
CONTRIBUTIONS TO GENERAL ALGEBRA 12Proeedings of the Vienna Conferene, June 3{6, 1999Verlag Johannes Heyn, Klagenfurt 2000ADVANCES AND PROBLEMS IN ALGEBRAICCOMPUTATIONFRANZ WINKLERAbstrat. In the last years there has been dramati progress in all areasof algebrai omputation. Many working mathematiians have aess toand atually use algebrai software systems for their researh. No end ofthis development is in sight. We report on some ative topis in algebraiomputation, namely the theory of integration and symboli solution ofsystems of di�erential equations, the solution of systems of algebrai equa-tions, the fatorization of polynomials, and the design and analysis ofalgebrai urves and surfaes.1. IntrodutionThe enormous development of sienti� omputation has plaed mathemat-ial apabilities at the �ngertips of sientists and engineers. It has also pro-vided mathematiians with a wealth of interesting new problems and researhtopis. There are, of ourse, di�erent approahes to sienti� omputation. Ifthe goal is to reate approximate solutions to inexatly stated problems, wewill probably apply the methods of numerial analysis and omputation. Vi-sualization in sienti� omputation is gaining ever more importane, and themathematis behind some of the visualization algorithms is rather involved.But there are also many important problems, in whih we need to do ex-at omputation, ompute and reason about symboli objets suh as mathe-matial equations, algebrai urves, logial formulae, programs in a program-ming language, and similar objets. In the last years there has been dramatiprogress in all areas of algebrai omputation, both in algorithm developmentand in the design of program systems suh as Maple [Char92℄, Mathematia[Wolf91℄, and Redue [MaC91℄. Many working mathematiians have aessReeived by the editors Otober 10, 1999.



2 FRANZ WINKLERto and atually use algebrai software systems for their researh. Even hand-held omputers are apable of performing symboli algebrai omputationsnowadays. No end of this development is in sight.In Setion 2 we report on some ahievements in symboli omputation inthe last few deades, suh as the algebrai theory of integration and symbolisolution of systems of di�erential equations, the solution of systems of algebraiequations, the fatorization of polynomials, and the design and analysis ofalgebrai urves and surfaes. In Setion 3 we outline some urrently ativeresearh topis in these and related areas.2. Advanes in algebrai omputationThe researh area of omputer algebra was reated about 40 years ago.Muh of the mathematial development in making ever more parts of algebratreatable by omputers was entered around the reation of software systemsfor algebrai omputation. Some of the most important of these systems,started in the pioneering time of omputer algebra, are Masyma, SAC, Re-due, and Derive. Later starters are Maple, Mathematia, Axiom, and Magma.All important algorithmi ideas of omputer algebra sooner or later have beenimplemented in these systems.Of ourse, we annot attempt to present a uni�ed piture of omputeralgebra or algebrai omputation in this limited spae. We an only pointto some of the more interesting ahievements. For a general introdution tothe mathematial bakground, we refer the reader to books suh as [Bron97℄,[GeCL92℄, [Mign92℄, [Wink96℄.2.1. Integration theory. Algorithmi methods for inde�nite integration gobak a long way, ertainly to the work of Abel and Liouville in the 19th entury.In his book [Ritt48℄ J.F. Ritt began to apply new algebrai tehniques tothe problem of integration in �nite terms. But it took until the 1960's and1970's for a deisive breakthrough to be ahieved and deision proeduresfor inde�nite integration to be implemented in software systems for omputeralgebra.Let us start by onsidering rational funtions. I.e. for given p(x); q(x) 2Q [x℄ we want to ompute Z p(x)q(x)dx :By partial integration and the Hermite redution proess we an determine arational funtion g(x)=h(x) and a polynomial p�(x) suh that the integrationproblem an be rewritten asZ p(x)q(x)dx = g(x)h(x) + Z p�(x)q�(x)dx;



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 3where q�(x) is the square-free part of q(x), i.e. the multipliity of every fatoris redued to 1, and deg(p�) < deg(q�).The integral R p�=q� an be omputed in the following well{known lassialway: Let q�(x) = (x��1) � � � (x��n), where �1; : : : ; �n are the distint rootsof q�. ThenZ p�(x)q�(x)dx = nXi=1 Z ix� �i dx = nXi=1 i log(x� �i) ;with i = p�(�i)q�0(�i) ; 1 � i � n:No part of this sum of logarithms an be a rational funtion. Aording to thisapproah we have to ompute the splitting �eld of the square-free denominatorq�(x), whih might be of high algebrai extension degree over the originaloeÆient �eld.Example 2.1.1: Let us integrate x=(x2 � 2) aording to this proess. Thedenominator is square-free, and the numerator has lower degree than the de-nominator. So our integrand already has the form p�(x)=q�(x) as onsideredabove. Thus, we getR xx2�2dx = R 1=2x�p2dx + R 1=2x+p2dx= 12 (log(x�p2) + log(x+p2)) = 12 log(x2 � 2):So obviously we do not always need the full splitting �eld of q� in order toexpress the integral of h=q�. 2Of ourse there is no theoretial problem with working in algebrai exten-sions of the ground �eld for expressing the integral. But high degree algebraiextensions (or multiple extensions, for that matter) are ostly in terms ofomputational omplexity. So the problem arises of representing the result,and also the intermediate omputations, over the algebrai extension �eld oflowest possible degree. The following theorem, whih has been independentlydisovered by M. Rothstein and B. Trager in 1976, answers the question ofwhat is the smallest �eld in whih we an express the integral of a rationalfuntion.Theorem 2.1.1: Let p; q 2 Q [x℄ be relatively prime, q moni and squarefree,and deg(p) < deg(q). Let Z pq dx = nXi=1 i log vi;where the i are distint non{zero onstants and the vi are moni squarefreepairwise relatively prime elements of Q [x℄ (Q is the algebrai losure of Q , i.e.the �eld of algebrai numbers). Let  be a new variable. Then the i are the



4 FRANZ WINKLERdistint roots of the resultant of p(x)�  � q0(x) and q(x) w.r.t. x, and the viorresponding to i are vi = gd(p(x)� i � q0(x); q(x)).Example 2.1.1. (ontinued) We apply Theorem 2.1.1. r() = resx(p �q0; q) = resx(x� (2x); x2 � 2) = �2(2� 1)2. There is only one root of r(),namely 1 = 1=2. We get the argument of the orresponding logarithm asv1 = gd(x� 12(2x); x2 � 2) = x2 � 2. SoZ xx2 � 2dx = 12 log(x2 � 2):So we arrive at the �nal answer over Q without having to take the detour viaQ(p2), the splitting �eld of x2 � 2 over Q . 2Example 2.1.2: Let us determineZ x4 � 3x2 + 6x6 � 5x4 + 5x2 + 4dx:The denominator q(x) = x6 � 5x4 + 5x2 + 4 is squarefree, and atually irre-duible over Q . The resultant in the Rothstein-Trager theorem isresx(x4�3x2+6�(6x5�20x3+10x); x6�5x4+5x2+4) = 45796(42+1)3:So we an express the integral in Q(i), namely asZ x4 � 3x2 + 6x6 � 5x4 + 5x2 + 4dx = i2 log(x3+ix2�3x�2i)� i2 log(x3�ix2�3x+2i):2In fat, the fatorization of the resultant in the Rothstein-Trager theoreman be avoided, if one uses the subresultant algorithm for omputing the re-sultant.Muh of the theory of integration of rational funtions an be transferredto integration of funtions whih an be expressed in elementary Liouvilleextensions of a �eld of onstants. We start with a di�erential �eld C (ofonstants) with di�erentiation operation 0, i.e. 0 = 0 for all  2 C. Nextwe adjoin a variable of di�erentiation, i.e. a transendental element x withx0 = 1. Now we are allowed to extend the �eld by so-alled simple elementaryextensions i.e. by adjoining algebrai elements, logarithms (i.e. � = log � i��0 = �0=� for some non-zero �), or exponentials (i.e. � = exp� i� �0=� = �0 forsome �). A di�erential �eld L is an elementary Liouville extension of C(x), i�there exists a tower of di�erential �eld extensionsC(x) = F0 � F1 � � � � � Fn = L;suh that Fi is a simple elementary extension of Fi�1 for all 1 � i � n. Thealgorithmi theory of integration in elementary Liouville extensions is basedon the following theorem.



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 5Theorem 2.1.2 (Strong Liouville Theorem): Let L be an elementary Liouvilleextension of the di�erential �eld K and let C be the �eld of onstants of K.Let f 2 K. If there exists an elementary Liouville extension L of K andg 2 L suh that g0 = f (i.e. f has an integral in L), then there are v 2 K,1; : : : ; n 2 C, and v1; : : : ; vn 2 K(1; : : : ; n)� suh thatf = v0 + nXi=1 i v0ivi(i.e. the integral an be expressed in a purely logarithmi extension).The �rst purely algorithmi proof of Liouville's Theorem was published byRosenliht [Rose68℄, and the �rst omplete integration algorithm for purelytransendental elementary funtions by Rish [Ris69℄. The ase of algebraifuntions was treated by Davenport [Dave81℄ and Trager [Trag84℄. Most om-puter algebra systems nowadays ontain an implementation of the Rish inte-gration algorithm. It is important to note that the Rish algorithm is NOTa olletion of heuristis for possibly �nding an integral of a given funtion,but it is atually a deision algorithm for integrability (in elementary Liouvilleextensions).Example 2.1.3: By appliation of the Rish algorithm we see for instanethat Z 3x3 + 9x2 + x� 6x e1=xdx = (x3 + 5x2 + 6x)e1=x + onst;and we get that Z 1(log x)2 � x2dxis not elementary, i.e. there is no elementary Liouville extension of the �eldC (x; log x), in whih this integral an be expressed. 22.2. Solution of systems of algebrai equations. We onsider a systemof algebrai equations f1(x1; : : : ; xn) = 0;...fm(x1; : : : ; xn) = 0; (2:2:1)over some �eld K, i.e. fi 2 K[x1; : : : ; xn℄. Let K be the algebrai losureof K, and A n(K) = A n the n-dimensional aÆne spae over K. A root � =(�1; : : : ; �n) 2 A n of (2.2.1) is also a root of any linear ombination of the fi's,i.e. of any element of the ideal I = hf1; : : : ; fmi generated by the fi's. So whenwe are studying solutions of systems of algebrai equations, we are atuallystudying ommon solutions for all elements of a polynomial ideal. On theother hand, beause of Hilbert's basis theorem, every ideal in K[x1; : : : ; xn℄ is



6 FRANZ WINKLERgenerated by a �nite basis. So the ommon solutions of any polynomial idealI are atually the solutions of a �nite system of algebrai equations.The olletion of points in A n satifying (2.2.1) is a so-alled algebrai set(or variety), and we denote it by V (I). If V (I) onsists of only �nitely manypoints, i.e. its dimension is 0, then we also say that I is a 0-dimensional ideal.In this setion we assume that the ideal I generated by the polynomials in(2.2.1) is 0-dimensional (although muh of this theory applies also to higherdimensional ideals). The problem we are onsidering in this setion is thefollowing.Problem \Solution of 0-dimensional system of algebrai equations":given: I = hf1; : : : ; fmi � K[x1; : : : ; xn℄, 0-dimensional,�nd: all solutions of I in A n .What we atually want are the elimination ideals of I, i.e.Ik = I \K[x1; : : : ; xk℄; for 1 � k � n;the ideals onsisting of all those polynomials in I just depending on the �rstk variables. Having determined these elimination ideals, we an suessivelysolve for the variables. So the determination of the elimination ideals plays thesame rôle for nonlinear algebrai equations as the Gaussian algorithm playsfor linear equations.The method of resultants:Let R be a ommutative ring, f(x); g(x) 2 R[x℄ two univariate polyno-mials over R. The resultant of f and g, h = res(f; g), is an element ofhf; gi, and res(f; g) = 0 if and only if f and g have a ommon fator (ref.[vdWa91℄,[Wink96℄, [CoLO98℄).Example 2.2.1: Consider the following system of equations:f1(x; y) = 2x4 � 3x2y + y4 � 2y3 + y2 = 0;f2(x; y) = ��xf1(x; y) = 8x3 � 6xy = 0:The solutions of this system are those points on the tanode urve (see Fig.2.4.3), whih are either singular or have a vertial tangent. We are looking forthe solutions in the plane over an algebraially losed �eld ontaining the �eldof de�nition Q , i.e. over C or atually over Q , the �eld of algebrai numbers.The resultant w.r.t. x isr(y) = resx(f1; f2) = (y4 � 2y3 + y2)(64y4 � 128y3 � 8y2)2:r(y) has the roots y = 0; 1; 1 + 34p2; 1� 34p2:



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 7If, for instane, we substitute 1 + 34p2 for y in f1 and f2, we getx = 14q12 + 9p2:So (1 + 34p2; 14q12 + 9p2)is one of the roots of this system of algebrai equations. 2This works perfetly for equations in 2 variables. For more variables, therean be \extraneous fators" of the resultant, i.e. solutions of the resultant,whih annot be ontinued to solutions of the given system.Example 2.2.2: Consider the systemf1(x; y; z) = 2xy + yz � 3z2 = 0;f2(x; y; z) = x2 � xy + y2 � 1 = 0;f3(x; y; z) = yz + x2 � 2z2 = 0:We omputea(x) = resz(resy(f1; f3); resy(f2; f3))= x6(x� 1)(x+ 1)(127x4 � 167x2 + 4);b(y) = resz(resx(f1; f3); resx(f2; f3))= (y � 1)3(y + 1)3(3y2 � 1)(127y4 � 216y2 + 81)(457y4 � 486y2 + 81);(z) = resy(resx(f1; f3); resx(f2; f3))= z4(z � 1)(z + 1)(3z2 � 1)(127z4 � 91z2 + 16)(457z4 � 175z2 + 16):All the solutions of the system, e.g. (1; 1; 1), have oordinates whih are rootsof a; b; . But there is no solution of the system having y-oordinate 1=p3,although b(1=p3) = 0. So not every root of these resultants an be extendedto a solution of the whole system. 2The method of Gr�obner bases:This method in elimination theory was invented by Buhberger in 1965. Foran overview of appliations and urrent researh topis we refer to [BuWi98℄.We don't want to go into details of de�nition and properties of Gr�obner bases,this is done for instane in [Wink96℄. Let us just make a few ruial remarks:� a Gr�obner basis is a partiular basis for a polynomial ideal (over a �eldor ertain other domains), depending on an \admissible" ordering of theterms or monomials,� every polynomial ideal has a Gr�obner basis,� for every given �nite basis for a polynomial ideal I, we an e�etively de-termine, by Buhberger's algorithm or variants thereof, a �nite Gr�obnerbasis generating I, i.e. hange from an arbitrary basis of I to a Gr�obnerbasis of I,



8 FRANZ WINKLER� Buhberger's algorithm is implemented in the major omputer algebrasystems suh as Maple, Mathematia, and Redue.Beause of the elimination property of Gr�obner bases, we an exatly de-termine the elimination ideals of a given ideal I by omputing a Gr�obner basisfor I.Theorem 2.2.1: (Elimination property) Let I = hf1; : : : ; fmi be an ideal inK[x1; : : : ; xn℄. Let G be a Gr�obner basis for the ideal I w.r.t. the lexiographiterm ordering with x1 < � � � < xn. ThenI \K[x1; : : : ; xk℄ = hG \K[x1; : : : ; xk℄i;where the ideal on the right-hand side is generated over K[x1; : : : ; xk℄.Example 2.2.2 (ontinued) We are onsidering the system of equationsf1(x; y; z) = 2xy + yz � 3z2 = 0;f2(x; y; z) = x2 � xy + y2 � 1 = 0;f3(x; y; z) = yz + x2 � 2z2 = 0:The set of polynomials F = ff1; f2; f3g generates an ideal I = hf1; f2; f3i inQ [x1 ; x2; x3℄. The Gr�obner basis for I w.r.t. the lexiographi term orderingwith x > y > z (i.e., we onsider x as the highest variable) isG = fg1; g2; g3; g4g;with g1 = 78x� 2921z5 + 3744z3 � 901z;g2 = 104y2 � 2667z6 + 3562z4 � 895z2 � 104;g3 = 52yz � 2667z6 + 3562z4 � 947z2;g4 = 127z7 � 218z5 + 107z3 � 16z:From this Gr�obner basis G we an see immediately:� every solution of g4(z) = z(z�1)(z+1)(127z4�91z2+16) = 0, e.g. �1,an be extended to a solution of the system g2; g3; g4, e.g. (�1;�1), andevery suh solution an be extended to a solution of the whole system,e.g. (�1;�1;�1);� the system has 8 solutions (ounted with multipliity). This numberorresponds to the 8 terms 1; y; z; z2; : : : ; z6, whih are not a multiple ofany leading term in G,� the 2-nd elimination ideal (eliminating x), for instane, is hg2; g3; g4i. 2Although the basis G in the previous example might not look simpler thanF , it has obvious advantages over F . In partiular, G is triangularized, i.e. itontains one polynomial, g4, whih depends only on the least variable, z. Infat, beause of the elimination property of Gr�obner bases, every polynomialg(z) 2 I\Q [z℄ is a multiple of g4. Similarly, all the polynomials in I dependingonly on z and y are linear ombinations of g2; g3; g4 (over Q [y; z℄).



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 9In order to deide, whether a polynomial f(x; y; z) is in I, we an employthe division algorithm, i.e. in f we suessively replae any ourrene of x by178(2921z5 � 3744z3 + 901z);any ourrene of y2 by1104(2667z6 � 3562z4 + 895z2 + 104);any ourrene of yz by 152(2667z6 � 3562z4 + 947z2);and any ourrene of z7 by1127(218z5 � 107z3 + 16z):Obviously, if we reah 0 by this division proess, we have represented f as alinear ombination of the basis polynomials, i.e. f 2 I. Conversely, w.r.t. aGr�obner basis, f must be reduible to 0 by the division algorithm (this failsto be so for an arbitrary basis).Besides determination of elimination ideals, there are many other algebraiand geometri problems that an be suessfully treated by Gr�obner bases.Let us list just a few of them:� ideal membership problem, i.e. \f 2 I ?",� radial membership problem, i.e. \f 2 pI ?",� equality of ideals, i.e. \I = J ?",� arithmeti of ideals, i.e. omputation of I \J; I : J (I+J; I �J are easy),� omputation of dimension of ideals, dim(I),� omputation of syzygies of sequenes of polynomials.Appliations of the Gr�obner basis method in mathematis, sienes, and en-gineering are olleted in [TrWi00℄.The method of Gr�obner bases has enormous power, but despite, or ratherbeause of, this power, there are also serious problems with Gr�obner bases.Some of them need further researh, and an, perhaps, be overome. Othersstem from intrinsi limitations. We just list a few of these problems andlimitations:� Given any basis for an ideal I, Buhberger's algorithm suessively addsertain new elements of I to the basis, suh that ultimately the basisbeomes a Gr�obner basis, i.e. the ideal membership problem an besolved by the division algorithm. This proess is ompletely insensitiveto the partiular problem at hand. For instane, it destroys any spar-sity present in the original system F . Speially taylored Gr�obner basis



10 FRANZ WINKLERalgorithms for various problems in algebra and geometry are still to bedeveloped.� The ideal membership problem (whih is solved by Gr�obner bases) hasomplexity whih is double exponential in the number of variables n[MaMe82℄. So any algorithm for omputing a Gr�obner basis must ne-essarily have omplexity at least double exponential in n. Buhberger'salgorithm has this omplexity. For speial problems, for instane 0-dimensional ideals, the omplexity is only single exponential in n.� For solving algebrai equations, we want a Gr�obner basis w.r.t. a lex-iographi term ordering, but this is muh harder to ompute than aGr�obner basis w.r.t. a graduated ordering. For 0-dimensional ideals,Faug�ere et al. [FGLM93℄ developed linear algebra tehniques for trans-forming a Gr�obner basis w.r.t. some term ordering into a Gr�obner basisw.r.t. a desired ordering. For ideals of arbitrary dimension Collart et al.[CoKM97℄ have introdued the idea of the Gr�obner walk for ahievingsuh a transformation. Although this idea works very niely in pratialappliations, there are still unresolved omplexity questions onerningthe Gr�obner walk.2.3. Fatorization of polynomials. The fatorization of (multivariate) po-lynomials is one of the most frequent subproblems in algebrai omputation.We have seen it our in integration of rational funtions, it allows us to sim-plify algebrai equation problems, we need irreduible polynomials for gen-erating �nite �elds and algebrai �eld extensions, and for most algorithmsin algebrai geometry we need the irreduibility of the algebrai variety as aprerequisite.Beause of this fundamental importane, the fatorization problem has re-eived the attention of algebraists for a long time. In 1882 L. Kronekerdesribed a redution algorithm for the fatorization of multivariate polyno-mials to the fatorization of univariate polynomials. His idea was to mapf(x1; : : : ; xn), an n-variate polynomial over the unique fatorization domainR, to the univariate polynomial f(y; yd; : : : ; ydn�1), where d is an upper boundfor the degree of f w.r.t. any one of the variables. In this way, one gets a 1-1,easily omputable mapping� : R[x1; : : : ; xn℄=hxd1 ;::: ;xdni �! R[y℄=hydn i:Now for every irreduible fator g of f there are irreduible fators g1; : : : ; gsof �(f), suh that g = ��1(Qsj=1 gj).Although this algorithm works perfetly �ne, it has the drawbak of expo-nentially inreasing the degree of the polynomial. For this reason, wheneverpossible, other approahes are used nowadays, based on Berlekamp's fator-ization algorithm over �nite �elds and Hensel's lifting lemma.



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 11In 1968 E.R. Berlekamp [Berl68℄ published his algorithm for fatoring uni-variate polynomials over �nite �elds GF(p) = Zp, p a prime. Let f(x) 2GF(p)[x℄ be the squarefree polynomial to be fatored. Let n be the degreeof f . The key step in Berlekamp's algorithm is the omputation of the null-spae of a ertain (n�n)-matrix with oeÆients in GF(p), followed by a fewgd-omputations in GF(p)[x℄. The omplexity of the Berlekamp fatorizationalgorithm is proportional to pn3.In 1969 H. Zassenhaus [Zass69℄ showed how to use Hensel's p{adi liftinglemma for fatoring univariate polynomials, for instane over the integers Z.Theorem 2.3.1: (Hensel's Lemma) Let p be a prime number and f(x); f1(x);: : : ; fr(x) 2 Z[x℄. Let (f1 mod p); : : : ; (fr mod p) be pairwise relativelyprime in Zp[x℄ and f(x) �Qri=1 fi(x) mod p. Then for every natural numberk there are polynomials f (k)1 (x); : : : ; f (k)r (x) 2 Z[x℄ suh thatf(x) � rYi=1 f (k)i (x) mod pkand f (k)i (x) � fi(x) mod p for 1 � i � r:This Hensel lifting proess an atually be arried out algorithmially, byappliation of the extended Eulidean algorithm.The basi idea of the so-alled Berlekamp{Hensel algorithm is the following:� given a primitive squarefree polynomial f(x) 2 Z[x℄, hoose a prime p notdividing the leading oeÆient of f , and suh that f remains squarefreemodulo p;� apply Berlekamp's algorthm for fatoring f modulo p;� apply the Hensel Lemma to this fatorization, to get a fatorization off modulo pk, for high enough p (so that within this range of oeÆientsthe oeÆients of any fator f an be represented uniquely);� now, every irreduible fator of f in Z[x℄ must orrespond to a ombi-nation of fators modulo pk.Example 2.3.1: Let us use the Berlekamp{Hensel algorithm for fatoring thepolynomial f(x) = 6x7 + 7x6 + 4x5 + x4 + 6x3 + 7x2 + 4x+ 1in Z[x℄. f is squarefree and it stays squarefree modulo p = 5. By an appliationof the Berlekamp algorithm, f(x) is fatored modulo 5 intof(x) � (x� 2)(x2 � 2)(x2 + 2)(x2 � x+ 2) mod 5:



12 FRANZ WINKLERBy an appliation of Hensel's Lemmawe lift this fatorization to a fatorizationmodulo 25, gettingf(x) � 6 � (x� 12)| {z }v1 � (x2 � 7)| {z }v2 � (x2 + 7)| {z }v3 � (x2 + 9x� 8)| {z }v4 mod 25:Suppose we know that all the integer oeÆients of the fatorization of fare ontained in the range [�12; 12℄. So then, we hek whether any one ofthe fator andidates, together with a fator of 6, gives us a fator over theintegers. In fat, 2 � v1 � 2x + 1 mod 25, and this is indeed a fator. v2 andv3 do not lead to suh a fator, but 3 � v4 � 3x2 + 2x+ 1 mod 25 does. Nowwe try to ombine v2 and v3, and indeed v2 � v3 � x4 + 1 mod 25 leads to afator. Thus, we have found the fatorization of f(x) in Z[x℄, namelyf(x) = (2x+ 1) � (x4 + 1) � (3x2 + 2x+ 1): 2The idea of the Hensel lifting an be generalized to multivariate polynomi-als. Beause of the �nal fator ombination step, the Berlekamp-Hensel algo-rithm still has exponential worst ase omplexity. In 1982 Lenstra, Lenstra,and Lov�asz [LeLL82℄ desribed an algorithm for fatoring polynomials in Z[x℄in polynomial time. The LLL algorithm is based on a proess for �ndingshortest vetors in latties.One we an fator polynomials over a �eld K, we an also fator overany algebrai extension of K. An algorithm based on norm omputation isdesribed in [vdWa91℄. But this is still not the end of the story. Given abivariate (or multivariate) polynomial f(x; y) 2 K[x; y℄, we might want todetermine, whether it an be fatored over any algebrai extension of K, i.e.whether it an be fatored in K[x; y℄. This problem of fatoring over the alge-brai losure of the given ground �eld is alled absolute fatorization. In reentyears several people have suggested algorithms for absolute fatorization. Foran overview see [Wink96℄. Many omputer algebra software systems alreadyhave implementations of absolute fatorization.2.4. Geometry of algebrai urves and surfaes. Algebrai urves andsurfaes have been studied intensively in algebrai geometry for deades andeven enturies. Thus, there exists a huge amount of theoretial knowledgeabout these geometri objets. Reently, algebrai urves and surfaes play animportant and ever inreasing rôle in omputer aided geometri design, om-puter vision, and omputer aided manufaturing. Consequently, theoretialresults need to be adapted to pratial needs. We need eÆient algorithms forgenerating, representing, manipulating, analyzing, rendering algebrai urvesand surfaes.One interesting subproblem is the rational parametrization of urves andsurfaes. Consider an aÆne plane algebrai urve C in A 2(K) de�ned by the



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 13bivariate polynomial f(x; y) 2 K[x; y℄, i.e.C = f(a; b) j (a; b) 2 A 2(K) and f(a; b) = 0g:Of ourse, we ould also view this urve in the projetive plane P2(K), de�nedby F (x; y; z), the homogenization of f(x; y).A pair of rational funtions (x(t); y(t)) 2 K(t) is a rational parametriza-tion of the urve C, if and only if f(x(t); y(t)) = 0 and for almost everypoint (x0; y0) 2 C (i.e. up to �nitely many exeptions) there is a parame-ter value t0 2 K suh that (x0; y0) = (x(t0); y(t0)). Only irreduible urves,i.e. urves whose de�ning polynomial is absolutely irreduible, an have arational parametrization. Almost any rational transformation of a rationalparametrization is again a rational parametrization, so suh parametrizationsare not unique.Impliit representations (by de�ning polynomial) and parametri represen-tations (by rational parametrization) both have their partiular advantagesand disadvantages. Given an impliit representation of a urve and a pointin the plane, it is easy to hek whether the point is on the urve. But itis hard to generate \good" points on the urve, i.e. for instane points withrational oordinates if the de�ning �eld is Q . On the other hand, generatinggood points is easy for a urve given parametrially, but deiding whether apoint is on the urve requires the solution of a system of algebrai equations.So it is highly desirable to have eÆient algorithms for hanging from impliitto parametri representation, and vie versa.Example 2.4.1: Let us onsider urves in the plane (aÆne or projetive) overC . The urve de�ned by f(x; y) = y2 � x3 � x2 (see Fig. 2.4.1) is rationallyparametrizable, and atually a parametrization is (t2 � 1; t(t2 � 1)).On the other hand, the ellipti urve de�ned by f(x; y) = y2 � x3 + x (seeFig 2.4.2) does not have a rational parametrization.The tanode urve (see Fig. 2.4.3) de�ned by f(x; y) = 2x4 � 3x2y + y4 �2y3 + y2 has the parametrizationx(t) = t3 � 6t2 + 9t� 22t4 � 16t3 + 40t2 � 32t+ 9 ; y(t) = t2 � 4t+ 42t4 � 16t3 + 40t2 � 32t+ 9 :The riterion for parametrizability of a urve is its genus. Only urves ofgenus 0, i.e. urves having as many singularities as their degree permits, havea rational parametrization. 2Computing suh a parametrization essentially requires the full analysis ofsingularities (either by suessive blow-ups, or by Puiseux expansion) and thedetermination of a regular point on the urve. We an ontrol the qualityof the resulting parametrization by ontrolling the �eld over whih we hoosethis regular point. Thus, �nding a regular urve point over a minimal �eldextension on a urve of genus 0 is one of the entral problems in rational



14 FRANZ WINKLERparametrization, ompare [SeWi97℄, [SeWi99℄. The determination of rationalpoints on algebrai urves an be an extremely ompliated problem. But forurves of genus 0 the situation an atually be ontrolled very well. For aurve over a �eld K of harateristi 0, we an determine whether the urvehas a regular point over K, or otherwise �nd a quadrati �eld extension whihadmits suh a regular point.
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Fig. 2.4.4Example 2.4.2: Let C be the urve in the omplex plane de�ned byf(x; y) = (x2 + 4y + y2)2 � 16(x2 + y2) = 0:For a piture of this urve in the real aÆne plane see Fig. 2.4.4.



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 15The urve C has the following rational parametrization:x(t) = �32 � �1024i + 128t � 144it2 � 22t3 + it42304 � 3072it � 736t2 � 192it3 + 9t4 ;y(t) = �40 � 1024 � 256it � 80t2 + 16it3 + t42304 � 3072it � 736t2 � 192it3 + 9t4 :So, as we see in Fig.2.4.4, C has in�nitely many real points. But generatingany one of these real points from the above parametrization is not obvious.Does this real urve C also have a parametrization over R? Indeed it does,let's see how we an get one.In the projetive plane over C , C has three double points, namely (0 : 0 : 1)and (1 : �i : 0). Let ~H be the linear system of onis passing through all thesedouble points. The system ~H has dimension 2 and is de�ned byh(x; y; z; s; t) = x2 + sxz + y2 + tyz = 0;i.e., for any partiular values of s and t we get a oni in ~H. Three elementsof this linear system de�ne a birational transformationT = (h(x; y; z; 0; 1) : h(x; y; z; 1; 0) : h(x; y; z; 1; 1))= (x2 + y2 + yz : x2 + xz + y2 : x2 + xz + y2 + yz)whih transforms C to the oni D de�ned by15x2 + 7y2 + 6xy � 38x� 14y + 23 = 0:For a oni de�ned over Q we an deide whether it has a point over Q or R. Inpartiular, we determine the point (1; 8=7) on D, whih, by T �1, orrespondsto the regular point P = (0;�8) on C. Now, by restriting ~H to onisthrough P and interseting ~H with C (for details see [SeWi97℄), we get theparametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :over the reals. 2Many of these ideas whih work for urves an atually be generalizedto higher dimensional geometri objets. For instane, one subproblem inomputer aided geometri design is the manipulation of o�set urves, o�setsurfaes, pipe and anal surfaes. These are geometri objets keeping ertaindistanes from a generating objet. Let us just onsider the ase of a pipesurfae in an example.Example 2.4.3: We onsider the spae urve C in A 2 (R) given parametriallyby (x(t); y(t); z(t)) = (t; t2; t3). We want to onstrut a parametri representa-tion of the pipe surfae S (at distane 1) along C, i.e. the lous of points havingnormal distane 1 from C. This pipe surfae S is the envelope of spheres of



16 FRANZ WINKLERradius 1 moving along C, i.e. every point on S lies on a irle in a hypersurfaeperpendiular to the urve C. If we an �nd a parametri representation of aurve ~C on S, whih meets every one of these irles, then by a penil of linesin the orresponding hypersurfae we an generate a rational representationfor all the points on this irle, and thus �nally a rational parametrization ofthe pipe surfae.Suh a urve an by determined by algebrai omputation, giving for in-stane the parametrization (~1(t); ~2(t); ~3(t)) with0� ~1(t)~2(t)~3(t) 1A = 0BBB� t+ 3(36t4�13t2�4p5t�5)t2(1+4t2)(21t2+2p5t+5+27t4)t2 � 3(60t3+14t�p5+4p5t2)t2(1+4t2)(21t2+2p5t+5+27t4)t3 + 21t2+2p5t+521t2+2p5t+5+27t4 1CCCA :From this parametri representation of ~C we an ompute a parametri repre-sentation of the pipe surfae. 2For a geometri approah to parametrization of pipe and anal surfaes see[PePo97℄, an algebrai approah an be found in [HLSW99℄.Now that we have seen some examples of parametrization treated by sym-boli algebrai omputation, let us just briey disuss the inverse problem,namely the problem of impliitization. If we are given, for instane, a rationalparametrization in K(t) of a plane urve, i.e.x(t) = p(t)=r(t); y(t) = q(t)=r(t);we essentially want to eliminate the parameter t from these relations, and geta relation just between x and y. We also want to make sure that we do notonsider omponents for whih the denominator r(t) vanishes. This leads tothe system of algebrai equationsx � r(t)� p(t) = 0;y � r(t)� q(t) = 0;r(t) � z � 1 = 0:The impliit equation of the urve must be the generator of the idealI = hx � r(t)� p(t); y � r(t)� q(t); r(t) � z � 1i \ K[x; y℄:Using the elimination property of Gr�obner bases, we an ompute this gener-ator by a Gr�obner basis omputation w.r.t. the lexiographi ordering basedon x < y < z < t.Example 2.4.4: Let us do this for the urve of Example 2.4.2. We start fromthe parametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 17So we have to solve the equationsx � (256t4 + 32t2 + 1) + 1024t3 = 0;y � (256t4 + 32t2 + 1) + 2048t4 � 128t2 = 0;(256t4 + 32t2 + 1) � z � 1 = 0:The Gr�obner basis of this system w.r.t. the lexiographi ordering based onx < y < z < t isG = f::::::::; x4 + y4 + 8x2y + 2x2y2 + 8y3 � 16x2g:So we have found the impliit equation of the urve. 23. Problems in algebrai omputationAfter having desribed some of the ahievements in di�erent areas of alge-brai omputation, let us now point out some topis whih are urrently beinginvestigated.3.1. Di�erential equations. The integration problem disussed in Setion2.1, i.e. the problem of �nding an expression y suh that R f = y, or f = y0,is a partiular di�erential equation problem. As we have seen above, symbolialgorithmi approahes are already quite powerful in treating this integrationproblem. For more general di�erential equation systems, algorithmi methodsare far more sare.In 1978 Kovai developed an algorithm for omputing \losed-form" solu-tions of 2-nd order linear homogeneous di�erential equations of the formy00(x) + a(x) � y0(x) + b(x) � y(x) = 0;where a; b 2 C (x), and the solution is sought in a Liouvillian extension ofC (x). Kovai's algorithm deides, whether suh a solution exists, and if so,onstruts the solutions. So, for example, for the di�erential equationy00(x) = 4x6 � 8x5 + 12x4 + 4x3 + 7x2 � 20x+ 44x4 � y(x);Kovai's algorithm determines the solution� = x2 � 1x3=2 � e�1=x+x2=2�x:Starting in 1991 Singer [Sing91℄, [SiUl93℄ extended Kovai's algorithm andpresented an algorithm for �nding a basis for the spae of Liouvillian solutionsof a linear di�erential equation of arbitrary ordery(n) + an�1y(n�1) + � � � + a0y = b;where the oeÆients an�1; : : : ; a0 and the right hand side b are from a dif-ferential �eld K. Singer's algorithm works by determining di�erential Galoisgroups and is of high omplexity.



18 FRANZ WINKLERThe �eld of symboli solution of di�erential equations is still wide open, inpartiular when partial di�erential equations are onsidered.3.2. Fast omputation of Gr�obner bases. As we have noted in Setion2.2, the omputing time for determining a Gr�obner basis may vary onsider-ably depending on the term ordering. Although there are in�nitely many termorderings, f. [Robb85℄, there are only �nitely many di�erent Gr�obner basesfor a �xed ideal I, f. [MoRo88℄. By \walking around" in the Gr�obner fanof the ideal I, one may transform a Gr�obner basis w.r.t. to a term ordering<1 to a Gr�obner basis w.r.t. a term ordering <2. This idea was �rst devel-oped in [CoKM97℄. Pratial experiments have shown onsiderable savingsin omputing time, f. [AmGK96℄, [Tran98℄. Reently Kalkbrener [Kalk99℄has started to investigate the theoretial reasons for this pratial speed-up.But we ertainly need more omplexity investigations for understanding thesephenomena.3.3. Computations on algebrai urves and surfaes. For algebrai ur-ves over a omputable �eld of harateristi 0 the problem of symboli alge-brai parametrization is ompletely solved. More preisely, we an determinewhether a urve has a rational parametrization over the algebrai losure of theground �eld, and in the aÆrmative ase we an ompute a proper parametriza-tion with oeÆients in an algebrai extension of the ground �eld of lowestextension degree. If the given irreduible urve has oeÆients in Q , is ratio-nal, and has in�nitely many real points, then it atually has a parametrizationover R whih an be determined algorithmially, see [SeWi99℄.But even so there remains the following open problem: a urve de�ned overQ might have a parametrization with oeÆients in Z. If so, it has in�nitelymany suh parametrizations. How an we �nd the one with the smallestoeÆients?Also for algebrai surfaes the algorithmi parametrization problem is solved(with the exeption of del Pezzo surfaes) in prinipal, see [Shi98a℄, [Shi98b℄.But both for urves and for surfaes one of the most ritial subproblems isthe analysis of the singularities and the determination of adjoints. There areseveral theoretial approahes to these problems, e.g. blow-ups, or Puiseuxseries expansion. Muh work is still needed for developing algorithms withgood theoretially and pratial omplexity.3.4. Integration of symboli and numerial omputation. Many prob-lems in siene and engineering are atually inexatly stated, but still we wanta symboli solution. For instane, we might have inexatly de�ned polynomi-als for two surfaes, know that they should have an intersetion of dimension 2,and want to determine the de�ning polynomial of the intersetion. The ques-tion then is atually: how an we vary the oeÆients of the given polynomialsslightly so that we get non-trivial intersetion?
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