs+ b1, µjs+ b2, νjs+ b3), qj(s)), j = 1, 2, 3

to 0.
(4.4) From the system of linear equations obtained in (4.2) and (4.3) construct the

pencil D∗
d as is has been described in Chapter III.

(5) Let S1(y) be the primitive part of Resx(f, h) w.r.t. t and S2(x) the primitive part of
Resy(f, h) w.r.t. t, where h(x, y) = H(x, y, 1).

(6) Solve the linear system of equations

S1(y) = 0, S2(x) = 0,

where x, y are the unknowns. Let (R1(t), R2(t)) be the solution.
(7) Return the parametrization (R1(t), R2(t)). ⊔⊓

Remark: (a) Note that whenever we deal with a family of (singular or simple) points on
the curve C∗, we do not really compute any algebraic numbers, so no algebraic number
will be introduced in the pencil and therefore in the parametrization.
(b) The elimination of the factors corresponding to the fixed common points of the curve
and the pencil can be done as in step (5) or by explicitly dividing by these factors, which
are known in advance. We do not go into the details here, but refer to Sendra & Winkler
(1990).

VI. Examples

In this chapter we illustrate the previous theoretical results by some examples. As
the field of coefficients F we choose the field of rational numbers Q. The purpose of
these examples is to demonstrate the algorithms RATIONALITY, PARAMETRIZE-1,
and SIMPLE. However, we want to emphasize that by using additional knowledge about
the algebraic curves one can achieve parametrizations with smaller integer coefficients. For
additional examples we refer to Sendra & Winkler (1989, 1990).

Example 1:

Let C∗ be the irreducible curve defined by

yz4 +xz4 +2y3z2 +
13

4
xy2z2 +

13

3
x2yz2 +6x3z2 +y5 +

9

4
xy4 +4x2y3 +9x3y2 +4x4y+9x5.
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The standard decomposition of the set of singularities of C∗ is

{(0 : α : −1)}α2+1 ∪ {(α : 2 : 0)}α2+2 ∪ {(−1 : 0 : α)}α2+3,

where all the singular points are of multiplicity 2. So the genus of C∗ is 0 and we proceed
to parametrize the curve.

Let H5 be the generic representative of a 5–degree pencil. We force H5 to pass through
the singularities of C∗ with multiplicity 1. Hence,

remainder(H5(0, s,−1), s2 + 1) = 0,

remainder(H5(s, 2, 0), s2 + 2) = 0,

remainder(H5(−1, 0, s), s2 + 3) = 0.

From this system we obtain 6 linear equations for the undetermined coefficients of H5. As
a rational point on C∗ we take P = (0 : 0 : 1). We consider the following 3 families of 4
simple points each:

F1 = {(α : α : 1 + α)}p1(α)=562α4+470α3+331α2+96α+24=0,

F2 = {(2α : α : 1 + α)}p2(α)=3134α4+958α3+551α2+72α+18=0,

F3 = {(α : 2α : 1 + α)}p3(α)=599α4+298α3+185α2+36α+9=0.

We force H5 to pass through these three families by setting

remainder(H5(t, t, 1 + t), p1(t)) = 0,

remainder(H5(2t, t, 1 + t), p2(t)) = 0,

remainder(H5(t, 2t, 1 + t), p3(t)) = 0.

Equating the coefficients of these remainders to 0 we obtain 12 new linear equation. Finally,
we take a point not on C∗, e.g. (1 : 0 : 0), and we force H5 to pass through it. In this way
we ensure that H5 has no common component with C∗. Solving the system of 19 linear
equations we obtain the expression of the pencil

H5(x, y, z) =

226152tz5 + 260832yz4 − 17160xz4 + 525594ty2z3 − 47115txyz3 + 1283622tx2z3

+ 560274y3z2 + 66495xy2z2 + 1323322x2yz2 − 51480x3z2 + 299442ty4z − 36645txy3z

+ 1380993tx2y2z − 151815tx3yz + 1815498tx4z + 299442y5 + 57915xy4 + 1429428x2y3

+ 115830x3y2 + 1661088x4y.

Finally, computing the primitive parts of the resultants one obtains the parametrization

x(t) =
1396 t (4287454760689 t4 + 4774688480133 t2 + 1219359228516)

429 (28498963997521 t4 + 23133701931912 t2 + 4877436914064)
,

y(t) = −
1047 t (4287454760689 t4 + 3168181401528 t2 + 541937434896)

143 (28498963997521 t4 + 23133701931912 t2 + 4877436914064)
.
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Example 2:

Let C∗ be the irreducible curve defined by

1251

115
y4z3 +

5184

115
xy3z3 +

5354

115
x2y2z3 + x4z3 −

9552

115
xy4z2 −

22496

115
x2y3z2

−
5424

115
x3y2z2 −

32

23
x4yz2 + 192x2y4z +

17472

115
x3y3z −

13824

115
x3y4.

The standard decomposition of the set of singularities of C∗ is

{(0 : 0 : 1)
︸ ︷︷ ︸

P1

} ∪ {(0 : 1 : 0)
︸ ︷︷ ︸

P2

} ∪ {(1 : 0 : 0)
︸ ︷︷ ︸

P3

} ∪ {(1 : 1 : 1)
︸ ︷︷ ︸

P4

} ∪ {(3 : 1 : 2)
︸ ︷︷ ︸

P5

} ∪ {(−1 : 1 : 3)
︸ ︷︷ ︸

P6

},

where P1 is a 4–fold point, P2 and P3 are triple points, and P4, P5, P6 are double points.
Therefore the genus of C∗ is 0 and we proceed to parametrize the curve by means of a
7–degree pencil.

As a rational point of C∗ we take P = (1 : −1 : 1) and we consider the 3 families of 6
simple points each, obtained by intersecting C∗ with the lines

L1 = P + (1 : 1 : 0)t, L2 = P + (1 : −2 : 0)t, L3 = P + (1 : 2 : 0)t.

Finally, in order to guarantee that the pencil has no component in common with C∗, we
let it pass through the point (1 : 0 : 1) not on C∗. With these settings the algorithm
PARAMETRIZE-1 yields the parametrization

x(t) =
10917271 t4 + 38752614 t3 + 51665040 t2 + 30513024 t+ 6718464

270 t3 (419 t+ 288)
,

y(t) = −
10917271 t4 + 38752614 t3 + 51665040 t2 + 30513024 t+ 6718464

18 t (682489 t3 + 1686888 t2 + 1378944 t+ 373248)
.

Conclusion

Although it has been known theoretically for quite some time how the rationality of
an algebraic plane curve can be decided and a rational parametrization can be computed
if one exists, the development of a symbolic algorithm leads to interesting new problems.
For some of these problems, like the selection of different kinds of pencils or the passing of
a pencil through a family of points on a curve without having to compute these points, we
have been able to find new algorithmic ideas. This is one more indication for our opinion
that the development of symbolic algorithms needs an even closer analysis of the problem
at hand.

There are still several open questions in connection with the parametrization of plane
curves. Further research may focus on finding an efficient method for the detection of
rational simple points on curves. The coefficients of a parametrization computed by
PARAMETRIZE-1 can be extremely large. Is it possible to remedy this deficiency by
a reparametrization?
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