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.atAbstra
t. We des
ribe a parallel hybrid symboli
-numeri
al solutionto the problem of reliably plotting a plane algebrai
 
urve. The originalsequential program is implemented in the software library CASA on thebasis of the 
omputer algebra system Maple. The new parallel version isbased on Distributed Maple, a distributed programming extension writ-ten in Java. We des
ribe the mathemati
al foundations of the algorithm,give sequential algorithmi
 improvements and dis
uss our parallelizationapproa
h.1 Introdu
tionAll modern 
omputer algebra systems provide fun
tions for plotting and visu-alizing the real aÆne part of the graph of 
urves whi
h are given in impli
itrepresentation. These algorithms work well for 
urves de�ned by bivariate poly-nomials of reasonably low degree, however, as soon as the de�ning polynomialbe
omes somewhat 
ompli
ated or the 
urve has singular points, these methodsusually fail and return a pi
ture from whi
h one 
an only vaguely guess the shapeof the 
urve.Consider, for example, the ta
node 
urve, de�ned by the polynomial f(x; y) :=2x4 � 3x2y+ y4 � 2y3 + y2, a 
urve of degree four. In Figure 1 we see the graphof this 
urve produ
ed by two di�erent plotting algorithms. The pi
ture on theleft hand side was produ
ed by Maple's impli
itplot algorithm, whi
h, as al-most all plotting algorithms, uses numeri
al methods su
h as Newton's methodin order to generate the visualization of the 
urve. The pi
ture on the right handside was produ
ed by CASA's pa
Plot algorithm, whi
h is a hybrid symboli
numeri
al algorithm, 
ombining both, the exa
tness of symboli
 methods andthe speed and eÆ
ien
y of numeri
al approximation.The di�eren
e in the quality of the output of the two algorithms is quiteobvious but 
an be explained easily. Purely numeri
al methods use lineariza-tion in order to get an approximation. For this, the Ja
obian of the de�ningpolynomial has to be 
omputed; but at those points on the 
urve, where two or? Supported by proje
ts P11160-TEC (HySaX) and SFB F013/F1304 of the AustrianFonds zur F�orderung der wissens
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itplot and CASA's pa
Plotmore bran
hes interse
t ea
h other, the Ja
obian be
omes singular as the partialderivatives with respe
t to both variables vanish. In
reasing the granularity inthe numeri
al plotting algorithm makes the pi
ture smoother, but neverthelessthe singular points are still missing.A "good" plotting algorithm should ful�ll the following informal require-ments:{ Draw topologi
ally 
orre
t plots.The 
ourse of the bran
hes of the 
urvethrough singular points should be represented 
orre
tly, singular points mustnot be missed, in parti
ular even isolated singularities, originating from two
omplex bran
hes interse
ting in one real point, should be represented byexa
tly one point.{ Use an eÆ
ient method for rendering the 
urve. Computing timeshould be as low as possible without sa
ri�
ing 
orre
tness. In
reasing eÆ-
ien
y and 
reating smoother pi
tures is not a

eptable if it means a 
om-promise on topologi
al 
orre
tness.In the following se
tions we will analyze CASA's pa
Plot algorithm whi
hful�lls the requirements stated above and we show how 
omputing time 
an be
ut down by �nding ways of employing parallel 
omputation. Also the sequentialversion of pa
Plot 
an be improved a lot by avoiding unne
essary 
omputationsin algebrai
 extension �elds.The program system CASA is based on Maple and 
ontains a 
olle
tion ofalgorithms for designing, analyzing and rendering algebrai
 
urves and surfa
es.CASA has been developed by a resear
h group under the dire
tion of the thirdauthor at RISC-Linz [MW96℄.In a 
ompanion paper [SMW00℄ we des
ribe the pa
Plot algorithm fromthe point of view of parallelization while in this work we 
on
entrate on themathemati
al and algorithmi
 details.The stru
ture of this paper is as follows: In Se
tion 2 we des
ribe the mathe-mati
al and algorithmi
 ideas of the pa
Plot algorithm and in Se
tion 3 we listthe most time 
onsuming parts of the program. Se
tion 4 deals with sequentialalgorithmi
 improvements of the original algorithm, Se
tion 5 des
ribes our par-allelization approa
h, Se
tion 6 presents experimental results whi
h demonstrate



the eÆ
ien
y of the algorithm and the performan
e of the underlying distributedsystem. Finally, in Se
tion 7 we summarize our results.2 The pa
Plot AlgorithmThe pa
Plot algorithm (plane algebrai
 
urve plot) uses a hybrid symboli
 nu-meri
al approa
h in order to plot plane algebrai
 
urves de�ned by bivariatepolynomials over Q. It was developed in 1995 by Quo
-Nam Tran [Tra96℄.The hybrid approa
h 
ombines the exa
tness of symboli
 methods with thespeed and eÆ
ien
y of numeri
al approximations. pa
Plot uses a symboli
 pre-pro
essing step where the points determining the topologi
al stru
ture of the
urve are 
omputed. For tra
ing the bran
hes between these points Nam's Ex-tended Newton Method [Tra94℄ is used. The general stru
ture of the algorithmlooks as follows:1. Determine all 
riti
al points of the 
urve.2. Find out starting points for visualization.3. Tra
e the simple bran
hes of the 
urve by using numeri
al approximation.De�nition 1. Let C be an aÆne plane algebrai
 
urve de�ned by the polynomialf 2 Q[x; y℄. (�; �) 2 Q 2 is a 
riti
al point of C i� f(�; �) = �f�x (�; �) = 0. (Q isthe algebrai
 
losure or Q, i.e. the �eld of algebrai
 numbers.)In order to 
larify how 
riti
al points determine the topologi
al stru
ture of the
urve, we present the following pi
ture (Figure 2) of a 
urve de�ned by thepolynomial f(x; y) := 8y2 � 8x2 � 8y3 � 8x3 + 2y4 + x5.
Simple Branch

Critical PointsFig. 2. Criti
al Points and the Topologi
al Stru
ture of an Algebrai
 CurveThe 
riti
al points are marked by bla
k dots (we do not distinguish betweensingular points and extremal points). The 
urve is partitioned into horizontal



stripes, ea
h of them bounded by two 
riti
al points. Within su
h a stripe, the
urve has no self interse
ting bran
hes and the Ja
obian is regular in everypoint. The pi
ture of the 
urve is generated by tra
ing all simple bran
hes forea
h stripe. For every stripe, starting points for the visualization of all simplebran
hes have to be 
omputed. This is done by interse
ting the 
urve in themiddle of every stripe with a horizontal line. The interse
tion points form theset of starting points for the rendering pro
ess. In Figure 2, the starting pointsare marked by grey dots. Next, all simple bran
hes are tra
ed in both dire
tionsusing the Extended Newton method starting at the initial points of visualization.Before we des
ribe 
riti
al point 
omputation in detail, we mention two im-portant observations:1. We are interested in the real solutions of the system f(x; y) = �f�x (x; y) = 0only, as we want to plot the real part of the algebrai
 
urve.2. We do not need the exa
t solutions of the system. It is suÆ
ient to haveisolating intervals for the x and y values of reasonably small length as theresolution of the output devi
e is limited to pixel level.By this approa
h, introdu
tion of and 
omputation with real algebrai
 num-bers and their numeri
al evaluation is avoided.For 
omputing 
riti
al points we �rst transform the system f = �f�x = 0 intoa set of triangular systems of the form p(y) = q(x; y) = 0 (p(y) irredu
ible overQ) su
h that the solutions of all triangular systems are exa
tly the solutions ofthe original system. Isolating intervals for the real zeros of a triangular systemare obtained by the following steps:1. Find isolating intervals Y1; : : : ; Yn � Q for the real roots �1; : : : ; �n of p(y).2. From pi and qi 
ompute a polynomial r(x) among whose real roots �1; : : : ; �mwe 
an also �nd for ea
h real root �j (j 2 f1; : : : ; ng of pi all �k's su
h that(�k; �j) is a zero of pi = qi = 0.3. Find isolating intervals X1; : : : ; Xm � Q for all real roots �1; : : : ; �m of r(x).4. Che
k whi
h 
ombinationsXk�Yj ; (k 2 f1; : : : ;mg; j 2 f1; : : : ; ng) 
ontaina 
ommon zero of p=q=0.Theorem 1 guarantees that we 
an always 
onstru
t a polynomial r(x) with thedesired property.Theorem 1. Let K be an algebrai
ally 
losed �eld and let f(x; y) =Pmi=0 fi(x)yi,g(x; y) = Pni=0 gi(x)yi be elements of K [x; y℄ of positive degrees m and n in y,respe
tively. Let r(x) := resy(f; g). If (�; �) 2 K 2 is a 
ommon zero of f and g,then r(�) = 0. Conversely, if r(�) = 0, then one of the following holds:1. fm(�) = gn(�) = 0,2. 9� 2 K : f(�; �) = g(�; �) = 0.Steps 2 and 3 are repeated until all intervals Yj ; j 2 f1; : : : ; ng are pro
essed.In order to 
he
k whi
h 
ombinations Xk � Yj 
ontain a 
ommon zero of thesystem p = q = 0 we pro
eed as follows:



1. Fa
tor p over Q and apply the following steps to ea
h fa
tor. W.l.o.g. weassume that p is the only irredu
ible fa
tor.2. Compute the greatest square free divisor q�(x; �) of q(x; �) over Q(�)[x℄,where � is an arbitrary real root of p(y). q�(x; �) = q(x; �)= g
d(q(x; �); ��xq(x; �)).3. Take an interval Yj ; j 2 f1; : : : ; ng and 
onsider p as the minimal polynomialfor the real root �j represented by Yj .4. Use a real root isolation algorithm for polynomials with real algebrai
 num-ber 
oeÆ
ients to determine the appropriate intervals Xk . Su
h an algo-rithm requires as input the real algebrai
 number �j represented by the iso-lating interval Yj , the minimal polynomial p(y), the squarefree polynomialq(x; y) 2 (Q[y℄=hpi i)[x℄ representing q(x; �j), for whi
h we want to isolatethe real roots and a list of 
andidates X1; : : : ; Xm for the isolating intervals(isolating intervals for the real roots of the resultant r(x)).The algorithm used in step 4 
omputes the sign of the real algebrai
 numbersq(�1; �) and q(�2; �), where �1 and �2 are the end points of an interval Xk. If thesigns are di�erent or at least one of of the signs is zero then we have found anisolating interval. For determining the signs, Algorithm 1 is used. For details werefer to [Loo83℄.Algorithm 1 Computing the sign of a real algebrai
 number �Input: p(y), minimal polynomial for the real algebrai
 number �,I =℄�1; �2[, isolating interval for �,q(y) 2 Q[y℄=hpi representing the real algebrai
 number � 2 Q(�).Output: s, the sign of �.1: Compute q� and b su
h that (1=b)q� = q; q� 2 Z[y℄ and b 2 Q � f0g. I�(=℄��1 ; ��2 [) := I.2: Set q to the greatest squarefree divisor of q�.3: loop4: Set n to the number of roots of q in I�.5: if n = 0 then6: s := sgn(b) � sgn(q�(��2 )).7: return(s):8: end if9: w := (��1 + ��2 )=2.10: if p(��1)p(w) < 0 then11: ��2 := w.12: else13: ��1 := w.14: end if15: end loopCriti
al point 
omputation for a 
urve C de�ned by the bivariate polynomialf(x; y) is done by the following steps:1. fx := �f�x ; L := 0



2. From f and fx 
ompute a set T of triangular systems (p(y); q(x; y)) su
hthat the union of the solutions of all triangular systems is the solution set off = fx = 0. This 
an be done using Kalkbrener's bsolve algorithm [Kal90℄.3. For ea
h triangular system (p(y); q(x; y)) 2 T do the following:(a) Fa
tor p over Q giving a set P := fpj jQj pj = pg.(b) For ea
h non-
onstant fa
tor pj 2 P do the following operations:{ If pj is linear, then 
ompute the exa
t solution � of pj = 0. Substitute� for y in q and 
ompute isolating intervals ℄�1i; �2i[ for the real rootsof q(x; �) whose length is smaller then the resolution of the outputdevi
e. L := L [ f℄�1i; �2i[ � [�; �℄g.{ If deg(pj) > 1 theni. Let I1 := f℄�1i; �2i[ j �1i; �2i 2 Qg be a set of isolating intervalsfor the real roots of pj of the required length.ii. Let � be a root of pj and q0 := q(x; �). Compute q00 as thequotient q0= g
d(q0; ��xq0) over Q(�). q� := q00(x; y).iii. r(x) := resy(pj(y); q�(x; y)).iv. Let I2 := f℄�1i; �2i[ j �1i; �2i 2 Qg be a set of isolating intervalsfor the real roots of r whose length is smaller than the resolutionof the output devi
e.v. For every interval ℄�1i; �2i[2 I1 
onsider pj as minimal polynomialfor the real root � represented by the isolating interval and thealgebrai
ally square free polynomial q�(x; y) 2 (Q[y℄=hpj i)[x℄ asrepresentation of qi(x; �). Use a real root isolation algorithm forpolynomials with real algebrai
 number 
oeÆ
ients in order to
he
k whi
h intervals from I2 represent a real algebrai
 number� su
h that pj(�) = q(�; �) = 0. (Su
h an algorithm requires qto be square free for every root of p). As a result we get a list ofCartesian produ
t of intervals of the form L0 := fXi � Yj j Xi 2I2; Yj 2 I1g.vi. L := L [ L0.3 Pro�ling pa
PlotWe have analyzed the most time 
onsuming parts of pa
Plot by doing sampleexe
utions for randomly generated high degree 
urves. The sample runs wereexe
uted on a PIII�450MHz Linux ma
hine. Criti
al point 
omputation is dom-inated by the g
d 
omputation in the algebrai
 extension �eld of Q used for
omputing the greatest squarefree divisor. Resultant 
omputation and real rootisolation for polynomials with real algebrai
 number 
oeÆ
ients also require alarge part of the overall 
omputing time. Ordinary real root isolation is time
onsuming in only some of the 
ases, but still it is worth to put some e�ort indeveloping a parallel algorithm for this sub-problem.



Example 1 Example 2 Example 3 Example 4deg = 14 deg = 13 deg = 18 deg = 21real root 137 187 7 171resultant 542 455 82 4175algebrai
 squarefree 1 7213 1204 1real root over Q(�) 6525 1807 252 20060P 
riti
al points >7213 9666 1546 >24484P pa
Plot >7267 9689 1552 >24518Table 1. Pro�ling the pa
Plot algorithm (all timings in se
onds)The overall impression obtained from this exe
ution pro�le perfe
tly meetsones expe
tations, namely that the symboli
 part of pa
Plot is the toughest andmost time 
onsuming one.4 Sequential Algorithmi
 ImprovementsAlso the sequential version of pa
Plot 
an be improved a lot by avoiding unne
-essary 
omputations in algebrai
 extension �elds. This se
tion is based on the�rst author's diploma thesis [Mit00℄.4.1 Repla
ing g
d-Computation over Q(�)Criti
al point 
omputation is mainly dominated by a g
d 
omputation in analgebrai
 extension �eld of Q. However, this g
d operation does not provide anyinformation in the 
riti
al point 
omputing step be
ause it only ensures that thepolynomial q 2 (Q[y℄=hpi )[x℄, whi
h is passed to the real root isolation algorithmfor polynomials with algebrai
 number 
oeÆ
ients as a parameter is square free.Algebrai
 real root isolation is used for 
he
king whi
h 
ombinations of isolat-ing intervals 
ontain a 
riti
al point. By making this 
he
k more expli
it insteadof hiding it behind a real root isolation algorithm, we get 
ompletely rid of thistime 
onsuming operation and additionally generate lots of independent tasksfor whi
h employing parallel 
omputation be
omes easy. Algorithm 2 des
ribesthe idea in pseudo 
ode.For this approa
h, it is no longer ne
essary to 
ompute the squarefree divi-sor of the polynomial q(x; �) for every real root � of p(y) in advan
e. Hen
e,the g
d 
omputation over Q(�) be
omes obsolete. However, the algorithm for
omputing the sign of a real algebrai
 number requires a squarefree polynomialrepresentation of this number. By �rst substituting the left and right endpointof the interval for the x values, we redu
e the g
d 
omputation over Q(�) toa g
d 
omputation over Q whi
h is mu
h more faster. From a mathemati
alpoint of view, the original approa
h is more elegant as we have to do several g
d1 Maple fails with an obje
t too large error in this position but 
omputation runsthrough when the g
d 
omputation is omitted.



Algorithm 2 A more expli
it and eÆ
ient algorithm for 
omputing isolatingre
tangles for the real solutions of the triangular system p(y) = q(x; y) = 0.Input: p(y) 2 Q[y℄, irredu
ible over Q,q(x; y) 2 Q[x; y℄, a bivariate polynomial,fY1; : : : ; Ymg, a set of isolating intervals for the real roots of p,fX1; : : : ; Xng, list of isolating intervals for the real roots of r(x) = resy(p; q) of theform ℄�1i; �2i[.Output: L, set of isolating re
tangles for the real solutions of p = q = 0.1: L := ;.2: for i from 1 to n do3: ql(y) := q(�1i; y)= g
d(q(�1i; y); ��y q(�1i; y)).4: qr(y) := q(�2i; y)= g
d(q(�2i; y); ��y q(�2i; y)).fql; qr are the greatest squarefree divisors of q(�1i; y) and q(�2i; y)). g5: q�l := qlmodp.6: q�r := qrmodp.7: for j from 1 to m do8: l := sgn(q�l ; p; Yj).9: r := sgn(q�r ; p; Yj).10: if l = 0 _ r = 0 _ l � r < 0 then11: L := L [ fXi � Yjg.12: end if13: end for14: end for15: return(L).
omputations here. But when eÆ
ien
y is investigated 
arefully, our approa
h issuperior to the former.4.2 Speeding Up the Sign ComputationsIn the algorithm for 
omputing the sign of a real algebrai
 number Moebius-transformations are used in order to transform the real roots of q in the intervalI� to the interval ℄0;1[ in order to apply Des
artes' rule of signs. These transfor-mations involve the left and right end-point ��1 and ��2 , whi
h are huge rationalnumbers be
ause all intervals obtained from real root isolation in the 
riti
alpoint 
omputation algorithm are re�ned to at least the resolution of the outputdevi
e. The huge rational numbers make the Moebius-transformations time 
on-suming and furthermore, for some isolating intervals re�nement is super
uous asthey do not o

ur in any isolating re
tangle. In order to make sign 
omputationmore eÆ
ient and simultaneously avoiding extra work, we pursue the followingstrategy, whi
h has su

essfully been implemented in our version of the pa
Plotalgorithm:1. Do not re�ne the isolating intervals in the real root isolation pro
ess.2. Apply sign 
omputation to the unre�ned intervals only, in order to 
he
kwhi
h intervals a
tually form isolating re
tangles.



3. Having determined the isolating re
tangles, do re�nement for all o

urringintervals.4.3 Exe
ution Time ComparisonsComparing exe
ution times of the improved sequential algorithm (Table 2) withexe
ution times of the original method (Table 1) is not possible in the levelof the individual sub-algorithms, however, 
omparing the total 
omputing timefor Step 1, we see that our improved version is signi�
antly better. Moreover,if we repla
e the g
d 
omputation over the algebrai
 extension �eld of Q byour equivalent but less 
omplex approa
h, the big examples (Example 1 and 4)exe
utable in the sense that Maple does not fail with an 'obje
t too large'error. Example 1 Example 2 Example 3 Example 4deg = 14 deg = 13 deg = 18 deg = 21real root 83 97 3 64resultant 386 150 55 3121
he
king 6180 166 86 8279re�nement 127 52 8 49P 
riti
al points 6870 470 155 11748Table 2. Exe
ution times of the improved sequential pa
Plot algorithm
5 The Parallel Plotting AlgorithmParallelization of the plotting algorithm is based on the sequentially improvedversion. Parallelism is applied on several levels:1. Parallel Resultant Computation Our parallelization approa
h applies a mod-ular method to 
ompute resultants in multiple homomorphi
 imagesZpi[x; y℄,where the pi are prime numbers. We get a divide and 
onquer stru
turewhere both, the divide phase (the modular resultant 
omputations) and the
onquer phase (the appli
ation of the Chinese Remainder Theorem) 
an beparallelized obviously. For details, see [HL94, S
h99℄.2. Parallel Real Root Isolation We use Uspensky's method [CL83℄, a divide and
onquer sear
h algorithm, for 
omputing isolating intervals. A naive paral-lelization of this algorithm typi
ally yields poor speedups due to the nar-rowness of the highly unbalan
ed sear
h trees asso
iated with the isolationpro
ess [CJK90℄.Our approa
h is to broaden and 
atten the sear
h trees up to a 
ertain extentsu
h that in every step ea
h pro
essor 
an parti
ipate in the 
omputation ofisolating intervals. Our algorithm is based on spe
ulative parallelism yieldingbetter results in many of the 
ases. For details, see [Mit00℄.



3. Parallel Solution Test and Interval Re�nement The tests whi
h intervalsX � Y do indeed 
ontain a solution of the given triangular system 
an beperformed in parallel in a straight-forward fashion. Likewise we 
an re�neall isolating intervals in parallel to the desired a

ura
y.Algorithm 3 (Parallel Criti
al Points) A parallel algorithm for 
riti
al point
omputationInput: f(x; y) 2 Q[x; y℄, irredu
ibleOutput: L, list of 
riti
al points of f with respe
t to y-dire
tion.1: fx := �f�x (x; y); L := ;.2: Apply bsolve to get a set T of triangular systems from f and fx.3: for all (p; q) 2 T do4: F := fpi j the pi are the irredu
ible fa
tors of p over Qg5: for all p 2 F do6: Y := f℄�i1; �i2[g set of isolating intervals for the real roots of p obtained bythe parallel real root isolation algorithm.7: r := resy(p; q) resultant of p and q 
omputed by the parallel modular ap-proa
h.8: X := f℄�i1; �i2[g set of isolating intervals for the real roots of r 
omputed bythe parallel real root isolation algorithm.9: do in parallel10: For ea
h ℄�1; �2[2 Y and ea
h ℄�1; �2[2 X 
ompute the sign of q(�1; �) andq(�2; �), where � is the real root of p represented by the isolating interval℄�1; �2[. Add ℄�1; �2[ � ℄�1; �2[ to L if the signs are di�erent or at least onesign is 0.11: end do12: end for13: end for14: do in parallel15: Re�ne ea
h interval o

urring in L to the desired granularity.16: end doThe various ideas developed above are in
orporated in the parallel version ofthe pa
Plot algorithm, the dpa
Plot algorithm (distributed pa
Plot). Paral-lelization a�e
ts the 
riti
al point 
omputation step of pa
Plot, only. Obviously,the various subalgorithms simply have to be repla
ed by their parallel 
ounter-part. In Algorithm 3 (Parallel Criti
al Points) we give a high level des
riptionof how 
riti
al points are 
omputed in dpa
Plot.We used the Distributed Maple environment [S
h98℄, a system for writingparallel programs on the basis of Maple, for implementing our algorithms. Itallows to 
reate tasks and exe
ute them on Maple kernels running on variousma
hines in a network.Ea
h node of a Distributed Maple session 
omprises two 
omponents, a Javabased s
heduler 
oordinating the intera
tion between nodes and the Maple in-terfa
e, whi
h is a link between kernel and s
heduler. Both 
omponents use



pipes to ex
hange messages (whi
h may employ any Maple obje
ts). The paral-lel programming paradigm is essentially based on fun
tional prin
iples whi
h issuÆ
ient for many kinds of algorithms in 
omputer algebra.The basi
 operations representing the 
ore programming interfa
e 
onsist ofmethods for exe
uting a Maple 
ommand on every ma
hine 
onne
ted to thesession, 
reating a task for evaluating an arbitrary Maple expression (tasks arerepresented by task handles) and waiting for the result of a task represented byits handle.6 Experimental ResultsWe have systemati
ally ben
hmarked the dpa
Plot algorithm implemented inDistributed Maple with four randomly generated algebrai
 
urves for whi
h thesequentially improved program takes 6870s, 470s, 155s and 11748s respe
tively.These times refer to a PIII�450MHz PC. The parallel algorithm has been exe-
uted in three system environments 
onsisting of 24 pro
essors ea
h:{ A 
luster whi
h 
omprises 4 Sili
on Graphi
s O
tanes (2 R10000�250Mhzea
h) and 16 Linux PCs (various Pentium pro
essors) linked by a 100 Mbitswit
hed (point-to-point) Ethernet;{ a Sili
on Graphi
s Origin multipro
essor (64 R12000�300Mhz, 24 pro
essorsused);{ a mixed 
on�guration 
onsisting of our 4 dual-pro
essor O
tanes and 16pro
essors of the Origin multipro
essor inter
onne
ted via a high-bandwidthATM line.The raw total 
omputational performan
e of 
luster, Origin, and mixed 
on-�guration is 18.3, 17.1, and 18.7, respe
tively; these numbers (measured by arepresentative Maple ben
hmark) denote the sum of the performan
es of allpro
essors relative to a PIII�450MHz pro
essor. In the 
luster and in the mixed
on�guration, the initial (frontend) Maple kernel was exe
uted on an O
tane.The top diagram in Figure 3 generated from a Distributed Maple pro�leillustrates the exe
ution in the 
luster 
on�guration with 16 pro
essors listed onthe verti
al axis (8 O
tane pro
essors above 8 Linux PCs) and ea
h line denotesa task exe
uted on a parti
ular ma
hine; we see the real root isolation phasefollowed by the phases for resultant 
omputation, the se
ond real root isolation,the solution tests and the solution re�nements. This visualization is generatedfrom a run with Example 2 and illustrates the dynami
 behavior, i.e. the numberof tasks generated in ea
h step of the algorithm. The length of these intervalsdoes not re
e
t the exe
ution time of these parts.The table in Figure 3 lists the exe
ution times measured in ea
h system envi-ronment for ea
h input with varying numbers of pro
essors. The subsequent rowof diagrams visualizes the absolute speedups TsTn (where Ts denotes the sequentialexe
ution time and Tn denotes the parallel exe
ution time with n pro
essors),the se
ond row visualizes these speedups multiplied with nPni=1 pi (where pi de-notes the relative performan
e of pro
essor i), the third row visualizes the s
aled



Real Root Resultant RR RefineCheckExe
ution Times (s)Example Environment 1 2 4 8 16 241 (6870s) Cluster 14992 8035 2732 1186 552 488Origin 7290 4217 1789 872 446 513Mixed 14992 8035 2732 1368 597 5192 (470s) Cluster 810 648 328 173 95 108Origin 667 541 297 166 112 116Mixed 810 648 328 210 116 1273 (155s) Cluster 267 191 112 67 46 45Origin 196 147 90 63 54 54Mixed 267 191 112 74 58 564 (11748s) Cluster 25178 15559 6820 3562 1915 1563Origin 13397 8223 4009 2281 1726 1420Mixed 25178 15559 6820 4042 2004 1599
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Fig. 3. Experimental Results



eÆ
ien
y, i.e., TsTnPni=1 pi , whi
h 
ompares the speedup we a
tually got to an up-per bound of the speedup we 
ould have got. The markers +, �, and � denoteexe
ution on 
luster, Origin, and in the mixed 
on�guration, respe
tively.Analyzing the experimental data gives some interesting results. Most obvi-ously, the speedups for larger examples is better than with smaller ones; for in-stan
e, in Example 1 the Cluster/mixed 
on�guration gives an absolute speedupof 16 but only a speedup of 5 for Example 2. The Origin operates in Exam-ple 1 with s
aled eÆ
ien
ies 
lose to 1 and gives in Example 4 (whi
h has verylarge intermediate data) due to its high-bandwidth inter
onne
tion fabri
 forsmaller pro
essor numbers signi�
antly better results than the other environ-ments. Espe
ially with 16 to 24 pro
essors, however, in all examples the s
aledspeedups/eÆ
ien
ies of the 
luster 
ompete with (are equal or higher than) thoseof the Origin. Moreover, the 
heap Linux PCs in the 
luster give overall betterperforman
e than the mu
h more expensive Sili
on Graphi
s ma
hines.When we 
onsider the exe
ution times of the parallel subalgorithms (notlisted due to la
k of spa
e) individually, we realize that the speedups are par-tially mu
h higher than the speedup of the overall algorithm. In Example 2with 24 pro
essors, the parallelization of resultant 
omputation gives absolutespeedups of 10.2 (
luster), 10.2 (Origin), and 7.9 (mixed). The parallelization ofthe 
he
king phase gives absolute speedups of 12.3, 14.1, and 16.1 of the respe
-tive 
on�gurations. Although both phases together a

ount for almost 80% ofthe total work, the less eÆ
ient parallelization of the remaining (mu
h shorter)phases limits the overall speedup.7 Con
lusionsWe have des
ribed an algorithm for reliably plotting plane algebrai
 
urves whi
his based on both, symboli
 and numeri
al methods. Analyzing the algorithm 
are-fully, we have found sequential algorithmi
 improvements signi�
antly redu
ing
omputing time.Our parallelization of the symboli
 part of the pa
Plot algorithm demon-strates that also in the area of symboli
 
omputation signi�
ant absolute speedups
an be a
hieved. This was only possible after 
areful analysis and redesign of theoriginal sequential algorithms. Also we see that 
omputer networks 
an givespeedups that are 
omparable to those on a massively parallel multipro
essor.Subtle algorithmi
 di�eren
es between the parallel and sequential version of theprogram give super-linear speedups in 
ertain situations.Referen
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