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ABSTRACT
The degree of a rational map measures how often the map
covers the image variety. In particular, when the rational
map is a parametrization, the degree measures how often the
parametrization traces the image. We show how the degree
of rational maps between algebraic curves can be determined
efficiently. In the process, we also give a complete proof of
Sederberg’s approach for making a parametrization proper.

1. INTRODUCTION
We are dealing with rational maps between algebraic vari-
eties, in particular algebraic curves. All statements about
such a rational map are meant to hold for almost all points
in the corresponding variety, i.e. for a non-empty (Zariski)
open subset of the variety.

The degree of a rational map φ between two irreducible vari-
eties W1 and W2 measures how often the map covers the im-
age variety, i.e. the cardinality of the generic fibre φ−1(P ),
for P ∈W2. If the degree is 1, this means that the rational
map is rationally invertible, i.e. a birationality.

A rational parametrization of an algebraic variety is a spe-
cial rational map, from a whole affine space onto the variety.
Such a rational parametrization is proper, i.e. 1-1, if the de-
gree of the rational map is 1. In this case the parametriza-
tion traces the variety exactly once.

In general, determining the degree of a rational map can be
achieved by elimination theoretic methods. In the case of
curves, we show that the degree can be computed by a few
gcd computations. In the process, we also give a complete
proof of Sederberg’s approach for making a parametrization
proper (see [?]).
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Related questions of proper reparametrization of curves are
treated in [?]. The relation of the degree of a parametriza-
tion to the implicitization of curves is also analyzed in [?]
and [?].

2. THE DEGREE OF A RATIONAL MAP
In this section we briefly recall some of the basic properties
of the degree of a rational map defined between irreducible
varieties of the same dimension; for further details we refer
to [?] and [?].

Throughout this paper let K be an algebraically closed field
of characteristic 0. Whenever we consider an arbitrary field
L, then by L we denote the algebraic closure of L.

Let W1 and W2 be irreducible varieties over K, such that
dim(W1) = dim(W2). Let φ : W1 → W2 be a rational
map such that φ(W1) ⊂ W2 is dense, i.e. φ is dominant.
Now, we consider the monomorphism φ∗ : K(W2) → K(W1)
induced by φ over the fields of rational functions, and the
field extensions

K ⊂ φ∗(K(W2)) ⊂ K(W1).

Then, since the transcendence degree of field extensions is
additive, taking into account that dim(W1) = dim(W2) and
that φ is dominant, one has that the transcendence degree
of K(W1) over φ∗(K(W2)) is zero, and hence the extension
is algebraic. Moreover, since K(W1) can be obtained by
adjoining to φ∗(K(W2)) the variables of W1, we see that
φ∗(K(W2)) ⊂ K(W1) is finite.

Definition 1. The degree of the dominant rational map
φ from W1 to W2 is the degree of the finite algebraic field
extension φ∗(K(W2) over K(W1), that is

degree(φ) = [K(W1) : φ∗(K(W2))].

Observe that the notion of degree can be used to characterize
the birationality of rational maps as follows.

Lemma 1. A dominant rational map φ : W1 →W2 between
irreducible varieties of the same dimension is birational if
and only if degree(φ) = 1.

Also, taking into account the definition of degree of a ratio-
nal map and that the degree of algebraic field extensions is
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multiplicative, one deduces the following lemma.

Lemma 2. Let φ1 : W1 → W2 and φ2 : W2 → W3 be
dominant rational maps between irreducible varieties of the
same dimension. Then

degree(φ2 ◦ φ1) = degree(φ1) · degree(φ2).

From the computational point of view, one may approach
the determination of the degree of a rational map by com-
puting the degree of the algebraic field extension. However,
the problem can be approached using that the degree of the
map is the cardinality of a generic fibre. Those points where
the cardinality of the fibre does not equal the degree of the
map are called ramification points of the rational map. More
precisely, one may apply the following result (see Proposi-
tion 7.16 in [?]).

Theorem 1. Let φ : W1 → W2 be a dominant rational
map between irreducible varieties of the same dimension.
There exists a non–empty open subset U of W2 such that
for every P ∈ U the cardinality of the fibre φ−1(P ) is equal
to degree(φ).

Thus, a direct application of this result, combined with elim-
ination techniques, provides a method for computing the
degree. More precisely, let W1 ⊂ K

r and W2 ⊂ K
s be ir-

reducible varieties of the same dimension defined over K by
{F1(x̄), . . . , Fn(x̄)} ⊂ K[x̄], and {G1(ȳ), . . . , Gm(ȳ)} ⊂ K[ȳ],
respectively, where x̄ = (x1, . . . , xr), ȳ = (y1, . . . , ys). Let

φ =

„

φ1

φs+1,1
, . . . ,

φs

φs+1,s

«

: W1 →W2

be a dominant rational map, where φi, φs+1,i are polynomi-
als over K, and gcd(φi, φs+1,i) = 1.

Then, the following corollary follows from Theorem 1.

Corollary. Let φ : W1 → W2 be a dominant rational map
between irreducible varieties of the same dimension.

(a) Let b = (b1, . . . , bs) be a generic element of W2. Then
the degree of φ is equal to the cardinality of the finite
set

(

a ∈ W1

˛

˛

˛

˛

˛

φ(a) = b,
s
Y

i=1

φs+1,i(a) 6= 0

)

.

(b) Let a = (a1, . . . , ar) be a generic element of W1. Then
the degree of φ is equal to the cardinality of the finite
set

(

a′ ∈ W1

˛

˛

˛

˛

˛

φ(a′) = φ(a),

s
Y

i=1

φs+1,i(a
′) 6= 0

)

.

3. CASE OF RATIONAL PARAMETRIZA-
TIONS

A rational parametrization of an algebraic variety W is a tu-
ple of rational functions defining a dominant rational map
from an affine space to W . In this section we consider the
particular but important case of rational maps induced by
such rational parametrizations. First we analyze the prob-
lem for general unirational varieties. Afterwards we show
how these results can be improved for the case of rational
curves.

LetW be a unirational variety defined over K by the rational
parametrization

P(t1, . . . , tn) =

„

χ1

χs+1,1
, . . . ,

χs

χs+1,s

«

in reduced form; i.e. gcd(χi, χs+1,i) = 1 for i = 1, . . . , s.
Associated with the parametrization P(t), we consider the
following rational map

φP : K
n −→ W

(a1, . . . , an) 7−→ P(a1, . . . , an)
.

The degree of the parametrization P is the maximum degree
of the rational function components of the parametrization;
that is

degt(P) = max



degt

„

χ1

χs+1,1

«

, . . . , degt

„

χs

χs+1,s

«ff

.

Note that in general degt(P) 6= degree(φP).

Lemma 1 implies that P is proper if and only if degree(φP) =
1. In addition, degree(φP) measures, intuitively speaking,
the number of times that P(t̄) traces W when t̄ takes values
in K

n. This is specially clear when W is a curve. In [?],
the tracing index of plane curve parametrizations (i.e. the
degree of the induced rational map) is analyzed.

Now, for i = 1, . . . , s we introduce the polynomials

Gi(t̄, h̄) = χi(t̄)χs+1,i(h̄) − χi(h̄)χs+1,i(t̄) i = 1, . . . , s

where t̄ = (t1, . . . , tn) and h̄ = (h1, . . . , hn). From the corol-
lary to Theorem 1 we immediately get the following theorem.

Theorem 2. Let b be a generic element of K
n. Then

degree(φP) = Card

0

B

B

B

@

8

>

>

>

<

>

>

>

:

ā ∈ K
n

˛

˛

˛

˛

˛

˛

˛

˛

˛

G1(ā, b̄) = 0,
...

Gs(ā, b̄) = 0,
Qs

i=1 χs+1,i(ā) 6= 0

9

>

>

>

=

>

>

>

;

1

C

C

C

A

.

Remark. Lemma 1 and Theorem 2 provide an algorithmic
criterion for deciding the properness of a rational parame-
trization.

Example. We consider the rational parametrization

P(t1, t2) =

 

`

t42 + t1
´2

t22 + t42 + t1
,

`

t42 + t1
´

t22
t22 + t42 + t1

,

`

t42 + t1
´3

(t22 + t42 + t1)
2

!

.
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In order to compute the degree of the rational map φP , first
we get

{ā ∈ K(b1, b2)
2
|Gi(ā, b̄) = 0, i = 1, 2, 3} =

= {(0, 0), (b1, b2), (b1,−b2)}

Therefore, since the denominator of the rational map van-
ishes at (0, 0), we deduce that degree(φP) = 2. 2

Space Curves

In this subsection we deal with the problem of computing
the degree in the case of space curve parametrizations. In
general, the application of Theorem 2 involves elimination
techniques such as Gröbner bases. We will see in this section
that, in the case of curves, Theorem 2 can be improved and
the degree can be determined by gcd computations.

For this purpose, in the sequel, let D be the rational space
curve defined by the rational parametrization in reduced
form

P(t) =

„

χ1(t)

χs+1,1(t)
, . . . ,

χs(t)

χs+1,s(t)

«

,

let φP be the rational map induced by P , and for i = 1, . . . , s
let

Gi(t, h) = χi(t)χs+1,i(h) − χi(h)χs+1,i(t).

We start by showing that Theorem 2 can be improved for
the case of curves.

Theorem 3. Let b be a generic element of K. Then

degree(φP) = Card

0

B

@

8

>

<

>

:

a ∈ K

˛

˛

˛

˛

˛

˛

˛

G1(a, b) = 0,
...

Gs(a, b) = 0

9

>

=

>

;

1

C

A
.

Proof: Let V1 = {a ∈ K |Gi(a, b) = 0, i = 1, . . . , s}, and
V2 = {a ∈ K |

Qs

i=1 χs+1,i(a) = 0}. We prove that V1∩V2 =
∅. Indeed: let a0 ∈ V1 ∩ V2, then there exists i ∈ {1, . . . , s}
such that χs+1,i(a0) = 0. Hence, χi(b)χs+1,i(a0) = 0. Thus,
since χi(b) is not identically 0, because it is a denominator
of P and b is generic, one gets that χs+1,i(a0) = 0. But this
is impossible since gcd(χi, χs+1,i) = 1.

Finally, since V1 ∩ V2 = ∅, an application of Theorem 2
concludes the proof. 2

Now, we see that the cardinality involved in Theorem 3 can
be computed as the degree of a gcd. For this purpose we
use the following technical lemma, which is proved in [?].

Lemma 3. Let p(t), q(t) ∈ K[t]⋆ be relatively prime such
that at least one of them is non-constant, and let R(h) be
the resultant

R(h) = Rest(p(t) − hq(t), p′(t) − hq′(t)).

Then, E = {b ∈ K |R(b) 6= 0} is non–empty, and for all
b ∈ E the polynomial p(t) − bq(t) is squarefree.

Theorem 4. Let P be a rational parametrization of the
space curve D, and let the polynomials Gi be defined as
above. Then

degree(φP) = degt(gcd(G1(t, h), . . . , Gs(t, h))).

Proof. In order to prove Theorem 4 one just has to see that
the primitive part L(t, h) of gcd(G1(t, h), . . . , Gs(t, h)) w.r.t.
t is square–free. Let us assume that L(t, h) is not square–
free, and let us suppose w.l.o.g. that the first component
of P is non–constant. Then G1, . . . , Gs are not square–free,
either. In particular, there exist non-constant polynomials
M,N ∈ K[t, h], and ℓ ∈ N, ℓ ≥ 2, such that G1 = M ℓN .
Note that, since L is primitive as a polynomial in K[h][t],
one has that M depends on t. Now, consider the set Ω ⊂ K

consisting in all values of h such that χs+1,1(h) 6= 0 and
such that M(t, h) is not a constant polynomial. Observe
that χs+1,1(h) cannot be identically zero because it is a de-
nominator, and that M does depend on t. Therefore, Ω is
a non–empty open subset of K. We consider the polyno-

mial G∗
1(t, h) = χ1(t) −

χ1(h)
χs+1,1(h)

χs+1,1(t) in K(h)[t]. Note

that the image of the first component of P is dense in K.
For every h0 ∈ Ω, since χs+1,1(h0) 6= 0, G∗

1(t, h0) is de-
fined. Moreover, for every h0 ∈ Ω, G∗

1(t, h0) is not square–
free, because M(t, h0) is non–constant, and the polynomials
χ1(t), χs,1(t) are not simultaneosly constant (by assumption
the first component of P is not constant) and coprime. But
this is impossible because of Lemma 3. 2

Applying Theorem 4 and Lemma 1, one gets the following
characterization of the properness of a parametrization that
fits perfectly with Sederberg’s criterion (see [?]).

Corollary. The parametrization P(t) is proper if and only
if degt(gcd(G1(t, h), . . . , Gs(t, h))) = 1.

Example. Let D be parametrized by

P(t) =

„

t2 + 1 + t

t2 + 1
,
t3 + 3 + t

t2 + 2
,
t5 + 1

t2 + 3
,
t2 + t4

t2

«

The polynomials Gi(t, h) are

G1(t, h) = th2 + t− ht2 − h,
G2(t, h) = t3h2 + 2 t3 + 3h2 + th2 + 2 t− h3t2 − 2h3

−3 t2 − ht2 − 2h,
G3(t, h) = t5h2 + 3 t5 + h2 − h5t2 − 3 h5 − t2,
G4(t, h) = t2h2

`

t2 − h2
´

.

Applying Theorem 4 one deduces that

degree(φP) = degt(gcd(G1, G2, G3, G4)) = degt(t− h) = 1.

Therefore, P is proper. 2

In addition to the previous analysis, we recall how the degree
of φP behaves under reparametrizations and how it is related
to the degree of the curve.

Lemma 4. Let R(t) ∈ K(t) be a non-constant rational
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function, and let φR : K → K be the rational map induced
by R(t). Then degree(φR) = degt(R(t)).

Proof: LetR(t) = p(t)
q(t)

be in reduced form, and let G(t, h) =

p(t)q(h) − p(h)q(t). A similar reasoning as in the proof of
Theorem 3 shows that

degree(φR) = Card({t ∈ K |G(t, h) = 0}).

Now, reasoning as in the proof of Theorem 4, one deduces
that the primitive part w.r.t h of G(t, h) is square–free.
Moreover, degt(R) = degt(G). Therefore we have

Card({t ∈ K |G(t, h) = 0}) = degt(R).

2

Theorem 5. Let R(t) ∈ K(t) \ K. Then

degree(φP(R(t))) = degt(R(t)) · degree(φP(t)).

Proof: This follows from Lemma 2 and Lemma 4. 2

Plane Curves

In this section, we treat the special case of plane curves.
More precisely, we show how the degree of the map and the
degree of the curve are related.

For this purpose, in the sequel, let C be the rational curve
defined by the rational parametrization in reduced form

P(t) =

„

χ1(t)

χ3,1(t)
,
χ2(t)

χ3,2(t)

«

,

let φP the rational map induced by P , and let G1(t, h) and
G2(t, h) be as above.

Clearly, the results presented for space curves can also be
stated for plane curves. We start this analysis by summa-
rizing these results.

Theorem 6. Let P be a rational parametrization of the
plane curve C, and let the polynomials G1, G2 be defined as
above. Then

(1) degree(φP) = Card ({t ∈ K |G1(t, h) = G2(t, h) = 0}) .

(2) degree(φP) = degt(gcd(G1(t, h), G2(t, h))).

(3) The parametrization P(t) is proper if and only if
degt(gcd(G1(t, h), G2(t, h))) = 1

(4) Let R(t) be a non–constant rational function over K.
Then degree(φP(R(t))) = degt(R(t)) · degree(φP(t)).

In Theorem 8 we prove how the degree of a proper parametri-
zation and the degree of the curve are related. In the next
theorem we characterize the properness of the parametriza-
tion by means of the degree.

Theorem 7. Let f(x, y) ∈ K[x, y] be the defining polyno-
mial of the plane curve C. Then P(t) is proper if and only
if

deg(P(t)) = max{degx(f), degy(f)}.

Furthermore, if P(t) is proper, then deg( χ1

χ3,1
) = degy(f),

and deg( χ2

χ3,2
)=degx(f).

Proof: We first prove the result for the special case of
parametrizations having a constant component; i.e. for lines
parallel to the axes. Afterwards, we consider the general
case. Let P(t) be a parametrization such that one of its
two components is constant, say P(t) = (χ1(t), λ) where
λ ∈ K. Then the curve C is the line defined by y = λ.
Hence, (t, λ) is a proper parametrization of C. So, every
proper parametrization of C is of the form ( at+b

ct+d
, λ), where

a, b, c, d,∈ K and ad− bc 6= 0. Therefore, deg(χ1) = 1, and
the theorem clearly holds.

In order to prove the general case, let P(t) be proper, in
reduced form, and such that none of its components is con-
stant. Then we prove that

max{deg(χ2),deg(χ3,2)} = degx(f),

and analogously one can prove that max{deg(χ1),deg(χ3,1)}
= degy(f). From these relations, we immediately get that
deg(P(t)) = max{degx(f),degy(f)}. For this purpose, we
define S as the subset of K containing: (a) all the second
coordinates of those points on C that are not generated by
P(t); (b) those b ∈ K such that the polynomial χ2(t) −
bχ3,2(t) has multiple roots; (c) lc(χ2)/lc(χ3,2), where “ lc”
denotes the leading coefficient; (d) those b ∈ K such that
the polynomial f(x, b) has multiple roots; (e) the roots of
the leading coefficient, with respect to x, of f(x, y).

We claim that S is finite. Indeed: P(t) is a parametrization,
so only finitely many points on the curve are not genera-
ted by P(t), and therefore only finitely many field elements
satisfy (a). According to Lemma 3 there are only finitely
many field elements satisfying (b). The argument for (c)
is trivial. An element b ∈ K satisfies (d) iff b is the second
coordinate of a singular point of C or the line y = b is tangent
to the curve at some simple point. Since C is irreducible, it
has only finitely many singular points. Moreover, y = b is
tangent to C at some point (a, b) if (a, b) is a solution of the
system {f = 0, ∂f

∂x
= 0}. However, by Bézout’s Theorem,

this system has only finitely many solutions; note that f is
not a line. So only finitely many field elements satisfy (d).
Since the leading coefficient, with respect to x, of f(x, y) is
a non-zero univariate polynomial (note that, since C is not
a line, f is a non-linear irreducible bivariate polynomial),
only finitely many field elements satisfy (e). Therefore, S is
finite.

Now we take an element b ∈ K \ S and we consider the
intersection of C and the line of equation y = b. Since
b 6∈ S , by (e), one has that the degree of f(x, b) is exactly
degx(f(x, y)), say m := degx(f(x, y)). Furthermore, by (d),
f(x, b) has m different roots, say {r1, . . . , rm}. So, there
are m different points on C having b as a second coordinate
(i.e. {(ri, b)}i=1,...,m), and they can be generated by P(t),
because of (a).
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On the other hand, we consider the polynomial M(t) =
χ2(t) − bχ3,2(t). We note that, since every point (ri, b) is
generated by some value of the parameter t, degt(M) ≥
m. But, since P(t) is proper, and since M cannot have
multiple roots, we get that degt(M) = m = degx(f(x, y)).
Now, since b is not the quotient of the leading coefficients
of χ2 and χ3,2, one has that degx(f(x, y)) = deg(M) =
max{deg(χ2),deg(χ3,2)}.

Conversely, let P(t) be a parametrization of C such that
deg(P(t)) = max{degx(f),degy(f)}. By Lüroth’s theorem
there is a proper parametrization of C. Let Q(t) be any
proper parametrization of C. Then, there exists R(t) ∈ K(t)
such that Q(R(t)) = P(t). Now, since Q(t) is proper,
one deduces that deg(Q(t)) = max{degx(f),degy(f)} =
deg(P(t)). Therefore, since the degree is multiplicative with
respect to composition, one deduces that R(t) is of degree
one, and hence invertible. Thus, P(t) is proper. 2

Theorem 8. Let f(x, y) ∈ K[x, y] be the defining polyno-
mial of C, and let n = max{degx(f),degy(f)}. Then,

degree(φP) =
deg(P(t))

n
.

Proof: By Lüroth’s theorem it follows that there exists a
proper parametrization P ′(t) of C, and there exists R(t) ∈
K(t) \ K such that P(t) = P ′(R(t)). Applying Theorem 4
and using the fact that P ′(t) is proper, we can derive that

degree(φP) = degt(R(t)) · degree(φP′) = degt(R(t)).

Furthermore, we also have

deg(P(t)) = degt(R(t)) · deg(P ′(t)).

Thus,

degree(φP) =
deg(P(t))

deg(P ′(t))
.

Moreover, taking into account that P ′(t) is proper, by The-
orem 5 one has that deg(P ′(t)) = n. Therefore the theorem
holds. 2

Finally we can combine these results to show how the degree
of φP appears in the implicitization problem. Proofs of this
relation appear in [?] and also in [?] and [?].

Theorem 9. Let f(x, y) be the defining polynomial of C,
let P be a parametrization of C, and let m = degree(φP).
Then for some constant λ ∈ K we have

Rest(χ3,1(t)x− χ1(t), χ3,2(t)y − χ2(t)) = λ · (f(x, y))m.

4. RATIONAL MAPS BETWEEN
RATIONAL CURVES

In this section we deal with the problem of computing the
degree of a dominant rational map between two rational
curves. For this purpose, let D1 and D2 be two rational

space curves, let

P(t) =

„

χ1(t)

χs+1,1(t)
, . . . ,

χs(t)

χs+1,s(t)

«

,

be a rational parametrization of D1 in reduced form, let φP

be the rational map induced by P , and let

φ : D1 → D2

be a dominant rational map between D1 and D2. In this
situation φ(P(t)) is a rational parametrization of D2. Let
us say that φ(P(t)) is written as

φ(P(t)) =

„

ψ1(t)

ψr+1,1(t)
, . . . ,

ψr(t)

ψr+1,r(t)

«

.

Also we consider, for i = 1, . . . , s, the polynomials:

Gi(t, h) = χi(t)χs+1,i(h) − χi(h)χs+1,i(t),

and, for i = 1, . . . , r, the polynomials

G̃i(t, h) = ψi(t)ψr+1,i(h) − ψi(h)ψr+1,i(t).

In this situation, the following theorem holds.

Theorem 10.

degree(φ) =
degt(gcd(G̃1, . . . , G̃r))

degt(gcd(G1, . . . , Gs))
.

Proof: Let Q(t) = φ(P(t)) and φQ be the map induced by
Q. Then

φQ : K
φP−→ D1

φ
−→ D2.

Applying Lemma 2 one has that degree(φQ) = degree(φP) ·
degree(φ). Moreover, from Theorem 4 we get that

degree(φQ) = degt(gcd(G̃1, . . . , G̃r)),
degree(φP) = degt(gcd(G1, . . . , Gs)).

Therefore, the theorem holds. 2

Corollary. If P(t) is proper then

degree(φ) = degt(gcd(G̃1, . . . , G̃r)).

Remark. Note that Theorem 10 provides an algorithmic
criterion for deciding whether φ is a birational map.

In addition, a result similar to Theorem 8 can also be estab-
lished for plane curves.

Theorem 11. Let D1 and D2 be rational plane curves with
defining polynomials f(x, y) and g(x, y), respectively. If
n = max{degx(f), degy(f)} andm = max{degx(g),degy(g)},
then,

m

n
=

deg(φ(P(t))

deg(P(t)) · degree(φ)
.
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Proof: Let Q(t) = φ(P(t) and φQ be the map induced by
Q. By Theorem 8 one has

degree(φP) =
deg(P(t))

n
, degree(φQ) =

deg(Q(t))

m
.

Furthermore, Lemma 2 implies that

degree(φQ) = degree(φP) · degree(φ).

Therefore, the theorem holds. 2

Example. Let D1 be the plane curve of implicit equation

f(x, y) = 3x3y2 + 6x2y + x2y2 − 2xy − y + 8 x3y + 8x3,

and D2 be the plane curve of implicit equation

g(x, y) = 85− 26x− 144 y + 55 xy− 18x2 + 149 y2 + 3x4 +
9 x3y − 3x4y + 26x2y2 − 8x3y2 − 74xy2 − x3 − 8x2y3 −
144 y3 + 64 y4 + 48xy3

We want to analyze whether the rational map

φ : D1 −→ D2

(x, y) 7−→
“

x2+1
x
, y+x

y

”

is birational. For this purpose, we consider a proper rational
parametrization of D1, namely

P(t) =

„

t

t2 + 2
,
t3

t+ 1

«

.

Now, we compute

φ(P(t)) =

„

5 t2 + t4 + 4

t (t2 + 2)
,
t4 + 2 t2 + t+ 1

t2 (t2 + 2)

«

,

and the polynomials

G̃1(t, h) = 5 t2h3 +10 t2h+h3t4+2ht4 +4h3 +8h−5 h2t3−
10 h2t− t3h4 − 2 th4 − 4 t3 − 8 t

G̃2(t, h) = th4 + 2h2t+ h4 + 2h2 − ht4 − 2 t2h− t4 − 2 t2.

So we see that

gcd(G̃1, G̃2)) = t− h.

Therefore, applying the corollary to Theorem 10, we con-
clude that φ is a birational map.

5. REFERENCES

[1] Chionh E.-W., Goldman R.N. (1992), Using

multivariate resultants to find the implicit equation of

a rational surface. The Visual Computer 8, 171–180.

[2] Cox D.A., Sederberg T.W., Chen F. (1998), The

moving line ideal basis of planar rational curves.

Computer Aided Geometric Design 8, 803–827.

[3] Gao X.-S., Chou S.-C. (1992), Implicitization of

Rational Parametric Equations. J. Symbolic
Computation 14, 459–470.

[4] Harris J. (1995), Algebraic Geometry. A First Course.
Springer-Verlag.

[5] Sederberg T.W. (1986), Improperly Parametrized

Rational Curves. Computer Aided Geometric Design
3, 67-75.

[6] Sendra J.R., Winkler F. (2001), Tracing Index of

Rational Parametrizations. Technical Report 01-01,
RISC-Linz, Univ. Linz, Austria.

[7] Shafarevich I.R. (1994), Basic Algebraic Geometry 1;

Varieties in Projective Space. Springer-Verlag, Berlin
New York.

6


