A Parallel Symbolic-Numerical Approach to
Algebraic Curve Plotting*

Christian Mittermaier, Wolfgang Schreiner, and Franz Winkler

Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, Linz, Austria
FirstName.LastName @risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at

Abstract. We describe a parallel hybrid symbolic-numerical solution
to the problem of reliably plotting a plane algebraic curve. The original
sequential program is implemented in the software library CASA on the
basis of the computer algebra system Maple. The new parallel version is
based on Distributed Maple, a distributed programming extension writ-
ten in Java. We describe the mathematical foundations of the algorithm,
give sequential algorithmic improvements and discuss our parallelization
approach.

1 Introduction

All modern computer algebra systems provide functions for plotting and visu-
alizing the real affine part of the graph of curves which are given in implicit
representation. These algorithms work well for curves defined by bivariate poly-
nomials of reasonably low degree, however, as soon as the defining polynomial
becomes somewhat complicated or the curve has singular points, these methods
usually fail and return a picture from which one can only vaguely guess the shape
of the curve.

Consider, for example, the tacnode curve, defined by the polynomial f(z,y) :=
224 — 322y + y* — 2y 4+ 92, a curve of degree four. In Figure 1 we see the graph
of this curve produced by two different plotting algorithms. The picture on the
left hand side was produced by Maple’s implicitplot algorithm, which, as al-
most all plotting algorithms, uses numerical methods such as Newton’s method
in order to generate the visualization of the curve. The picture on the right hand
side was produced by CASA’s pacPlot algorithm, which is a hybrid symbolic
numerical algorithm, combining both, the exactness of symbolic methods and
the speed and efficiency of numerical approximation.

The difference in the quality of the output of the two algorithms is quite
obvious but can be explained easily. Purely numerical methods use lineariza-
tion in order to get an approximation. For this, the Jacobian of the defining
polynomial has to be computed; but at those points on the curve, where two or

* Supported by projects P11160-TEC (HySaX) and SFB F013/F1304 of the Austrian
Fonds zur Forderung der wissenschaftlichen Forschung.

{/’\\ 24) /\ ' 2
‘\ Nﬁ / e/ 151

\

\ y 1: / / Y1
\ A

1\]
05]| / 05
\k M

1571205 005x1 15 | |-15-1 0 05x1 15

~

Fig. 1. Comparing Maple’s implicitplot and CASA’s pacPlot

more branches intersect each other, the Jacobian becomes singular as the partial
derivatives with respect to both variables vanish. Increasing the granularity in
the numerical plotting algorithm makes the picture smoother, but nevertheless
the singular points are still missing.

A 7good” plotting algorithm should fulfill the following informal require-
ments:

— Draw topologically correct plots. The course of the branches of the curve
through singular points should be represented correctly, singular points must
not be missed, in particular even isolated singularities, originating from two
complex branches intersecting in one real point, should be represented by
exactly one point.

— Use an efficient method for rendering the curve. Computing time
should be as low as possible without sacrificing correctness. Increasing effi-
ciency and creating smoother pictures is not acceptable if it means a com-
promise on topological correctness.

In the following sections we will analyze CASA’s pacPlot algorithm which
fulfills the requirements stated above and we show how computing time can be
cut down by finding ways of employing parallel computation. Also the sequential
version of pacPlot can be improved a lot by avoiding unnecessary computations
in algebraic extension fields.

The program system CASA is based on Maple and contains a collection of
algorithms for designing, analyzing and rendering algebraic curves and surfaces.
CASA has been developed by a research group under the direction of the third
author at RISC-Linz [MW96].

In a companion paper [SMWO00] we describe the pacPlot algorithm from
the point of view of parallelization while in this work we concentrate on the
mathematical and algorithmic details.

The structure of this paper is as follows: In Section 2 we describe the mathe-
matical and algorithmic ideas of the pacPlot algorithm and in Section 3 we list
the most time consuming parts of the program. Section 4 deals with sequential
algorithmic improvements of the original algorithm, Section 5 describes our par-
allelization approach, Section 6 presents experimental results which demonstrate

the efficiency of the algorithm and the performance of the underlying distributed
system. Finally, in Section 7 we summarize our results.

2 The pacPlot Algorithm

The pacPlot algorithm (plane algebraic curve plot) uses a hybrid symbolic nu-
merical approach in order to plot plane algebraic curves defined by bivariate
polynomials over Q. It was developed in 1995 by Quoc-Nam Tran [Tra96].

The hybrid approach combines the exactness of symbolic methods with the
speed and efficiency of numerical approximations. pacPlot uses a symbolic pre-
processing step where the points determining the topological structure of the
curve are computed. For tracing the branches between these points Nam’s Ex-
tended Newton Method [Tra94] is used. The general structure of the algorithm
looks as follows:

1. Determine all critical points of the curve.
2. Find out starting points for visualization.
3. Trace the simple branches of the curve by using numerical approximation.

Definition 1. Let C be an affine plane algebraic curve defined by the polynomial
=2 . o . . ~ .
f € Qlz,y). (&) € Q s a critical point of C iff £(&,m) = FL(€,m) = 0. (@ is

the algebraic closure or Q, i.e. the field of algebraic numbers.)

In order to clarify how critical points determine the topological structure of the
curve, we present the following picture (Figure 2) of a curve defined by the
polynomial f(z,y) := 8y* — 822 — 8y* — 82 + 2y* + 2°.

Simple Branch

Critical Points
= E) R T 3 3

Fig. 2. Critical Points and the Topological Structure of an Algebraic Curve

The critical points are marked by black dots (we do not distinguish between
singular points and extremal points). The curve is partitioned into horizontal

stripes, each of them bounded by two critical points. Within such a stripe, the
curve has no self intersecting branches and the Jacobian is regular in every
point. The picture of the curve is generated by tracing all simple branches for
each stripe. For every stripe, starting points for the visualization of all simple
branches have to be computed. This is done by intersecting the curve in the
middle of every stripe with a horizontal line. The intersection points form the
set of starting points for the rendering process. In Figure 2, the starting points
are marked by grey dots. Next, all simple branches are traced in both directions
using the Extended Newton method starting at the initial points of visualization.

Before we describe critical point computation in detail, we mention two im-
portant observations:

1. We are interested in the real solutions of the system f(z,y) = %(m,y) =0
only, as we want to plot the real part of the algebraic curve.

2. We do not need the exact solutions of the system. It is sufficient to have
isolating intervals for the z and y values of reasonably small length as the
resolution of the output device is limited to pixel level.

By this approach, introduction of and computation with real algebraic num-
bers and their numerical evaluation is avoided.

For computing critical points we first transform the system f = % = 0 into

a set of triangular systems of the form p(y) = q(x,y) = 0 (p(y) irreducible over
Q) such that the solutions of all triangular systems are exactly the solutions of
the original system. Isolating intervals for the real zeros of a triangular system
are obtained by the following steps:

1. Find isolating intervals Y7,...,Y;, C Q for the real roots ny,...,n, of p(y).
2. From p; and ¢; compute a polynomial r(z) among whose real roots a1, . .. ,
we can also find for each real root n; (j € {1,...,n} of p; all ax’s such that
(o, m;) is a zero of p; = ¢; = 0.

Find isolating intervals Xy, ..., X, C Q for all real roots a1, ..., a,, of r(z).
4. Check which combinations X3 xY;, (k€ {1,...,m}, j € {1,...,n}) contain

a common zero of p_q_0.

w

Theorem 1 guarantees that we can always construct a polynomial r(z) with the
desired property.

Theorem 1. Let K be an algebraically closed field and let f(z,y) = > fi(z)y’,
g(z,y) = > i, gi(z)y’ be elements of Klz,y] of positive degrees m and n in y,
respectively. Let r(z) := res,(f,9). If (§,n) € K* is a common zero of f and g,
then r(€) = 0. Conversely, if r(§) = 0, then one of the following holds:

1. fm(f) = gn(f) = 0;
2. meK: f(&n) =g(n =0

Steps 2 and 3 are repeated until all intervals Yj, j € {1,...,n} are processed.
In order to check which combinations X; x Y; contain a common zero of the
system p = g = 0 we proceed as follows:

1. Factor p over Q and apply the following steps to each factor. W.l.o.g. we
assume that p is the only irreducible factor.

2. Compute the greatest square free divisor ¢*(z,n) of q(x,n) over Q(n)[z],
where 7 is an arbitrary real root of p(y). ¢*(x,n) = q(z,n)/ gcd(q(z,n), %q(m, n)).

3. Take aninterval Y}, j € {1,...,n} and consider p as the minimal polynomial
for the real root n; represented by Y.

4. Use a real root isolation algorithm for polynomials with real algebraic num-
ber coefficients to determine the appropriate intervals X . Such an algo-
rithm requires as input the real algebraic number 7; represented by the iso-
lating interval Yj, the minimal polynomial p(y), the squarefree polynomial
q(z,y) € (Qyl/p;))[x] representing g(x,7;), for which we want to isolate
the real roots and a list of candidates X1, ..., X, for the isolating intervals
(isolating intervals for the real roots of the resultant r(zx)).

The algorithm used in step 4 computes the sign of the real algebraic numbers
q(&,n) and q(&,n), where & and & are the end points of an interval X. If the
signs are different or at least one of of the signs is zero then we have found an
isolating interval. For determining the signs, Algorithm 1 is used. For details we
refer to [Loo83].

Algorithm 1 Computing the sign of a real algebraic number g

Input: p(y), minimal polynomial for the real algebraic number «,
I =]n1, n2], isolating interval for
q(y) € Qy]/(py representing the real algebraic number 3 € Q(«).
Output: s, the sign of 3.
1: Compute ¢* and b such that (1/b)¢" = q, ¢* € Z[y] and b € Q — {0}. I"(=
Ini.ms) == 1.
2: Set g to the greatest squarefree divisor of ¢*.

3: loop

4: Set n to the number of roots of g in I*.
5: if n =0 then

6 si=sgn(b) - sgn(g’ (13)).

T return(s).

8: endif

0 wi= (i +)/
10: if p(ny)p(w) < 0 then

11: N5 = w.
12: else

13: N = w.
14: end if

15: end loop

Critical point computation for a curve C defined by the bivariate polynomial
f(z,y) is done by the following steps:

1. fu ::%;L::O

2. From f and f, compute a set T of triangular systems (p(y),q(z,y)) such
that the union of the solutions of all triangular systems is the solution set of
f = fo = 0. This can be done using Kalkbrener’s bsolve algorithm [Kal90].

3. For each triangular system (p(y),q(z,y)) € T do the following;:

(a) Factor p over Q giving a set P := {p;| Hj pj =D}
(b) For each non-constant factor p; € P do the following operations:

— If p; is linear, then compute the exact solution n of p; = 0. Substitute
7 for y in ¢ and compute isolating intervals |&;;, &;[for the real roots
of g(x,n) whose length is smaller then the resolution of the output
device. L:= LU {]glz fgz[X [’I] 7’]]}

— If deg(p;) > 1 then

i. Let It == {]n1s, 2 | mi,n2i € Q} be a set of isolating intervals
for the real roots of p; of the required length.

ii. Let a be a root of p; and ¢' := ¢(z,a). Compute ¢" as the
quotient ¢'/ ged(q', 2Z¢') over Q(a). ¢* := ¢"(,y).

iii. T(l‘) = resy (p.](y), q* (.CL‘, y))

iv. Let I := {]&. &l | &uis&ei € Q) be a set of isolating intervals
for the real roots of r whose length is smaller than the resolution
of the output device.

v. For every interval |n1;, n2;[€ I consider p; as minimal polynomial
for the real root n represented by the isolating interval and the
algebraically square free polynomial ¢*(z,y) € (Q[y],(p,))[7] as
representation of g;(x,n). Use a real root isolation algorithm for
polynomials with real algebraic number coefficients in order to
check which intervals from I represent a real algebraic number
& such that p;(n) = q(§,m) = 0. (Such an algorithm requires ¢
to be square free for every root of p). As a result we get a list of
Cartesian product of intervals of the form L' := {X; xY; | X; €
L, Y, €L}

vi. L:=LUL"

3 Profiling pacPlot

We have analyzed the most time consuming parts of pacPlot by doing sample
executions for randomly generated high degree curves. The sample runs were
executed on a PITI@450MHz Linux machine. Critical point computation is dom-
inated by the gcd computation in the algebraic extension field of QQ used for
computing the greatest squarefree divisor. Resultant computation and real root
isolation for polynomials with real algebraic number coefficients also require a
large part of the overall computing time. Ordinary real root isolation is time
consuming in only some of the cases, but still it is worth to put some effort in
developing a parallel algorithm for this sub-problem.

Example 1 Example 2 Example 3 Example 4

deg =14 deg=13 deg=18 deg=21

real root 137 187 7 171
resultant 542 455 82 4175
algebraic squarefree ! 7213 1204 !
real root over Q(a) 6525 1807 252 20060
> critical points >7213 9666 1546 >24484
> pacPlot >7267 9689 1552 >24518

Table 1. Profiling the pacPlot algorithm (all timings in seconds)

The overall impression obtained from this execution profile perfectly meets
ones expectations, namely that the symbolic part of pacPlot is the toughest and
most time consuming one.

4 Sequential Algorithmic Improvements

Also the sequential version of pacPlot can be improved a lot by avoiding unnec-
essary computations in algebraic extension fields. This section is based on the
first author’s diploma thesis [Mit00].

4.1 Replacing gcd-Computation over Q(a)

Critical point computation is mainly dominated by a gcd computation in an
algebraic extension field of Q. However, this gcd operation does not provide any
information in the critical point computing step because it only ensures that the
polynomial ¢ € (Q[y]/(p))[z], which is passed to the real root isolation algorithm
for polynomials with algebraic number coefficients as a parameter is square free.

Algebraic real root isolation is used for checking which combinations of isolat-
ing intervals contain a critical point. By making this check more explicit instead
of hiding it behind a real root isolation algorithm, we get completely rid of this
time consuming operation and additionally generate lots of independent tasks
for which employing parallel computation becomes easy. Algorithm 2 describes
the idea in pseudo code.

For this approach, it is no longer necessary to compute the squarefree divi-
sor of the polynomial ¢(z,a) for every real root a of p(y) in advance. Hence,
the ged computation over Q(a) becomes obsolete. However, the algorithm for
computing the sign of a real algebraic number requires a squarefree polynomial
representation of this number. By first substituting the left and right endpoint
of the interval for the z values, we reduce the gcd computation over Q(a) to
a gcd computation over Q which is much more faster. From a mathematical
point of view, the original approach is more elegant as we have to do several ged

! Maple fails with an object too large error in this position but computation runs
through when the gcd computation is omitted.

Algorithm 2 A more explicit and efficient algorithm for computing isolating
rectangles for the real solutions of the triangular system p(y) = ¢q(z,y) = 0.

Input: p(y) € Qy], irreducible over Q,
q(z,y) € Q[z, y], a bivariate polynomial,
{Y1,...,Yn}, a set of isolating intervals for the real roots of p,
{Xi,...,X,}, list of isolating intervals for the real roots of r(x) = resy(p, q) of the
form]€14, €2l

Output: L, set of isolating rectangles for the real solutions of p = ¢ = 0.

1: L:=0.
2: for i from 1 to n do
3 aiy) = q(6i,y)/ ged(a(érisy), 5ra(ris y))-

4 ar(y) = ql6ei,y)/ ged(a(aiyy). gra6aiy)).
{1, ¢» are the greatest squarefree divisors of gq(£1;,y) and q(£2i,y)). }

5. ¢ := qmodp.

6: qr = gr-modp.

7: for j from 1 to m do

8: l:=sgn(q;,p,Y;).

9: r:=sgn(q;,p,Y;).

10: ifl=0V r=0V 11l r<0then
11: L:=LU{X; xY;}.

12: end if

13: end for

14: end for

15: return(L).

computations here. But when efficiency is investigated carefully, our approach is
superior to the former.

4.2 Speeding Up the Sign Computations

In the algorithm for computing the sign of a real algebraic number Moebius-
transformations are used in order to transform the real roots of g in the interval
I* to the interval]0, oo in order to apply Descartes’ rule of signs. These transfor-
mations involve the left and right end-point n{ and 73, which are huge rational
numbers because all intervals obtained from real root isolation in the critical
point computation algorithm are refined to at least the resolution of the output
device. The huge rational numbers make the Moebius-transformations time con-
suming and furthermore, for some isolating intervals refinement is superfluous as
they do not occur in any isolating rectangle. In order to make sign computation
more efficient and simultaneously avoiding extra work, we pursue the following
strategy, which has successfully been implemented in our version of the pacPlot
algorithm:

1. Do not refine the isolating intervals in the real root isolation process.
2. Apply sign computation to the unrefined intervals only, in order to check
which intervals actually form isolating rectangles.

3. Having determined the isolating rectangles, do refinement for all occurring
intervals.

4.3 Execution Time Comparisons

Comparing execution times of the improved sequential algorithm (Table 2) with
execution times of the original method (Table 1) is not possible in the level
of the individual sub-algorithms, however, comparing the total computing time
for Step 1, we see that our improved version is significantly better. Moreover,
if we replace the gcd computation over the algebraic extension field of Q by
our equivalent but less complex approach, the big examples (Example 1 and 4)
executable in the sense that Maple does not fail with an ’object too large’
error.

Example 1 Example 2 Example 3 Example 4

deg =14 deg=13 deg=18 deg=21

real root 83 97 3 64
resultant 386 150 55 3121
checking 6180 166 86 8279
refinement 127 52 8 49
> critical points 6870 470 155 11748

Table 2. Execution times of the improved sequential pacPlot algorithm

5 The Parallel Plotting Algorithm

Parallelization of the plotting algorithm is based on the sequentially improved
version. Parallelism is applied on several levels:

1. Parallel Resultant Computation Our parallelization approach applies a mod-
ular method to compute resultants in multiple homomorphic images Z, [z, y],
where the p; are prime numbers. We get a divide and conquer structure
where both, the divide phase (the modular resultant computations) and the
conquer phase (the application of the Chinese Remainder Theorem) can be
parallelized obviously. For details, see [HL94, Sch99].

2. Parallel Real Root Isolation We use Uspensky’s method [CL83], a divide and

conquer search algorithm, for computing isolating intervals. A naive paral-
lelization of this algorithm typically yields poor speedups due to the nar-
rowness of the highly unbalanced search trees associated with the isolation
process [CJK90].
Our approach is to broaden and flatten the search trees up to a certain extent
such that in every step each processor can participate in the computation of
isolating intervals. Our algorithm is based on speculative parallelism yielding
better results in many of the cases. For details, see [Mit00].

3. Parallel Solution Test and Interval Refinement The tests which intervals
X x Y do indeed contain a solution of the given triangular system can be
performed in parallel in a straight-forward fashion. Likewise we can refine
all isolating intervals in parallel to the desired accuracy.

Algorithm 3 (Parallel Critical Points) A parallel algorithm for critical point
computation

Input: f(z,y) € Q, y], irreducible
Output: L, list of critical points of f with respect to y-direction.

1 fo = %ﬂé(m,y); L:=90.
2: Apply bsolve to get a set T of triangular systems from f and f,.
3: for all (p,q) € T do
4: F := {p; | the p; are the irreducible factors of p over Q}
5: for all p € F do
6: Y = {Ini1,mi2[} set of isolating intervals for the real roots of p obtained by
the parallel real root isolation algorithm.
7 r := resy(p, q) resultant of p and ¢ computed by the parallel modular ap-
proach.
8: X := {]&i1, &i2[} set of isolating intervals for the real roots of r computed by
the parallel real root isolation algorithm.
9: do in parallel
10: For each |ni,m2[€ Y and each |¢1,&2[€ X compute the sign of ¢(§1,a) and
q(&2,a), where « is the real root of p represented by the isolating interval
Ini,m2[- Add €1, &2[X |m1,m2] to L if the signs are different or at least one
sign is 0.
11: end do
12: end for
13: end for

14: do in parallel
15: Refine each interval occurring in L to the desired granularity.
16: end do

The various ideas developed above are incorporated in the parallel version of
the pacPlot algorithm, the dpacPlot algorithm (distributed pacPlot). Paral-
lelization affects the critical point computation step of pacPlot, only. Obviously,
the various subalgorithms simply have to be replaced by their parallel counter-
part. In Algorithm 3 (Parallel Critical Points) we give a high level description
of how critical points are computed in dpacPlot.

We used the Distributed Maple environment [Sch98], a system for writing
parallel programs on the basis of Maple, for implementing our algorithms. It
allows to create tasks and execute them on Maple kernels running on various
machines in a network.

Each node of a Distributed Maple session comprises two components, a Java
based scheduler coordinating the interaction between nodes and the Maple in-
terface, which is a link between kernel and scheduler. Both components use

pipes to exchange messages (which may employ any Maple objects). The paral-
lel programming paradigm is essentially based on functional principles which is
sufficient for many kinds of algorithms in computer algebra.

The basic operations representing the core programming interface consist of
methods for executing a Maple command on every machine connected to the
session, creating a task for evaluating an arbitrary Maple expression (tasks are
represented by task handles) and waiting for the result of a task represented by
its handle.

6 Experimental Results

We have systematically benchmarked the dpacPlot algorithm implemented in
Distributed Maple with four randomly generated algebraic curves for which the
sequentially improved program takes 6870s, 470s, 155s and 11748s respectively.
These times refer to a PIIIQ450MHz PC. The parallel algorithm has been exe-
cuted in three system environments consisting of 24 processors each:

— A cluster which comprises 4 Silicon Graphics Octanes (2 R10000@250Mhz
each) and 16 Linux PCs (various Pentium processors) linked by a 100 Mbit
switched (point-to-point) Ethernet;

— a Silicon Graphics Origin multiprocessor (64 R12000@300 Mhz, 24 processors
used);

— a mixed configuration consisting of our 4 dual-processor Octanes and 16
processors of the Origin multiprocessor interconnected via a high-bandwidth
ATM line.

The raw total computational performance of cluster, Origin, and mixed con-
figuration is 18.3, 17.1, and 18.7, respectively; these numbers (measured by a
representative Maple benchmark) denote the sum of the performances of all
processors relative to a PIIIQ450MHz processor. In the cluster and in the mixed
configuration, the initial (frontend) Maple kernel was executed on an Octane.

The top diagram in Figure 3 generated from a Distributed Maple profile
illustrates the execution in the cluster configuration with 16 processors listed on
the vertical axis (8 Octane processors above 8 Linux PCs) and each line denotes
a task executed on a particular machine; we see the real root isolation phase
followed by the phases for resultant computation, the second real root isolation,
the solution tests and the solution refinements. This visualization is generated
from a run with Example 2 and illustrates the dynamic behavior, i.e. the number
of tasks generated in each step of the algorithm. The length of these intervals
does not reflect the execution time of these parts.

The table in Figure 3 lists the execution times measured in each system envi-
ronment for each input with varying numbers of processors. The subsequent row
of diagrams visualizes the absolute speedups %ﬂ (where T denotes the sequential
execution time and T, denotes the parallel execution time with n processors),
the second row visualizes these speedups multiplied with ﬁ (where p; de-

notes the relative performance of processor ¢), the third row visualizes the scaled

T R) e e RN ARSI PE] m"mm ! i
msmimisiminisinisinRsins i mEnmEEIIEENEE I g O 5
P e el T e s e e o o s B e —
‘nr\%Hﬂ‘mnmuuuuu i I] | e] 1 e s O |
L o o L o [| o M B A B A S pE R 11 1
5 3 3 e L o1 1
Iyl Hﬂﬂmﬂﬁﬂﬂﬂﬂﬂﬂﬂ‘\ ol b 1 i __1 1 1 1
M 0 1060 a0n WHWWWW il I i
mmno o n o600 n o | [N mamanana g mE . Al
RN N 1 O 1 A A | n T T n
EERARD A AR LD O g oo ¢
H ‘1 ﬁ fl p 06000 JULONRAIARRIIR LR AN Fﬂ o o
i Inq F P H nonoomnan SO RIS RR RN A RRALR LRI} - in
i n oM fon M il T in
Real Root Resultant RR Check Refine
Execution Times (s)
Example |Environment 1 2 4 8 16 24
1 (6870s) |Cluster 14992 8035 2732 1186 552 488
Origin 7290 4217 1789 872 446 513
Mixed 14992 8035 2732 1368 597 519
2 (470s) |Cluster 810 648 328 173 95 108
Origin 667 541 297 166 112 116
Mixed 810 648 328 210 116 127
3 (155s) |Cluster 267 191 112 67 46 45
Origin 196 147 90 63 54 54
Mixed 267 191 112 74 58 56
4 (11748s)|Cluster 25178 15559 6820 3562 1915 1563
Origin 13397 8223 4009 2281 1726 1420
Mixed 25178 15559 6820 4042 2004 1599

1: Absolute Speedup

2: Absolute Speedup

3: Absolute Speedup

4: Absolute Speedup

[Nl 1 1 : 6 N 11 1 1 N 4 i 11 1 1 | 10 1l 1 1
r 8 i
C 4 F 6 -
C 2 - n 4 B
c i 2 2 B
T T T O T T T O T T T 0 T T T
24 8 16 24 24 8 16 24 24 8 16 24 24 8 16 24
processors processors processors processors
1: Scaled Speedup 2: Scaled Speedup 3: Scaled Speedup 4: Scaled Speedup
[Nl 1 1 | 6 11 1 1 11 1 1 10 L1 1 1
r 47 R L
C 4 N 6 -
- 2 o4 A L
- 2 - -
C : 2 "
T T T O T T T O T T T 0 T T T
24 8 16 24 24 8 16 24 24 8 16 24 24 8 16 24
processors processors processors processors

1: Scaled Efficiency

2: Scaled Efficiency

3: Scaled Efficiency

4: Scaled Efficiency

1 P 4 1
O T T T O T T T O T T T O T T T
24 8 16 24 24 8 16 24 24 8 16 24 24 8 16 24
processors processors processors processors

Fig. 3. Experimental Results

efficiency, i.e., ﬁ, which compares the speedup we actually got to an up-
per bound of the speedup we could have got. The markers +, x, and O denote
execution on cluster, Origin, and in the mixed configuration, respectively.

Analyzing the experimental data gives some interesting results. Most obvi-
ously, the speedups for larger examples is better than with smaller ones; for in-
stance, in Example 1 the Cluster/mixed configuration gives an absolute speedup
of 16 but only a speedup of 5 for Example 2. The Origin operates in Exam-
ple 1 with scaled efficiencies close to 1 and gives in Example 4 (which has very
large intermediate data) due to its high-bandwidth interconnection fabric for
smaller processor numbers significantly better results than the other environ-
ments. Especially with 16 to 24 processors, however, in all examples the scaled
speedups/efficiencies of the cluster compete with (are equal or higher than) those
of the Origin. Moreover, the cheap Linux PCs in the cluster give overall better
performance than the much more expensive Silicon Graphics machines.

When we consider the execution times of the parallel subalgorithms (not
listed due to lack of space) individually, we realize that the speedups are par-
tially much higher than the speedup of the overall algorithm. In Example 2
with 24 processors, the parallelization of resultant computation gives absolute
speedups of 10.2 (cluster), 10.2 (Origin), and 7.9 (mixed). The parallelization of
the checking phase gives absolute speedups of 12.3, 14.1, and 16.1 of the respec-
tive configurations. Although both phases together account for almost 80% of
the total work, the less efficient parallelization of the remaining (much shorter)
phases limits the overall speedup.

7 Conclusions

We have described an algorithm for reliably plotting plane algebraic curves which
is based on both, symbolic and numerical methods. Analyzing the algorithm care-
fully, we have found sequential algorithmic improvements significantly reducing
computing time.

Our parallelization of the symbolic part of the pacPlot algorithm demon-
strates that also in the area of symbolic computation significant absolute speedups
can be achieved. This was only possible after careful analysis and redesign of the
original sequential algorithms. Also we see that computer networks can give
speedups that are comparable to those on a massively parallel multiprocessor.
Subtle algorithmic differences between the parallel and sequential version of the
program give super-linear speedups in certain situations.

References

[CJK90] G. E. Collins, J. R. Johnson, and W. Kiichlin. Parallel Real Root Isola-
tion Using the Coefficient Sign Variation Method. In R. E. Zippel, editor,
Computer Algebra and Parallelism, LNCS, pages 71-87. Springer Verlag,
(1990).

[CL83]

[HL94]

[Kal90]

[Loo83]

[Mit00]

[MW96]

[Sch9g]

[Sch99]

[SMW00]

[Tra94]

[Tra96]

G. E. Collins and R. Loos. Real Zeros of Polynomials. In B. Buchberger,
G. E. Collins, and R. Loos, editors, Computer Algebra, Symbolic and Alge-
braic Computation, pages 83-94. Springer Verlag Wien New York, 2nd ed.
edition, (1983).

H. Hong and H. W. Loidl. Parallel Computation of Modular Multivariate
Polynomial Resultants on a Shared Memory Machine. In B. Buchberger
and J. Volkert, editors, Parallel Processing: CONPAR94-VAPP VI - Third
Joint International Converence on Vector and Parallel Processing, number
854 in LNCS, pages 325-336. Springer, Berlin, (1994).

M. Kalkbrener. Solving Systems of Bivariate Algebraic Equations by Using
Primitive Polynomial Remainder Sequences. Technical report, Research
Institute for Symbolic Computation (RISC), 1990.

R. Loos. Computing in Algebraic Extensions. In B. Buchberger, G. E.
Collins, and R. Loos, editors, Computer Algebra, Symbolic and Algebraic
Computation, pages 173-187. Springer Verlag Wien New York, 2nd ed. edi-
tion, (1983).

Christian Mittermaier. Parallel Algorithms in Constructive Algebraic Ge-
ometry. Master’s thesis, Johannes Kepler University, Linz, Austria, 2000.
M. Miuk and F. Winkler. CASA - A System for Computer Aided Con-
structive Algebraic Geometry. In DISCO’96 — International Symposium
on the Design and Implementation of Symbolic Computation Systems, vol-
ume 1128 of LNCS, pages 297-307, Karsruhe, Germany, 1996. Springer,
Berlin.

W. Schreiner. Distributed Maple — User and Reference Manual. Technical
Report 98-05, Research Institute for Symbolic Computation (RISC-Linz),
Johannes Kepler University, Linz, Austria, May 1998.

W. Schreiner. Developing a Distributed System for Algebraic Geometry.
In B.H.V. Topping, editor, EURO-CM-PAR’99 Third Euro-conference on
Parallel and Distributed Computing for Computational Mechanics, pages
137-146, Weimar, Germany, March 20-25, (1999). Civil-Comp Press, Edin-
burgh.

W. Schreiner, C. Mittermaier, and F. Winkler. On Solving a Problem in
Algebraic Geometry by Cluster Computing. Submitted for publication,
2000.

Q.-N. Tran. Extended Newton’s Method for Finding the Roots of an Ar-
bitrary System of Equations and its Applications. Technical Report 94-
49, Research Institute for Symbolic Computation (RISC), Johannes Kepler
University Linz, Austria, 1994.

Q.-N. Tran. A Hybrid Symbolic-Numerical Approach in Computer Aided
Geometric Design (CAGD) and Visualization. PhD thesis, RISC-Linz, Jo-
hannes Kepler University Linz, Austria, (1996).

