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Abstract

In this paper, we study fundamental properties of real curves, especially of ra-
tional real curves, and we derive several algorithms to decide the reality and
rationality of curves in the complex plane. Furthermore, if the curve is real and
rational, we determine a real parametrization. More precisely, we present a reality
test algorithm for plane curves, and three different types of real parametrization
algorithms that we call: direct parametrization algorithms (they compute a ratio-
nal real parametrization, if it exists), algebraically optimal parametrization algo-
rithms (they compute a rational real parametrization over the smallest possible
real field extension, if the curve is rational and real), and hybrid parametrization
algorithms (they combine parametrization and reparametrization techniques to
derive algebraically optimal rational real parametrizations).

1. Introduction

Rational curves are curves that can be parametrized by means of rational func-
tions. If one is working over an algebraically closed field of characteristic zero, the
rationality of the curve can be decided effectively, and if so, rational parametriza-
tions can be computed. In [?], [?] we have described a symbolic parametrization
algorithm. This algorithm is implemented in the system casa [?]. Approaches
to the parametrization problem for algebraic curves are also described in [?] or
[?].

However, if one is not working over an algebraically closed field of character-
istic zero, some of the most important results in algebraic geometry cannot be
applied and therefore new difficulties arise. In particular, this is the case when
working over the real numbers.

In this paper, we study fundamental properties of real curves, especially of
rational real curves, and we derive several algorithms (direct algorithms, alge-
braically optimal algorithms, and hybrid algorithms) to decide the reality and
rationality of curves in the complex plane. Furthermore, if the curve is real and
rational, we determine a real parametrization.
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The paper is structured as follows. In Section 2, the basic notions and re-
sults on rational algebraic plane curves are briefly summarized. In Section 3 the
notion of a real curve is introduced and basic properties are presented. Section
4 is devoted to the analysis of the reality of a given plane curve. We present a
constructive characterization for any plane curve defined by a real polynomial
and without multiple components, that allows to decide the reality and, in the
affirmative case, shows how real simple points on the curve can be computed.
In Section 5 we present two diferent direct approaches to the real parametriza-
tion problem. In Section 6 we analyze the problem of computing algebraically
optimal real parametrizations; i.e. rational parametrizations with coefficients in
the smallest possible real field extension of the ground field. In this context, we
show how the main ideas and results in [?] can be adapted and applied to the
real case. Finally, in Section 7, we briefly show how the reparametrization algo-
rithms presented in [?] and [?] can be combined with the algorithms given in the
previous sections to derive hybrid parametrization algorithms, i.e. algorithms
that first parametrize over the complex numbers, and afterwards reparametrize,
if possible, over an optimal real algebraic field.

A preliminary version of this paper was presented at the conference AISC’98
and appeared in the proceedings [?].

We introduce some notation. Throughout this paper K is a field of charac-
teristic 0, K is the algebraic closure of K, C, R, and Q are the fields of complex,
real, and rational numbers, respectively, L is a computable subfield of C, and
F is a computable subfield of R. In addition, for any field Σ of characteristic
zero, A2(Σ) is the affine plane over Σ, and P2(Σ) is the projective plane over
Σ. Points in the projective plane will be written as (a : b : c). Furthermore, if
f ∈ Σ[x, y] defines an affine plane curve C in A2(Ω), where Ω is the algebraic
closure of Σ, i.e.

C = {(a, b) ∈ A2(Ω) | f(a, b) = 0},

whenever useful or necessary, we will consider the projective plane curve C∗
associated with C in P2(Ω), i.e.

C∗ = {(a : b : c) ∈ P2(Ω) |F (a, b, c) = 0},

where F (x, y, z) denotes the homogenization of f(x, y).
For the sake of simplicity we consider only algebraic curves with ordinary

singularities. All the results presented here can be extended to curves with non-
ordinary singularities (compare [?]).

2. Preliminaries on Rational Algebraic Curves.

In this section we briefly introduce some of the basic notions and results on alge-
braic curves, and more precisely on rational algebraic plane curves. For further
details and proofs we refer to classical text books on algebraic curves, such as
[?], [?] or [?].

Definition: Let K(t) be the field of rational functions of C over K. Then, we
say that x(t), y(t) ∈ K(t) constitute a rational parametrization of a plane curve



C over K, if and only if, except for finitely many exceptions, every evaluation
(x(t0), y(t0)) at t0 ∈ K is a point on C, and, conversely, almost every point on
C is the result of evaluating the parametrization at some element of K. In this
case, C is called parametrizable or rational.

Equivalently, P(t) = (x(t), y(t)) is a rational parametrization of C if the
mapping P : K −→ C is rational and not both x(t) and y(t) are constant.
Furthermore, if P is birational we say that P(t) is a proper parametrization. 2

Only irreducible curves can be rational. Furthermore, the parametrization
problem (i.e. the problem of dedicing whether an implicitly given plane curve is
rational, and if so finding a rational parametrization) for affine curves is equiva-
lent to the parametrization problem for the associated projective curves. Indeed,
a parametrization of C can be computed from a parametrization of C∗ and vice
versa (see, e.g. [?]).

Some useful characterizations of the rationality of plane algebraic curves are
summarized in the following theorem.

Theorem 1: Let C be an irreducible plane curve over K, and f(x, y) ∈ K[x, y]
its defining polynomial. The following statements are equivalent:

(1) C is rational.
(2) There exist rational functions x(t), y(t) ∈ K(t), not both constant, such that

f(x(t), y(t)) = 0.
(3) The field of rational functions on C, i.e. K(C), is isomorphic to K(t).
(4) C is birationally equivalent to K (i.e. the affine line A1(K)).
(5) genus(C) = 0. 2

The genus of a plane curve C is a birational invariant that can be characterized
by means of the multiplicities of the singular points of the curve. More precisely,
let C be an irreducible curve in A2(K), of degree d. If C has only ordinary
singularities P1, . . . , Pn of multiplicities r1, . . . , rn, respectively (i.e. if for each
Pi there are ri different tangents to C at Pi), then

genus(C) =
1
2
[(d− 1)(d− 2)−

n∑
i=1

ri(ri − 1)].

As a consequence of this fact, genus, and hence rationality, can be decided, for
instance, using blowing up techniques (see [?]) or Puiseux expansions (see [?],
[?]).

Once the rationality of the plane curve has been decided, we want to compute
a rational parametrization. The classical geometric parametrization algorithm
(see [?], [?]) is based on the notion of linear systems of adjoint curves of some
fixed degree. Let T1, . . . , Tn be a fixed ordering of the set of monomials in x, y, z
of degree r, where n = 1

2 (r+1)(r+2). Then, for every projective curve C of degree
r there exists (a1 : · · · : an) ∈ Pn−1(K), such that F = a1T1 + · · ·+ anTn defines
C, and vice versa. Thus, the set of all projective curves of degree r is identified
with Pn−1(K). Now, any linear variety of Pn−1(K) is called a linear system of



curves, and the dimension of the linear system is defined as the dimension of the
corresponding linear variety.

An interesting type of linear systems arises when requiring that the curves
pass through given points with given multiplicities. Let P1, . . . , Pm ∈ P2(K),
and r1, . . . , rm be non-negative integers. Then, we consider the set of projective
curves C of degree r such that Pi ∈ C with multiplicity at least ri, for i = 1, . . . ,m.
Clearly, these conditions are linear, and therefore one gets a linear system of
curves. The points Pi are called base points of multiplicity ri of the system. If
rj = 1 we say that Pj is a simple base point.

Definition: Let C be a projective plane curve of degree d, and let P1, . . . , Pm

be the singularities of C, with multiplicities r1, . . . , rm, respectively. Then, for
every d′ ∈ N, such that d′ ≥ d− 2, the linear system of adjoint curves of degree
d′ to C is defined as the linear system of curves of degree d′ having every point
Pi, 1 ≤ i ≤ m, as a base point of multiplicity ri − 1. 2

This leads immediately to the following classical parametrization algorithm.

Algorithm Classical-Parametrization(f)

– Input: f ∈ K[x, y] irreducible and defining a curve C in A2(K) of degree d.
– Output: the message “C is not rational” or a rational parametrization

of C over K.

(1) If d = 1 then C is a line, and obviously it can be parametrized over K. Exit.
(2) If d = 2, then

(2.1) take one point P ∈ C∗ and compute the defining equation H of the
pencil of lines passing through P ,

(2.2) output the rational parametrization of C obtained by computing the
free intersection point of F (F is the homogenization of f) and H. Exit.

(3) Compute g = genus(C). If g 6= 0 report “C is not rational” and Exit.
(4) Compute the linear system H of adjoint curves of degree d− 2 to C∗.
(5) Take (d− 3) simple points on C∗ and compute the equation H ′ of the linear

subsystem of H having all these simple points as simple base points.
(6) Output the rational parametrization of C obtained by computing the free

intersection point of F (F is the homogenization of f) and H ′. 2

Remark: In steps (2.2) and (6), there can be only one intersection point de-
pending on the parameter, because of Bézout’s Theorem on the number of inter-
section points. This intersection point can be computed as the only linear factor
of the resultant of the two forms w.r.t. x or y, respectively, depending on the
parameter. 2

Algorithm Classical-Parametrization always determines a proper pa-
rametrization. Furthermore, this parametrization has coefficients in a subfield
of K that contains the coefficients of the defining polynomial of the curve, and
the coordinates of the simple points used in the algorithmic process. An example



illustrating this algorithm can be found in [?], Example 11.2.2, where the Cardiod
is parametrized.

In [?], using linear systems of adjoints of higher degree, we show how to carry
out this parametrization process with only one simple point on the curve. Hence,
from [?], we get the following theorem.

Theorem 2: Let C be a rational affine plane curve in A2(K), and f(x, y) ∈
K[x, y] its defining polynomial. The following statements are equivalent:

(1) There exists a rational parametrization of C with coefficients in a field ex-
tension Σ of K.

(2) C has infinitely many points with coordinates in Σ.

(3) C has one simple point with coordinates in Σ. 2

In [?] the following theorem is proved.

Theorem 3: Any rational affine curve in A2(K), with defining polynomial over
K, can be parametrized over a field extension of K of degree at most two. Fur-
thermore, if the degree of the curve is odd, then it can be parametrized over K.

. 2

In [?] we show how to actually determine this optimal field extension effi-
ciently.

3. Real Algebraic Curves

In this section we introduce the notion of a real algebraic curve, and we present
some of the most relevant facts on such curves.

Definition: Let f ∈ L[x, y] define a plane curve C in the complex plane. Then
the curve C is called a real algebraic curve if and only if C has infinitely many
points in the real plane. 2

Real curves are not necessarely defined by real polynomials. For instance,
x2 + y2 − 1 defines a real curve, but x2 + i xy also defines a real curve, since all
real points (0, b), with b ∈ R, are on the curve. Furthermore, a real polynomial
may not define a real curve, like for instance x2 + y2 + 1. However, if the real
curve is irreducible, then it always has a defining polynomial over the reals. A
proof of the following lemma is given in [?].

Lemma 1: Any irreducible real plane curve can be defined by a real polynomial.
. 2

Clearly, from Bezout’s Theorem, we get that a plane curve in the complex
plane is real if and only if at least one component of the curve is real. Therefore,
since one can always decompose any curve into irreducible components over C,
and taking into account Lemma 1, in the sequel we can assume that a real plane
curve is a curve in the complex plane defined by a real square-free polynomial,
and having infinitely many real points.



Also the irreducibility of real curves does not depend on whether we view it
in A2(R) or in A2(C). A proof of the following lemma is given in [Wi96], Theorem
5.5.3.

Lemma 2: Let C be a real curve defined by f ∈ F[x, y]. C is irreducible over R
if and only if C is irreducible over C. 2

As a consequence of Theorem 2 and Lemma 1, one can deduce that every
parametrizable real curve can actually be parametrized with coefficients in the
reals. This is of vital importance for practical applications, since in areas like
computer aided geometric design we are usually interested in curves and surfaces
over the reals. This result is also known as the algebraic version of Real Lüroth’s
Theorem [?].

Theorem 4: Every rational real algebraic curve can be parametrized over the
reals. 2

Applying Theorem 2 and Lemma 1, one also deduces that a parametrizable
plane curve is real if and only if it has at least one real simple point. How-
ever, since we are working over R, this last statement can be established more
generally.

Theorem 5: An affine plane curve C in A2(C), defined by a square-free poly-
nomial over R, is real if and only if C has at least one simple point with real
coordinates.

Proof: The left-to-right implication follows from the definition of a real curve,
and from the fact that curves without multiple components only have finitely
many singularities. Conversely, let f ∈ R[x, y] define the curve C, and let P ∈
A2(R) be a simple point on C. Hence, not both partial derivatives of f vanish at
P . Therefore, since f is real, we can apply the Implicit Function Theorem and
deduce that C has infinitely many points in A2(R). Thus, C is a real curve. 2

Note that Theorem 5 is not true without the assumption of square-freeness;
for instance, the curve of equation x2 has infinitely many real points, but all of
them are singular. However, we will always have square-free defining polynomials
if we consider only curves without multiple components.

4. A Reality Test for Algebraic Curves

In Section 3, Theorem 5, we have seen how the reality of a plane curve without
multiple components is characterized by means of the existence of simple points
with real coordinates. Moreover, the particular case of lines and conics can be
treated specially: a line is real if and only if its monic defining polynomial is real,
and reality of conics can be decided by means of the signature and rank of the
corresponding quadratic form.

However, in this section, we present a constructive characterization for any
plane curve defined by a real polynomial and without multiple components,



that allows to decide the reality and, in the affirmative case, shows how real
simple points on the curve can be computed. As a consequence of this result an
algorithmic method is presented.

We start with a well known result in Real Algebra that can be directly
deduced from the theory of Cylindrical Algebraic Decomposition (see, e.g., [?]
or Section 9.2. in [?]).

Lemma 3: Let f ∈ R[x, y] be a square-free polynomial, let D(x) be the dis-
criminant of f with respect to the variable y, and let I ⊆ R be non-empty and
connected. If D(x) does not vanish on any element of I, then for every a ∈ I the
number of real roots of the univariate polynomial f(a, y) is constant. 2

Theorem 6: Let f ∈ R[x, y] be a square-free polynomial, not having a linear
factor independent of y. Let C be the affine plane curve defined by f in the
complex plane, and let D(x) be the discriminant of f with respect to the variable
y. Then, it holds that:

(1) If D(x) has no real root, then C is a real plane curve if and only if the
univariate polynomial f(0, y) has real roots. Furthermore, if α is a real root
of f(0, y), then (0, α) is a real simple point of C.

(2) If D(x) has real roots, let b0, . . . , br ∈ R be such that

−∞ = a0 < b0 < a1 < b1 < a2 < · · · < br−1 < ar < br < ar+1 = +∞,

where a1, . . . , ar are the real roots of D(x). Then, C is a real plane curve if
and only if there exists i ∈ {0, . . . , r} such that the univariate polynomial
f(bi, y) has real roots. Furthermore, if α is a real root of f(bi, y), then (bi, α)
is a real simple point of C.

Proof: (1) Let C be a real plane curve. Since f is square-free, C has infinitely
many real simple points. Let (a, b) be a real simple point on C. Then, the polyno-
mial f(a, y) has real roots. Thus, if we take I = R in Lemma 3, since D(x) does
not vanish over the reals, for every λ ∈ R the polynomial f(λ, y) has real roots;
in particular f(0, y) has real roots. Furthermore, if α is a real root of f(0, y),
then (0, α) is a point on the curve. Moreover, since D(x) has no real root, the
point (0, α) is simple.

Conversely, if f(0, y) has real roots, we can apply Lemma 3 with I = R and
deduce that any vertical line x = a, with a ∈ R, intersects the curve at a real
point. Thus, C has infinitely many real points and, therefore, is a real curve.
(2) The proof is similar to the proof of (1), but instead of I = R we consider
the intervals I = (ai, ai+1), where i = 0, . . . , r. Observe, that we excluded linear
factors independent of y from f , so there can be only finitely many curve points
of the form (ai, λ). 2

Remark: The proof of Theorem 6 is constructive, and we can derive a method
for computing any number of real simple points. More precisely, if D(x) has no
real roots, then for every a ∈ R the polynomial f(a, y) has real roots. Therefore,
for every a ∈ R and for every real root α of f(a, y), the point (a, α) is simple.



On the other hand, if D(x) has real roots, and f(bj , y) has real roots, then
for every a ∈ (aj , aj+1) the polynomial f(a, y) has real roots. Hence, for every
a ∈ (aj , aj+1) and for every real root α of f(a, y), the point (a, α) is simple. 2

We outline an algorithm for testing the reality of an algebraic curve. For this
purpose, we use subalgorithms to decide the existence of real roots of univari-
ate polynomials, and to “compute” them (see, e.g., [?], [?], or [?]). Clearly, the
meaning of “computing” a real root depends on whether we want to manipulate
the root numerically or symbolically. In our case, we work symbolically with the
roots, by means of their minimal polynomials and approximating intervals, if
necessary.

Algorithm Reality-Test(f,N)

– Input: f ∈ F[x, y] square-free and defining a curve C in A2(C); N ∈ N.
– Output: the message “C is a real curve” and N real simple points of C,

or the message “C is not real”.

(1) If f has a real factor of the form x− a, then report “C is a real curve”
and return N simple points on the line x = a. Exit.

(2) Compute the discriminant D(x) of the polynomial f(x, y) with respect to y.
(3) Decide whether D(x) has real roots.
(4) If D(x) has no real root, decide whether f(0, y) has real roots.

(4.1) If f(0, y) has no real roots, report “C is not a real curve”.
(4.2) If f(0, y) has real roots, report “C is a real curve”. For every a ∈ Q

there are real simple points of the form (a, λ). “Compute” N of them,
and return them.

(5) If D(x) has real roots, isolate them with rational numbers b0, . . . , br:

−∞ = a0 < b0 < a1 < b1 < a2 < · · · < br−1 < ar < br < ar+1 = +∞,

where a1, . . . , ar are the real roots of D(x).
(5.1) Check whether, at least, one polynomial f(bi, y), i = 0, . . . , r, has real

roots. If no polynomial f(bi, y), i = 0, . . . r, has real roots, report “C is
not a real curve” .

(5.2) If there exists bj such that f(bj , y) has real roots, report “C is a real
curve”. For every rational a ∈ (aj , aj+1) there are real simple points of
the form (a, λ). “Compute” N of them, and return them. 2

Example 1.: Let C be the plane curve of degree 5 in A2(C) defined by:

f(x, y) = 3 y3 − 3 xy2 − 2 xy3 + x2y3 + x3.

We apply the algorithm Reality-Test to decide whether C is real, and if so to
compute one real simple point. For this purpose, we compute the discriminant
D(x) of f with respect to y:

D(x) = 27 x6
(
3− 2 x + x2

) (
x2 − 2 x + 5

)
(x− 1)2 .



D(x) has two different real roots, a1 = 0 and a2 = 1, that can be isolated as:

b0 = −1 < a1 = 0 < b1 =
1
2

< a2 = 1 < b2 = 2.

Now, we analyze the existence of real roots of the polynomials f(bj , y). The
polynomial f(b0, y) = 6y3 + 3y2 − 1 has only the real root

α =
3
√

17 + 12
√

2
6

+
1

6 · 3
√

17 + 12
√

2
− 1

6
.

Hence, C is a real curve, and P = (−1, α) is a real simple point of C.

Now, we apply the algorithm to the curve C′ defined by the polynomial g(x, y) =
2y2 + x2 + 2x2y2 (see [?]). We first compute the discriminant D(x) of g with
respect to y: D(x) = 16(1 + x2)2x2. Therefore, since D(x) has real roots, we
isolate them. We take b0 = −1 < a1 = 0 < b1 = 1. g(b0, y) = 4y2 + 1 = g(b1, y).
Hence, applying the algorithm we conclude that C′ is not a real curve. 2.

5. Direct Real Parametrization Algorithms

In this section we present two different direct approaches to the real parametriza-
tion problem. The first approach is based on the Classical-Parametrization
algorithm, while the second one applies the techniques introduced in [?].

Algorithm Direct-Real-Parametrization-I(f)

– Input: f ∈ F[x, y] irreducible and defining a curve C of degree d in A2(C).
– Output: the message “C is not rational”, or the message “C is not

real”, or a real rational parametrization of C.

(1) If d = 1 then C is a line. Output a real parametrization and Exit.
(2) If d = 2 perform Reality-Test(f, 1). If the output is the message “C is

not real”, report “C is not real” and Exit. Otherwise, proceed as in
step (2) of Classical-Parametrization, using the point P returned by
Reality-Test. Exit.

(3) Perform Reality-Test(f, d − 3). If the output is the message “C is not
real”, report “C is not real” and Exit. Otherwise, say that P1, . . . , Pd−3

are the d− 3 real simple points returned by Reality-Test.
(4) Compute g = genus(C). If g 6= 0 report “C is not rational” and Exit.
(5) Compute the linear system H of adjoint curves of degree d− 2 to C∗.
(6) Compute the equation H ′ of the linear subsystem of H, having P1, . . . , Pd−3

as simple base points.
(7) Output the rational parametrization of C obtained by computing the free

intersection point of F and H ′. 2

In general, the parametrization determined by this algorithm is given over
a field extension F(α1, . . . , αd−3) of F, where αi, for i = 1, . . . , d − 3, are real



algebraic numbers of degree at most d. The field extensions are introduced in
steps (2) or (3), when computing the simple points on C. Hence, in general, one
needs to introduce a very high algebraic extension of the ground field F.

But, as demonstrated in [?], a single simple point is sufficient in the parametriza-
tion process. This leads to a second direct parametrization approach, which re-
quires only a real algebraic extension of F of degree at most d. For this purpose,
we introduce the following definition.

Definition: Let F ∈ F[x, y, z] be an irreducible homogeneous polynomial defin-
ing a projective plane curve C. Let p1, p2, p3,m ∈ F[t]. The set of projective
points

F = {(p1(α) : p2(α) : p3(α)) | m(α) = 0} ⊂ P2(C)

is called a family of s conjugate simple points on C over F if and only if the
following conditions are satisfied: m(t) is a square-free polynomial of degree s,
deg(pi) < deg(m) for i = 1, 2, 3, gcd(p1, p2, p3) = 1, F contains exactly s points
of P2(C), F (p1(t), p2(t), p3(t)) = 0 mod m(t), and there exists v ∈ {x, y, z} such
that ∂ F

∂ v (p1(t), p2(t), p3(t)) mod m(t) 6= 0. 2

Let F (x, y, z) ∈ F[x, y, z] be the defining homegeneous polynomial of a ra-
tional projective curve C, and let P ∈ C ∩ P2(F(α)) be a simple point. If we
choose all the points in a family of conjugate points over F(α) as additional base
points in the system of adjoint curves, then the defining polynomial of the cor-
responding subsystem will have coefficients in F(α). Therefore, one can proceed
as follows:

Sub-algorithm-I

(1) Take 3 different families F1,F2,F3 of (d − 1) conjugate simple points each
on C over F(α), by intersecting C with lines passing through P and defining
polynomials over F(α).

(2) Compute the equation of the system H of adjoint curves to C of degree d.
(3) Take a point Q ∈ P2(F) \ C.
(4) Determine the equation H ′ of the linear subsystem H′ of H obtained by

introducing the new simple base points F1,F2,F3 and Q. 2

Observe that H ′ ∈ F(α)[x, y, z] and that dim(H′) = 1. C is not in H′, because
Q 6∈ C. Hence, computing the free intersection point of F and H ′, we get a real
parametrization of C over F(α). These ideas are summarized in the following
algorithm.

Algorithm Direct-Real-Parametrization-II(f)

– Input: f ∈ F[x, y] irreducible and defining a curve C of degree d in A2(C).
– Output: the message “C is not rational”, or the message “C is not

real”, or a real rational parametrization of C.

(1) If d ≤ 4 perform Direct-Real-Parametrization-I(f) and Exit.



(2) Perform Reality-Test(f, 1). If the output is the message “C is not real”,
report “C is not real” and Exit. Otherwise, let P ∈ C ∩ R2 be the real
simple point returned by Reality-Test.

(3) Compute g = genus(C). If g 6= 0 report “C is not rational” and Exit.
(4) Apply Sub-algorithm-I to C∗ and P , to get the polynomial H ′.
(5) Output the rational parametrization of C obtained by computing the free

intersection point of F and H ′. 2

Example 2: Let C be the affine plane curve of degree 5 introduced in Example
1. We already know that C is a real curve, and that P = (−1 : α : 1) is a real
simple point of C∗. Now we compute the genus of C. The singularities of C∗ are
Q1 = (0 : 0 : 1), Q2 = (0 : 1 : 0), Q3 = (1 : 0 : 0), Q4 = (1 : 1 : 1), where
Q1 is of multiplicity 3, and Q2, Q3, Q4 are double points. Thus, genus(C) = 0,
and therefore C is rational. In order to compute a real rational parametrization,
we first determine the defining polynomial H of the linear system H of adjoint
curves to C∗ of degree 5. Afterwards, we take a point Q 6∈ C∗, for instance
Q = (1 : −1 : 1), and 3 families of 4 conjugate points on lines through P . More
precisely, we take the following families over Q(α):

F1 = {(−1 + β : α + β : 1) | q1(β) = 0}

F2 = {(−1 + 2β : α + β : 1) | q2(β) = 0}

F2 = {(−1 + β : α + 2β : 1) | q3(β) = 0}

where

q1(t) = 14 + 24 t2 − 24 t3 + 6 t4 + 36 α + 102 α2 + 72 αt − 75 α2t − 72 αt2 + t +
18 α2t2 + 18 αt3,
q2(t) = −78 α2t−25 t+14+48 α2 +24 t2−24 t3 +12 t4 +18 α+18 αt−72 αt2 +
36 α2t2 + 36 αt3,

q3(t) = −147 α2t + 55 t + 14 + 210 α2 + 222 t2 − 192 t3 + 48 t4 + 72 α + 360 αt−
288 αt2 + 36 α2t2 + 72 αt3.

Now we determine the equation H ′ of the subsystem of H that has Q and the
points of the families Fi, for i = 1, 2, 3, as simple base points. This implies to
solve the linear system of equations, in the undetermined coefficients of H, given
by the conditions:

H(Q) = 0, H(−1 + t, t + α, 1) = 0 mod q1(t),

H(−1 + 2t, t + α, 1) = 0 mod q2(t), H(−1 + t, 2t + α, 1) = 0 mod q3(t).

Finally, we compute the resultants of f(x, y) and H ′(x, y, 1), w.r.t. x and y,
respectively. From the primitive parts of these resultants w.r.t. the parameter t
we get the following parametrization over the real extension Q(α) of Q:

P(t) = (
−m1(t)

30187403656778 t3
,
m2(t)
m3(t)

)



where
m1(t) = −24793190− 58397220 α− 63160272 α2 − 57469827 t− 135310473 αt−
146409246 α2t − 13688774 t3 − 33436584 αt3 − 33983280 t3α2 − 47810298 t2 −
112758282 αt2 − 121478652 α2t2

m2(t) = 14503164α2+5692324+13408542α+13208451t+31052925α+10900410t2+
33579270α2t+26009478αt2+2733151t3+8222472αt3+8792187t3α2+28038096α2t2

m3(t) = 134t(2104 + 4896α + 5337α2)(3t2 − 54α2t + 5t + 27αt + 3α + 6α2 + 2).
. 2

6. Algebraically Optimal Real Parametrization Algorithm

Since linear systems of adjoint curves of any degree to a rational plane curve
C have defining polynomial over F, and can be computed in a finite num-
ber of ground field operations [?], the problem of algebraically optimal real
parametrization is reduced to the problem of determining one algebraically op-
timal real simple point on the curve (i.e. a simple point on the curve with coor-
dinates in the smallest possible real extension of F).

In this section we deal with the problem of finding such a simple point. To
solve the problem we transform C birationally to a conic D. The real simple
points on C and on D correspond uniquely to each other, except for finitely
many exceptions. So there is a real simple point on C if and only if there is a
real simple point on D. This question can be decided. If the answer is yes, a real
point on D can be computed, transformed to a real point on C, and from this
point we can derive a parametrization of C over R.

In [?] we proved the following generalization of a theorem by Hilbert and
Hurwitz [?].

Theorem 7: Let C be a rational plane curve of degree d defined by a polynomial
over F, let Ha be the linear system of adjoint curves to C of degree a ∈ {d, d −
1, d− 2}, and let H̃s

a be a linear subsystem of Ha of dimension s obtained from
Ha by fixing additional base points on C. Then we have the following:

(i) If Φ1, Φ2, Φ3 ∈ H̃s
a are such that the common intersections of the three curves

Φi and C are the set of base points of H̃s
a, and such that

T = {x′ : y′ : z′ = Φ1 : Φ2 : Φ3}

is a birational transformation, then the birationally equivalent curve to C,
obtained by T , is irreducible of degree s.

(ii) Those values of the parameters for which the rational transformation T is
not birational satisfy some algebraic conditions. 2

In order to apply Theorem 7, we need to select a linear subsystem of low
dimension in the system of adjoint curves by fixing additional base points. The
same effect can be achieved by suitably increasing the multiplicities at the exist-
ing base points. These additional base points will introduce algebraic coefficients



into the system, unless we can find rational ones or whole conjugate families of
such points.

Definition: Let C be a projective plane curve defined by a polynomial over F,
let H be a linear system of adjoint curves to C, let H̃ be the defining polynomial
of a linear subsystem H̃ of H, and let S̃ be the set of base points of H̃ that are
not base points of H. Then, we say that H̃ is a rational subsystem of H if and
only if the following conditions are satisfied: H̃ ∈ F[x, y, z], and for almost every
curve Φ ∈ H, and Φ̃ ∈ H̃

dim(H)− dim(H̃) =
∑
P∈S̃

(multP (Φ̃, C)−multP (Φ, C)),

where multP (C1, C2) denotes the multiplicity of intersection of the curves C1, C2

at the point P . 2

Essentially, this notion requires that when a point or a family of points on C
is used to generate a subsystem H̃ of H (by introducing some points on C as new
base point on H with specific multiplicities) the linear system of equations con-
taining the contraints is over F, and its rank equals to the number of new known
intersection points between C and a generic representative of the subsystem. In
the next lemma some special cases of rational linear subsystems are analyzed.
Lemma 4 and Theorem 8 are proved in [?].

Lemma 4: Let C be a rational plane curve of degree d defined by a polynomial
over F, let Ha be the linear system of adjoint curves to C of degree a ∈ {d, d −
1, d − 2}, and let F = {(p1(α) : p2(α) : p3(α)) |A(α) = 0} be a family of k
conjugate points on C over F. Then we have the following:

(i) If F is a family of simple points, k ≤ dim(Ha), and H̃a is the subsystem of
Ha obtained by forcing every point in F to be a simple base point of H̃a,
then H̃a is rational, and dim(H̃a) = dim(Ha)− k.

(ii) If F is a family of r-fold points, r · k ≤ dim(Ha), and H̃a is the subsystem
of Ha obtained by forcing every point in F to be a base point of H̃a of
multiplicity r, then H̃a is rational, and dim(H̃a) = dim(Ha)− r k. 2

Theorem 8: Let C be a rational plane curve of degree d defined by a polynomial
over F, and let Ha be the linear system of adjoint curves to C of degree a ∈
{d, d − 1, d − 2}. Then every rational linear subsystem of Ha of dimension s,
derived from Ha by fixing additional base points on C, provides curves that
generate families of s conjugate simple points over F by intersection with C. 2

The proof of Theorem 8, given in [?], is constructive and we can derive the
following algorithm from it.

Sub-algorithm-II

(1) Take Φ ∈ H̃a with no common tangents with C, and such that all the x-
coordinates of all the intersection points of Φ and F , that are not base
points of H̃a, are different.



(2) Compute the resultant R̃1(x) of Φ(x, y, 1) and f(x, y) w.r.t. y, and the re-
sultant R̃2(y) of Φ(x, y, 1) and f(x, y) w.r.t. x. Cross out in R̃1 and in R̃2

the factors that determine the x-coordinates of the intersection points of C
and H̃a that are not base points: say that R1 and R2 are the factors left in
R̃1 and R̃2, respectively.

(3) Compute S(x, y) = f(x, y) mod R1(x), and determine the first subresultant
M(x, y) = ax + by + c w.r.t. y of S(x, y) and R2(y) modulo R1(x).

(4) Output {(α : −c−aα
b : 1) |R1(α) = 0}. 2

As a consequence of Lemma 4 and Theorem 8 we get the following algorith-
mically important facts.

Theorem 9: Let C be a rational plane curve of degree d defined by a polynomial
f(x, y) ∈ F[x, y].

(i) C has families of d− 2, 2d− 2, and 3d− 2 conjugate simple points over F.
(ii) C has families of 2 conjugate simple points over F.
(iii) If d is odd, then C has a simple point over F.
(iv) If d is even, then C has simple points over an algebraic extension of F of

degree 2. 2

Proof: (i) Let P1, . . . , Pn be the singular points on C, having multiplicities
r1, . . . , rn, respectively. Since C is rational, by Lemma 4 and genus formula,
one has that dim(Hd−2) = d−2. Now we can apply Theorem 8 for s = d−2 (i.e.
choosing the whole system) and we get that C has families of d − 2 conjugate
simple points. Similarly, by using systems of adjoint curves of degrees d− 1 and
d, respectively, we get that C has families of 2d− 2 and 3d− 2 conjugate simple
points.
(ii) We first apply statement (i) to obtain two different families of (d−2) simple
points. Let Hd−1 be the system of adjoint curves of degree (d − 1). Applying
Lemma 4 one has that the linear subsystem H̃d−1 obtained by forcing all the
points in these two families to be simple base points of Hd−1 is rational of di-
mension 2. Thus, applying Theorem 8 to H̃d−1 one obtains families of two simple
points.
(iii) Applying statement (ii) one can determine d−3

2 different families of two
simple points on C. Let Hd−2 be the system of adjoint curves of degree (d− 2).
Applying Lemma 4 one has that the linear subsystem H̃d−2 obtained by forcing
all the points in these families to be simple base points of Hd−2 is rational of di-
mension one. Thus, applying Theorem 8 one concludes that C has simple points
over L.
(iv) This is an inmediate consequence of statement (ii). 2

Summarizing, we get the following algorithm for deciding the parametriz-
ability over R and, in the positive case, computing such a parametrization. Note
that the proof of Theorem 9 is constructive. Thus, in the design of the next al-
gorithm we will refer to Theorem 9. We also assume that we have an algorithm
for deciding whether an irreducible conic, with defining polynomial over F, has



rational points (i.e. points with coordinates in F), and if so determining one of
them. For details see [?] and [?].

Algorithm Algebraically-Optimal-Real-Parametrization(f)

– Input: f ∈ F[x, y] irreducible and defining a curve C of degree d.
– Output: the message “C is not rational” , or the message “C is not

real”, or an algebraically optimal real rational parametrization of C.

(1) If d = 1 then C is a line. Output a real rational parametrization and Exit.
(2) Perform Reality-Test(f, 1). If the output is the message “C is not real”,

report “C is not real” and Exit. Otherwise, say that P ∈ C ∩ R2 is the
real simple point returned by Reality-Test.

(3) If d = 2 decide whether C has rational points. If so, replace P by one of them
(if no rational point exists, P is optimal). Compute the defining equation H
of the pencil of lines passing through P . Output the rational parametrization
of C obtained by computing the free intersection point of F and H. Exit.

(4) Compute g = genus(C). If g 6= 0 report “C is not rational” and Exit.
(5) Compute the equation H of the linear system H of adjoint curves of degree

d− 2 to C∗.
(6) If d is odd, apply Theorem 9 (ii) to find d−3

2 families of two simple conjugate
points of C over F. Determine the equation H ′ ∈ F[x, y, z] of the rational
subsystem of H, obtained by forcing these families to be simple base points.
Output the rational parametrization of C obtained by computing the free
intersection point of F and H ′. Exit.

(7) If d is even, apply Theorem 9 (ii) to find d−4
2 families of two simple conjugate

points of C over F. Determine the rational subsystem H̃ of H, obtained by
forcing these families to be simple base points.

(8) Take Φ1, Φ2, Φ3 ∈ H̃ such that the common intersections of the three curves
Φi and F are the set of base points of H̃, and such that T = {x′ : y′ : z′ =
Φ1 : Φ2 : Φ3} is a birational transformation (Theorem 7).

(9) Determine D = T (C). D is a conic, and it can be efficiently computed by
mapping 5 points of C and interpolating.

(10) Determine a point Q on D with coordinates in an extension field Σ of F of
lowest degree, and such that T −1(Q) is defined. Replace P by T −1(Q).

(11) Compute the defining equation H ′ ∈ Σ[x, y, z] of the rational subsystem
of H̃ obtained by forcing P to be a simple base point. Output the rational
parametrization of C obtained by computing the free intersection point of F
and H ′. Exit. 2

Example 3: Let C be the affine plane curve of degree 5 introduced in Example
1 and 2. We already know that C is a real rational curve. Now, we want to obtain
an algebraically optimal real parametrization of C. Since degree of C is odd, we
compute d−3

2 = 1 family F of two conjugate points over Q. For this purpose, we
follow the proof of Theorem 9 (ii): we compute the defining equation H3 of the
system of adjoints of degree 3; we obtain, by means of H3 (Sub-algorithm-II) two



families F1,F2 of d−2 = 3 conjugate points; we determine the defining equation
of the system H4 of adjoints of degree 4, and the subsystem H̃4 of H4, obtained
by forcing F1,F2 to be simple base points of H4; applying Sub-algorithm-II to
H̃4 we compute F . More precisely,
H3(x, y, z, a1,1, a1,2, a2,0, a2,1) = −y2z a1 ,1 − a1 ,2 y2z − y2z a2 ,0 − y2z a2 ,1 +
a1 ,1 x y z + a1 ,2 x y2 + a2 ,0 x 2z + a2 ,1 x 2y .
To compute F1 (resp. F2), we take φ1 = H3(x, y, z, 0, 0, 0, 1) = −y2z + x2y and
φ2 = H3(x, y, z, 1, 0, 0, 1) = −2 y2z + xyz + x2y. Following Sub-algorithm-II one
gets:

F1 = {(α : α2 : 1) |α3 + 2α + 1 = 0}

F2 = {(α :
1
2

+
1
2
α2 : 1) |α3 + 3α2 + 5α + 5 = 0}.

Then, H̃4 is computed by solving the linear system of equations derived from
the constraints: H4(t, t2, 1) mod t3 + 2t + 1 = 0 and H4(t, 1

2 + 1
2 t2, 1) mod t3 +

3t2 +5t+5 = 0. Now, applying Sub-algorithm-II to H̃4 we get the family of two
conjugate points over Q:

F = {(α : −41
26
− 8

39
α : 1) | 8α2 − 7α + 123 = 0}.

Once F is computed, we determine the equation H ′ of the linear subsystem of
dimension one of H3 obtained by forcing the points in F to be base simple points
on H3; i.e. by solving the linear system of equations derived from the constraint:
H3(t,− 41

26 −
8
39 t, 1) mod 8t2 − 7t + 123 = 0.

Finally, we compute the resultants of f(x, y) and H ′(x, y, 1), w.r.t. x and y
respectively. Taking the primitive part of these resultants w.r.t the parameter,
we get the following optimal real parametrization of C:

(−−78 t2 + 55 t3 − 8 + 36 t

8t3
,
−78 t2 + 55 t3 − 8 + 36 t

2t (−12 t + 17 t2 + 4)
).

2

7. Hybrid Real Parametrization Algorithm

Let Σ be a finite algebraic extension of L, and let P(t) be a rational proper
parametrization of an irreducible plane curve in the complex plane. In [?] an
algorithmic method, based on canonical divisors, is given for reparametrizing
P(t) over an optimal field extension of L. In addition, in [?], if P(t) is complex,
the reality of C is decided by computing a gcd of two real bivariate polynomonials,
and if the curve is real, a linear parameter change is determined to transform
the original parametrization into a real one.

Therefore, one may also consider the following alternative approach to the
real parametrization problem, combining parametrization and reparametrization
algorithms.



Algorithm Hybrid-Real-Parametrization(f)

– Input: f ∈ F[x, y] irreducible and defining a curve C of degree d.
– Output: the message “C is not rational” , or the message “C is not

real”, or a real rational parametrization of C.

(1) Perform Reality-Test(f, 1). If the output is the message “C is not real”,
report “C is not real” and Exit.

(2) Apply Direct-Real-Parametrization-II to f . If C is rational, let P(t)
be the parametrization returned by Direct-Real-Parametrization-II;
in general it will be defined over a high degree extension field of F.

(3) Apply the reparatrization algorithm in [?] to P(t) to get a new parametri-
zation Q(t) over a extension field of degree two of F.

(4) Apply the reparametrization algorithm in [?] to Q(t) to get a new parame-
trization R(t) over a real extension field of degree two of F.

(5) Apply the reparametrization algorithm in [?] to R(t) to get a new parame-
trization S(t) over an optimal real extension field of F. 2
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Theorem. Revista Matemática de la Universidad Complutense de Madrid
10, 283–291.

[SW91] Sendra J.R., Winkler F. (1991), Symbolic Parametrization of Curves. J.
Symbolic Computation 12/6, 607-631.

[SW97] Sendra J.R., Winkler F. (1997), Parametrization of Algebraic Curves over
Optimal Field Extensions. J. Symbolic Computation 23/2&3, 191–207.

[SW98] Sendra J.R., Winkler F. (1998), Real Parametrization of Algebraic Curves.
In: J. Calmet and J. Plaza (eds.), Artificial Intelligence and Symbolic Com-
putation (Proc. AISC’98), 284–295, Lecture Notes in Artif. Intell. 1476,
Springer Verlag Berlin Heidelberg.

[Wa50] Walker R.J. (1950), Algebraic Curves. Princeton Unversity Press.
[Wi96] Winkler F. (1996), Polynomial Algorithms in Computer Algebra. Springer-

Verlag Wien New York.

This article was processed using the LATEX macro package with LLNCS style


