
A Parallel Symboli-Numerial Approah toAlgebrai Curve Plotting?Christian Mittermaier, Wolfgang Shreiner, and Franz WinklerResearh Institute for Symboli Computation (RISC-Linz)Johannes Kepler University, Linz, AustriaFirstName.LastName �ris.uni-linz.a.athttp://www.ris.uni-linz.a.atAbstrat. We desribe a parallel hybrid symboli-numerial solutionto the problem of reliably plotting a plane algebrai urve. The originalsequential program is implemented in the software library CASA on thebasis of the omputer algebra system Maple. The new parallel version isbased on Distributed Maple, a distributed programming extension writ-ten in Java. We desribe the mathematial foundations of the algorithm,give sequential algorithmi improvements and disuss our parallelizationapproah.1 IntrodutionAll modern omputer algebra systems provide funtions for plotting and visu-alizing the real aÆne part of the graph of urves whih are given in impliitrepresentation. These algorithms work well for urves de�ned by bivariate poly-nomials of reasonably low degree, however, as soon as the de�ning polynomialbeomes somewhat ompliated or the urve has singular points, these methodsusually fail and return a piture from whih one an only vaguely guess the shapeof the urve.Consider, for example, the tanode urve, de�ned by the polynomial f(x; y) :=2x4 � 3x2y+ y4 � 2y3 + y2, a urve of degree four. In Figure 1 we see the graphof this urve produed by two di�erent plotting algorithms. The piture on theleft hand side was produed by Maple's impliitplot algorithm, whih, as al-most all plotting algorithms, uses numerial methods suh as Newton's methodin order to generate the visualization of the urve. The piture on the right handside was produed by CASA's paPlot algorithm, whih is a hybrid symbolinumerial algorithm, ombining both, the exatness of symboli methods andthe speed and eÆieny of numerial approximation.The di�erene in the quality of the output of the two algorithms is quiteobvious but an be explained easily. Purely numerial methods use lineariza-tion in order to get an approximation. For this, the Jaobian of the de�ningpolynomial has to be omputed; but at those points on the urve, where two or? Supported by projets P11160-TEC (HySaX) and SFB F013/F1304 of the AustrianFonds zur F�orderung der wissenshaftlihen Forshung.

0.5

1

1.5

2

y

–1.5 –1–0.5 0 0.5 1 1.5x 0

0.5

1

1.5

2

y

–1.5 –1 0.5 1 1.5xFig. 1. Comparing Maple's impliitplot and CASA's paPlotmore branhes interset eah other, the Jaobian beomes singular as the partialderivatives with respet to both variables vanish. Inreasing the granularity inthe numerial plotting algorithm makes the piture smoother, but neverthelessthe singular points are still missing.A "good" plotting algorithm should ful�ll the following informal require-ments:{ Draw topologially orret plots.The ourse of the branhes of the urvethrough singular points should be represented orretly, singular points mustnot be missed, in partiular even isolated singularities, originating from twoomplex branhes interseting in one real point, should be represented byexatly one point.{ Use an eÆient method for rendering the urve. Computing timeshould be as low as possible without sari�ing orretness. Inreasing eÆ-ieny and reating smoother pitures is not aeptable if it means a om-promise on topologial orretness.In the following setions we will analyze CASA's paPlot algorithm whihful�lls the requirements stated above and we show how omputing time an beut down by �nding ways of employing parallel omputation. Also the sequentialversion of paPlot an be improved a lot by avoiding unneessary omputationsin algebrai extension �elds.The program system CASA is based on Maple and ontains a olletion ofalgorithms for designing, analyzing and rendering algebrai urves and surfaes.CASA has been developed by a researh group under the diretion of the thirdauthor at RISC-Linz [MW96℄.In a ompanion paper [SMW00℄ we desribe the paPlot algorithm fromthe point of view of parallelization while in this work we onentrate on themathematial and algorithmi details.The struture of this paper is as follows: In Setion 2 we desribe the mathe-matial and algorithmi ideas of the paPlot algorithm and in Setion 3 we listthe most time onsuming parts of the program. Setion 4 deals with sequentialalgorithmi improvements of the original algorithm, Setion 5 desribes our par-allelization approah, Setion 6 presents experimental results whih demonstrate

the eÆieny of the algorithm and the performane of the underlying distributedsystem. Finally, in Setion 7 we summarize our results.2 The paPlot AlgorithmThe paPlot algorithm (plane algebrai urve plot) uses a hybrid symboli nu-merial approah in order to plot plane algebrai urves de�ned by bivariatepolynomials over Q. It was developed in 1995 by Quo-Nam Tran [Tra96℄.The hybrid approah ombines the exatness of symboli methods with thespeed and eÆieny of numerial approximations. paPlot uses a symboli pre-proessing step where the points determining the topologial struture of theurve are omputed. For traing the branhes between these points Nam's Ex-tended Newton Method [Tra94℄ is used. The general struture of the algorithmlooks as follows:1. Determine all ritial points of the urve.2. Find out starting points for visualization.3. Trae the simple branhes of the urve by using numerial approximation.De�nition 1. Let C be an aÆne plane algebrai urve de�ned by the polynomialf 2 Q[x; y℄. (�; �) 2 Q 2 is a ritial point of C i� f(�; �) = �f�x (�; �) = 0. (Q isthe algebrai losure or Q, i.e. the �eld of algebrai numbers.)In order to larify how ritial points determine the topologial struture of theurve, we present the following piture (Figure 2) of a urve de�ned by thepolynomial f(x; y) := 8y2 � 8x2 � 8y3 � 8x3 + 2y4 + x5.
Simple Branch

Critical PointsFig. 2. Critial Points and the Topologial Struture of an Algebrai CurveThe ritial points are marked by blak dots (we do not distinguish betweensingular points and extremal points). The urve is partitioned into horizontal

stripes, eah of them bounded by two ritial points. Within suh a stripe, theurve has no self interseting branhes and the Jaobian is regular in everypoint. The piture of the urve is generated by traing all simple branhes foreah stripe. For every stripe, starting points for the visualization of all simplebranhes have to be omputed. This is done by interseting the urve in themiddle of every stripe with a horizontal line. The intersetion points form theset of starting points for the rendering proess. In Figure 2, the starting pointsare marked by grey dots. Next, all simple branhes are traed in both diretionsusing the Extended Newton method starting at the initial points of visualization.Before we desribe ritial point omputation in detail, we mention two im-portant observations:1. We are interested in the real solutions of the system f(x; y) = �f�x (x; y) = 0only, as we want to plot the real part of the algebrai urve.2. We do not need the exat solutions of the system. It is suÆient to haveisolating intervals for the x and y values of reasonably small length as theresolution of the output devie is limited to pixel level.By this approah, introdution of and omputation with real algebrai num-bers and their numerial evaluation is avoided.For omputing ritial points we �rst transform the system f = �f�x = 0 intoa set of triangular systems of the form p(y) = q(x; y) = 0 (p(y) irreduible overQ) suh that the solutions of all triangular systems are exatly the solutions ofthe original system. Isolating intervals for the real zeros of a triangular systemare obtained by the following steps:1. Find isolating intervals Y1; : : : ; Yn � Q for the real roots �1; : : : ; �n of p(y).2. From pi and qi ompute a polynomial r(x) among whose real roots �1; : : : ; �mwe an also �nd for eah real root �j (j 2 f1; : : : ; ng of pi all �k's suh that(�k; �j) is a zero of pi = qi = 0.3. Find isolating intervals X1; : : : ; Xm � Q for all real roots �1; : : : ; �m of r(x).4. Chek whih ombinationsXk�Yj ; (k 2 f1; : : : ;mg; j 2 f1; : : : ; ng) ontaina ommon zero of p=q=0.Theorem 1 guarantees that we an always onstrut a polynomial r(x) with thedesired property.Theorem 1. Let K be an algebraially losed �eld and let f(x; y) =Pmi=0 fi(x)yi,g(x; y) = Pni=0 gi(x)yi be elements of K [x; y℄ of positive degrees m and n in y,respetively. Let r(x) := resy(f; g). If (�; �) 2 K 2 is a ommon zero of f and g,then r(�) = 0. Conversely, if r(�) = 0, then one of the following holds:1. fm(�) = gn(�) = 0,2. 9� 2 K : f(�; �) = g(�; �) = 0.Steps 2 and 3 are repeated until all intervals Yj ; j 2 f1; : : : ; ng are proessed.In order to hek whih ombinations Xk � Yj ontain a ommon zero of thesystem p = q = 0 we proeed as follows:

1. Fator p over Q and apply the following steps to eah fator. W.l.o.g. weassume that p is the only irreduible fator.2. Compute the greatest square free divisor q�(x; �) of q(x; �) over Q(�)[x℄,where � is an arbitrary real root of p(y). q�(x; �) = q(x; �)= gd(q(x; �); ��xq(x; �)).3. Take an interval Yj ; j 2 f1; : : : ; ng and onsider p as the minimal polynomialfor the real root �j represented by Yj .4. Use a real root isolation algorithm for polynomials with real algebrai num-ber oeÆients to determine the appropriate intervals Xk . Suh an algo-rithm requires as input the real algebrai number �j represented by the iso-lating interval Yj , the minimal polynomial p(y), the squarefree polynomialq(x; y) 2 (Q[y℄=hpi i)[x℄ representing q(x; �j), for whih we want to isolatethe real roots and a list of andidates X1; : : : ; Xm for the isolating intervals(isolating intervals for the real roots of the resultant r(x)).The algorithm used in step 4 omputes the sign of the real algebrai numbersq(�1; �) and q(�2; �), where �1 and �2 are the end points of an interval Xk. If thesigns are di�erent or at least one of of the signs is zero then we have found anisolating interval. For determining the signs, Algorithm 1 is used. For details werefer to [Loo83℄.Algorithm 1 Computing the sign of a real algebrai number �Input: p(y), minimal polynomial for the real algebrai number �,I =℄�1; �2[, isolating interval for �,q(y) 2 Q[y℄=hpi representing the real algebrai number � 2 Q(�).Output: s, the sign of �.1: Compute q� and b suh that (1=b)q� = q; q� 2 Z[y℄ and b 2 Q � f0g. I�(=℄��1 ; ��2 [) := I.2: Set q to the greatest squarefree divisor of q�.3: loop4: Set n to the number of roots of q in I�.5: if n = 0 then6: s := sgn(b) � sgn(q�(��2)).7: return(s):8: end if9: w := (��1 + ��2)=2.10: if p(��1)p(w) < 0 then11: ��2 := w.12: else13: ��1 := w.14: end if15: end loopCritial point omputation for a urve C de�ned by the bivariate polynomialf(x; y) is done by the following steps:1. fx := �f�x ; L := 0

2. From f and fx ompute a set T of triangular systems (p(y); q(x; y)) suhthat the union of the solutions of all triangular systems is the solution set off = fx = 0. This an be done using Kalkbrener's bsolve algorithm [Kal90℄.3. For eah triangular system (p(y); q(x; y)) 2 T do the following:(a) Fator p over Q giving a set P := fpj jQj pj = pg.(b) For eah non-onstant fator pj 2 P do the following operations:{ If pj is linear, then ompute the exat solution � of pj = 0. Substitute� for y in q and ompute isolating intervals ℄�1i; �2i[for the real rootsof q(x; �) whose length is smaller then the resolution of the outputdevie. L := L [f℄�1i; �2i[� [�; �℄g.{ If deg(pj) > 1 theni. Let I1 := f℄�1i; �2i[j �1i; �2i 2 Qg be a set of isolating intervalsfor the real roots of pj of the required length.ii. Let � be a root of pj and q0 := q(x; �). Compute q00 as thequotient q0= gd(q0; ��xq0) over Q(�). q� := q00(x; y).iii. r(x) := resy(pj(y); q�(x; y)).iv. Let I2 := f℄�1i; �2i[j �1i; �2i 2 Qg be a set of isolating intervalsfor the real roots of r whose length is smaller than the resolutionof the output devie.v. For every interval ℄�1i; �2i[2 I1 onsider pj as minimal polynomialfor the real root � represented by the isolating interval and thealgebraially square free polynomial q�(x; y) 2 (Q[y℄=hpj i)[x℄ asrepresentation of qi(x; �). Use a real root isolation algorithm forpolynomials with real algebrai number oeÆients in order tohek whih intervals from I2 represent a real algebrai number� suh that pj(�) = q(�; �) = 0. (Suh an algorithm requires qto be square free for every root of p). As a result we get a list ofCartesian produt of intervals of the form L0 := fXi � Yj j Xi 2I2; Yj 2 I1g.vi. L := L [L0.3 Pro�ling paPlotWe have analyzed the most time onsuming parts of paPlot by doing sampleexeutions for randomly generated high degree urves. The sample runs wereexeuted on a PIII�450MHz Linux mahine. Critial point omputation is dom-inated by the gd omputation in the algebrai extension �eld of Q used foromputing the greatest squarefree divisor. Resultant omputation and real rootisolation for polynomials with real algebrai number oeÆients also require alarge part of the overall omputing time. Ordinary real root isolation is timeonsuming in only some of the ases, but still it is worth to put some e�ort indeveloping a parallel algorithm for this sub-problem.

Example 1 Example 2 Example 3 Example 4deg = 14 deg = 13 deg = 18 deg = 21real root 137 187 7 171resultant 542 455 82 4175algebrai squarefree 1 7213 1204 1real root over Q(�) 6525 1807 252 20060P ritial points >7213 9666 1546 >24484P paPlot >7267 9689 1552 >24518Table 1. Pro�ling the paPlot algorithm (all timings in seonds)The overall impression obtained from this exeution pro�le perfetly meetsones expetations, namely that the symboli part of paPlot is the toughest andmost time onsuming one.4 Sequential Algorithmi ImprovementsAlso the sequential version of paPlot an be improved a lot by avoiding unne-essary omputations in algebrai extension �elds. This setion is based on the�rst author's diploma thesis [Mit00℄.4.1 Replaing gd-Computation over Q(�)Critial point omputation is mainly dominated by a gd omputation in analgebrai extension �eld of Q. However, this gd operation does not provide anyinformation in the ritial point omputing step beause it only ensures that thepolynomial q 2 (Q[y℄=hpi)[x℄, whih is passed to the real root isolation algorithmfor polynomials with algebrai number oeÆients as a parameter is square free.Algebrai real root isolation is used for heking whih ombinations of isolat-ing intervals ontain a ritial point. By making this hek more expliit insteadof hiding it behind a real root isolation algorithm, we get ompletely rid of thistime onsuming operation and additionally generate lots of independent tasksfor whih employing parallel omputation beomes easy. Algorithm 2 desribesthe idea in pseudo ode.For this approah, it is no longer neessary to ompute the squarefree divi-sor of the polynomial q(x; �) for every real root � of p(y) in advane. Hene,the gd omputation over Q(�) beomes obsolete. However, the algorithm foromputing the sign of a real algebrai number requires a squarefree polynomialrepresentation of this number. By �rst substituting the left and right endpointof the interval for the x values, we redue the gd omputation over Q(�) toa gd omputation over Q whih is muh more faster. From a mathematialpoint of view, the original approah is more elegant as we have to do several gd1 Maple fails with an objet too large error in this position but omputation runsthrough when the gd omputation is omitted.

Algorithm 2 A more expliit and eÆient algorithm for omputing isolatingretangles for the real solutions of the triangular system p(y) = q(x; y) = 0.Input: p(y) 2 Q[y℄, irreduible over Q,q(x; y) 2 Q[x; y℄, a bivariate polynomial,fY1; : : : ; Ymg, a set of isolating intervals for the real roots of p,fX1; : : : ; Xng, list of isolating intervals for the real roots of r(x) = resy(p; q) of theform ℄�1i; �2i[.Output: L, set of isolating retangles for the real solutions of p = q = 0.1: L := ;.2: for i from 1 to n do3: ql(y) := q(�1i; y)= gd(q(�1i; y); ��y q(�1i; y)).4: qr(y) := q(�2i; y)= gd(q(�2i; y); ��y q(�2i; y)).fql; qr are the greatest squarefree divisors of q(�1i; y) and q(�2i; y)). g5: q�l := qlmodp.6: q�r := qrmodp.7: for j from 1 to m do8: l := sgn(q�l ; p; Yj).9: r := sgn(q�r ; p; Yj).10: if l = 0 _ r = 0 _ l � r < 0 then11: L := L [fXi � Yjg.12: end if13: end for14: end for15: return(L).omputations here. But when eÆieny is investigated arefully, our approah issuperior to the former.4.2 Speeding Up the Sign ComputationsIn the algorithm for omputing the sign of a real algebrai number Moebius-transformations are used in order to transform the real roots of q in the intervalI� to the interval ℄0;1[in order to apply Desartes' rule of signs. These transfor-mations involve the left and right end-point ��1 and ��2 , whih are huge rationalnumbers beause all intervals obtained from real root isolation in the ritialpoint omputation algorithm are re�ned to at least the resolution of the outputdevie. The huge rational numbers make the Moebius-transformations time on-suming and furthermore, for some isolating intervals re�nement is superuous asthey do not our in any isolating retangle. In order to make sign omputationmore eÆient and simultaneously avoiding extra work, we pursue the followingstrategy, whih has suessfully been implemented in our version of the paPlotalgorithm:1. Do not re�ne the isolating intervals in the real root isolation proess.2. Apply sign omputation to the unre�ned intervals only, in order to hekwhih intervals atually form isolating retangles.

3. Having determined the isolating retangles, do re�nement for all ourringintervals.4.3 Exeution Time ComparisonsComparing exeution times of the improved sequential algorithm (Table 2) withexeution times of the original method (Table 1) is not possible in the levelof the individual sub-algorithms, however, omparing the total omputing timefor Step 1, we see that our improved version is signi�antly better. Moreover,if we replae the gd omputation over the algebrai extension �eld of Q byour equivalent but less omplex approah, the big examples (Example 1 and 4)exeutable in the sense that Maple does not fail with an 'objet too large'error. Example 1 Example 2 Example 3 Example 4deg = 14 deg = 13 deg = 18 deg = 21real root 83 97 3 64resultant 386 150 55 3121heking 6180 166 86 8279re�nement 127 52 8 49P ritial points 6870 470 155 11748Table 2. Exeution times of the improved sequential paPlot algorithm
5 The Parallel Plotting AlgorithmParallelization of the plotting algorithm is based on the sequentially improvedversion. Parallelism is applied on several levels:1. Parallel Resultant Computation Our parallelization approah applies a mod-ular method to ompute resultants in multiple homomorphi imagesZpi[x; y℄,where the pi are prime numbers. We get a divide and onquer struturewhere both, the divide phase (the modular resultant omputations) and theonquer phase (the appliation of the Chinese Remainder Theorem) an beparallelized obviously. For details, see [HL94, Sh99℄.2. Parallel Real Root Isolation We use Uspensky's method [CL83℄, a divide andonquer searh algorithm, for omputing isolating intervals. A naive paral-lelization of this algorithm typially yields poor speedups due to the nar-rowness of the highly unbalaned searh trees assoiated with the isolationproess [CJK90℄.Our approah is to broaden and atten the searh trees up to a ertain extentsuh that in every step eah proessor an partiipate in the omputation ofisolating intervals. Our algorithm is based on speulative parallelism yieldingbetter results in many of the ases. For details, see [Mit00℄.

3. Parallel Solution Test and Interval Re�nement The tests whih intervalsX � Y do indeed ontain a solution of the given triangular system an beperformed in parallel in a straight-forward fashion. Likewise we an re�neall isolating intervals in parallel to the desired auray.Algorithm 3 (Parallel Critial Points) A parallel algorithm for ritial pointomputationInput: f(x; y) 2 Q[x; y℄, irreduibleOutput: L, list of ritial points of f with respet to y-diretion.1: fx := �f�x (x; y); L := ;.2: Apply bsolve to get a set T of triangular systems from f and fx.3: for all (p; q) 2 T do4: F := fpi j the pi are the irreduible fators of p over Qg5: for all p 2 F do6: Y := f℄�i1; �i2[g set of isolating intervals for the real roots of p obtained bythe parallel real root isolation algorithm.7: r := resy(p; q) resultant of p and q omputed by the parallel modular ap-proah.8: X := f℄�i1; �i2[g set of isolating intervals for the real roots of r omputed bythe parallel real root isolation algorithm.9: do in parallel10: For eah ℄�1; �2[2 Y and eah ℄�1; �2[2 X ompute the sign of q(�1; �) andq(�2; �), where � is the real root of p represented by the isolating interval℄�1; �2[. Add ℄�1; �2[� ℄�1; �2[to L if the signs are di�erent or at least onesign is 0.11: end do12: end for13: end for14: do in parallel15: Re�ne eah interval ourring in L to the desired granularity.16: end doThe various ideas developed above are inorporated in the parallel version ofthe paPlot algorithm, the dpaPlot algorithm (distributed paPlot). Paral-lelization a�ets the ritial point omputation step of paPlot, only. Obviously,the various subalgorithms simply have to be replaed by their parallel ounter-part. In Algorithm 3 (Parallel Critial Points) we give a high level desriptionof how ritial points are omputed in dpaPlot.We used the Distributed Maple environment [Sh98℄, a system for writingparallel programs on the basis of Maple, for implementing our algorithms. Itallows to reate tasks and exeute them on Maple kernels running on variousmahines in a network.Eah node of a Distributed Maple session omprises two omponents, a Javabased sheduler oordinating the interation between nodes and the Maple in-terfae, whih is a link between kernel and sheduler. Both omponents use

pipes to exhange messages (whih may employ any Maple objets). The paral-lel programming paradigm is essentially based on funtional priniples whih issuÆient for many kinds of algorithms in omputer algebra.The basi operations representing the ore programming interfae onsist ofmethods for exeuting a Maple ommand on every mahine onneted to thesession, reating a task for evaluating an arbitrary Maple expression (tasks arerepresented by task handles) and waiting for the result of a task represented byits handle.6 Experimental ResultsWe have systematially benhmarked the dpaPlot algorithm implemented inDistributed Maple with four randomly generated algebrai urves for whih thesequentially improved program takes 6870s, 470s, 155s and 11748s respetively.These times refer to a PIII�450MHz PC. The parallel algorithm has been exe-uted in three system environments onsisting of 24 proessors eah:{ A luster whih omprises 4 Silion Graphis Otanes (2 R10000�250Mhzeah) and 16 Linux PCs (various Pentium proessors) linked by a 100 Mbitswithed (point-to-point) Ethernet;{ a Silion Graphis Origin multiproessor (64 R12000�300Mhz, 24 proessorsused);{ a mixed on�guration onsisting of our 4 dual-proessor Otanes and 16proessors of the Origin multiproessor interonneted via a high-bandwidthATM line.The raw total omputational performane of luster, Origin, and mixed on-�guration is 18.3, 17.1, and 18.7, respetively; these numbers (measured by arepresentative Maple benhmark) denote the sum of the performanes of allproessors relative to a PIII�450MHz proessor. In the luster and in the mixedon�guration, the initial (frontend) Maple kernel was exeuted on an Otane.The top diagram in Figure 3 generated from a Distributed Maple pro�leillustrates the exeution in the luster on�guration with 16 proessors listed onthe vertial axis (8 Otane proessors above 8 Linux PCs) and eah line denotesa task exeuted on a partiular mahine; we see the real root isolation phasefollowed by the phases for resultant omputation, the seond real root isolation,the solution tests and the solution re�nements. This visualization is generatedfrom a run with Example 2 and illustrates the dynami behavior, i.e. the numberof tasks generated in eah step of the algorithm. The length of these intervalsdoes not reet the exeution time of these parts.The table in Figure 3 lists the exeution times measured in eah system envi-ronment for eah input with varying numbers of proessors. The subsequent rowof diagrams visualizes the absolute speedups TsTn (where Ts denotes the sequentialexeution time and Tn denotes the parallel exeution time with n proessors),the seond row visualizes these speedups multiplied with nPni=1 pi (where pi de-notes the relative performane of proessor i), the third row visualizes the saled

Real Root Resultant RR RefineCheckExeution Times (s)Example Environment 1 2 4 8 16 241 (6870s) Cluster 14992 8035 2732 1186 552 488Origin 7290 4217 1789 872 446 513Mixed 14992 8035 2732 1368 597 5192 (470s) Cluster 810 648 328 173 95 108Origin 667 541 297 166 112 116Mixed 810 648 328 210 116 1273 (155s) Cluster 267 191 112 67 46 45Origin 196 147 90 63 54 54Mixed 267 191 112 74 58 564 (11748s) Cluster 25178 15559 6820 3562 1915 1563Origin 13397 8223 4009 2281 1726 1420Mixed 25178 15559 6820 4042 2004 1599
0
2
4
6
8

10
12
14
16
18

124 8 16 24
processors

1: Absolute Speedup

0

2

4

6

12 4 8 16 24
processors

2: Absolute Speedup

0

2

4

12 4 8 16 24
processors

3: Absolute Speedup

0
2
4
6
8

10

124 8 16 24
processors

4: Absolute Speedup

0
2
4
6
8

10
12
14
16
18

124 8 16 24
processors

1: Scaled Speedup

0

2

4

6

12 4 8 16 24
processors

2: Scaled Speedup

0

2

4

12 4 8 16 24
processors

3: Scaled Speedup

0
2
4
6
8

10

124 8 16 24
processors

4: Scaled Speedup

0

1

12 4 8 16 24
processors

1: Scaled Efficiency

0

1

12 4 8 16 24
processors

2: Scaled Efficiency

0

1

12 4 8 16 24
processors

3: Scaled Efficiency

0

1

12 4 8 16 24
processors

4: Scaled Efficiency

Fig. 3. Experimental Results

eÆieny, i.e., TsTnPni=1 pi , whih ompares the speedup we atually got to an up-per bound of the speedup we ould have got. The markers +, �, and � denoteexeution on luster, Origin, and in the mixed on�guration, respetively.Analyzing the experimental data gives some interesting results. Most obvi-ously, the speedups for larger examples is better than with smaller ones; for in-stane, in Example 1 the Cluster/mixed on�guration gives an absolute speedupof 16 but only a speedup of 5 for Example 2. The Origin operates in Exam-ple 1 with saled eÆienies lose to 1 and gives in Example 4 (whih has verylarge intermediate data) due to its high-bandwidth interonnetion fabri forsmaller proessor numbers signi�antly better results than the other environ-ments. Espeially with 16 to 24 proessors, however, in all examples the saledspeedups/eÆienies of the luster ompete with (are equal or higher than) thoseof the Origin. Moreover, the heap Linux PCs in the luster give overall betterperformane than the muh more expensive Silion Graphis mahines.When we onsider the exeution times of the parallel subalgorithms (notlisted due to lak of spae) individually, we realize that the speedups are par-tially muh higher than the speedup of the overall algorithm. In Example 2with 24 proessors, the parallelization of resultant omputation gives absolutespeedups of 10.2 (luster), 10.2 (Origin), and 7.9 (mixed). The parallelization ofthe heking phase gives absolute speedups of 12.3, 14.1, and 16.1 of the respe-tive on�gurations. Although both phases together aount for almost 80% ofthe total work, the less eÆient parallelization of the remaining (muh shorter)phases limits the overall speedup.7 ConlusionsWe have desribed an algorithm for reliably plotting plane algebrai urves whihis based on both, symboli and numerial methods. Analyzing the algorithm are-fully, we have found sequential algorithmi improvements signi�antly reduingomputing time.Our parallelization of the symboli part of the paPlot algorithm demon-strates that also in the area of symboli omputation signi�ant absolute speedupsan be ahieved. This was only possible after areful analysis and redesign of theoriginal sequential algorithms. Also we see that omputer networks an givespeedups that are omparable to those on a massively parallel multiproessor.Subtle algorithmi di�erenes between the parallel and sequential version of theprogram give super-linear speedups in ertain situations.Referenes[CJK90℄ G. E. Collins, J. R. Johnson, and W. K�uhlin. Parallel Real Root Isola-tion Using the CoeÆient Sign Variation Method. In R. E. Zippel, editor,Computer Algebra and Parallelism, LNCS, pages 71{87. Springer Verlag,(1990).

[CL83℄ G. E. Collins and R. Loos. Real Zeros of Polynomials. In B. Buhberger,G. E. Collins, and R. Loos, editors, Computer Algebra, Symboli and Alge-brai Computation, pages 83{94. Springer Verlag Wien New York, 2nd ed.edition, (1983).[HL94℄ H. Hong and H. W. Loidl. Parallel Computation of Modular MultivariatePolynomial Resultants on a Shared Memory Mahine. In B. Buhbergerand J. Volkert, editors, Parallel Proessing: CONPAR94-VAPP VI { ThirdJoint International Converene on Vetor and Parallel Proessing, number854 in LNCS, pages 325{336. Springer, Berlin, (1994).[Kal90℄ M. Kalkbrener. Solving Systems of Bivariate Algebrai Equations by UsingPrimitive Polynomial Remainder Sequenes. Tehnial report, ResearhInstitute for Symboli Computation (RISC), 1990.[Loo83℄ R. Loos. Computing in Algebrai Extensions. In B. Buhberger, G. E.Collins, and R. Loos, editors, Computer Algebra, Symboli and AlgebraiComputation, pages 173{187. Springer Verlag Wien New York, 2nd ed. edi-tion, (1983).[Mit00℄ Christian Mittermaier. Parallel Algorithms in Construtive Algebrai Ge-ometry. Master's thesis, Johannes Kepler University, Linz, Austria, 2000.[MW96℄ M. M�nuk and F. Winkler. CASA - A System for Computer Aided Con-strutive Algebrai Geometry. In DISCO'96 | International Symposiumon the Design and Implementation of Symboli Computation Systems, vol-ume 1128 of LNCS, pages 297{307, Karsruhe, Germany, 1996. Springer,Berlin.[Sh98℄ W. Shreiner. Distributed Maple | User and Referene Manual. TehnialReport 98-05, Researh Institute for Symboli Computation (RISC-Linz),Johannes Kepler University, Linz, Austria, May 1998.[Sh99℄ W. Shreiner. Developing a Distributed System for Algebrai Geometry.In B.H.V. Topping, editor, EURO-CM-PAR'99 Third Euro-onferene onParallel and Distributed Computing for Computational Mehanis, pages137{146, Weimar, Germany, Marh 20-25, (1999). Civil-Comp Press, Edin-burgh.[SMW00℄ W. Shreiner, C. Mittermaier, and F. Winkler. On Solving a Problem inAlgebrai Geometry by Cluster Computing. Submitted for publiation,2000.[Tra94℄ Q.-N. Tran. Extended Newton's Method for Finding the Roots of an Ar-bitrary System of Equations and its Appliations. Tehnial Report 94-49, Researh Institute for Symboli Computation (RISC), Johannes KeplerUniversity Linz, Austria, 1994.[Tra96℄ Q.-N. Tran. A Hybrid Symboli-Numerial Approah in Computer AidedGeometri Design (CAGD) and Visualization. PhD thesis, RISC-Linz, Jo-hannes Kepler University Linz, Austria, (1996).

