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ADVANCES AND PROBLEMS IN ALGEBRAIC
COMPUTATION

FRANZ WINKLER

ABSTRACT. In the last years there has been dramatic progress in all areas
of algebraic computation. Many working mathematicians have access to
and actually use algebraic software systems for their research. No end of
this development is in sight. We report on some active topics in algebraic
computation, namely the theory of integration and symbolic solution of
systems of differential equations, the solution of systems of algebraic equa-
tions, the factorization of polynomials, and the design and analysis of
algebraic curves and surfaces.

1. INTRODUCTION

The enormous development of scientific computation has placed mathemat-
ical capabilities at the fingertips of scientists and engineers. It has also pro-
vided mathematicians with a wealth of interesting new problems and research
topics. There are, of course, different approaches to scientific computation. If
the goal is to create approximate solutions to inexactly stated problems, we
will probably apply the methods of numerical analysis and computation. Vi-
sualization in scientific computation is gaining ever more importance, and the
mathematics behind some of the visualization algorithms is rather involved.

But there are also many important problems, in which we need to do ex-
act computation, compute and reason about symbolic objects such as mathe-
matical equations, algebraic curves, logical formulae, programs in a program-
ming language, and similar objects. In the last years there has been dramatic
progress in all areas of algebraic computation, both in algorithm development
and in the design of program systems such as Maple [Char92], Mathematica
[Wolf91], and Reduce [MacC91]. Many working mathematicians have access
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to and actually use algebraic software systems for their research. Even hand-
held computers are capable of performing symbolic algebraic computations
nowadays. No end of this development is in sight.

In Section 2 we report on some achievements in symbolic computation in
the last few decades, such as the algebraic theory of integration and symbolic
solution of systems of differential equations, the solution of systems of algebraic
equations, the factorization of polynomials, and the design and analysis of
algebraic curves and surfaces. In Section 3 we outline some currently active
research topics in these and related areas.

2. ADVANCES IN ALGEBRAIC COMPUTATION

The research area of computer algebra was created about 40 years ago.
Much of the mathematical development in making ever more parts of algebra
treatable by computers was centered around the creation of software systems
for algebraic computation. Some of the most important of these systems,
started in the pioneering time of computer algebra, are Macsyma, SAC, Re-
duce, and Derive. Later starters are Maple, Mathematica, Axiom, and Magma.
All important algorithmic ideas of computer algebra sooner or later have been
implemented in these systems.

Of course, we cannot attempt to present a unified picture of computer
algebra or algebraic computation in this limited space. We can only point
to some of the more interesting achievements. For a general introduction to
the mathematical background, we refer the reader to books such as [Bron97],
[GeCL92], [Mign92], [Wink96].

2.1. Integration theory. Algorithmic methods for indefinite integration go
back a long way, certainly to the work of Abel and Liouville in the 19th century.
In his book [Ritt48] J.F. Ritt began to apply new algebraic techniques to
the problem of integration in finite terms. But it took until the 1960’s and
1970’s for a decisive breakthrough to be achieved and decision procedures
for indefinite integration to be implemented in software systems for computer
algebra.

Let us start by considering rational functions. IT.e. for given p(x),q(z) €

Q[z] we want to compute
p(@)
/ o)™

By partial integration and the Hermite reduction process we can determine a
rational function g(x)/h(z) and a polynomial p*(x) such that the integration
problem can be rewritten as

b, o) [,
/q<x>d nw) /q*<x>d’
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where ¢*(z) is the square-free part of ¢(x), i.e. the multiplicity of every factor
is reduced to 1, and deg(p*) < deg(q*).

The integral [ p*/¢* can be computed in the following well-known classical
way: Let ¢*(x) = (r —aq) -+ (x —ay,), where g, ... ,ay, are the distinct roots
of ¢*. Then

n

[ = [ 2 = Beta -,

=1

P (o)
(o)’
No part of this sum of logarithms can be a rational function. According to this
approach we have to compute the splitting field of the square-free denominator
¢*(x), which might be of high algebraic extension degree over the original
coefficient field.

with c = 1<i<n.

Example 2.1.1: Let us integrate /(x> — 2) according to this process. The
denominator is square-free, and the numerator has lower degree than the de-
nominator. So our integrand already has the form p*(z)/q*(x) as considered
above. Thus, we get

. 1/2 1/2
[ =dx :fxi/ﬂdx + for/ﬂdx

— L(log(z — v3) +log(z +v2)) = Llog(a? — 2).
So obviously we do not always need the full splitting field of ¢* in order to
express the integral of h/q*. O

Of course there is no theoretical problem with working in algebraic exten-
sions of the ground field for expressing the integral. But high degree algebraic
extensions (or multiple extensions, for that matter) are costly in terms of
computational complexity. So the problem arises of representing the result,
and also the intermediate computations, over the algebraic extension field of
lowest possible degree. The following theorem, which has been independently
discovered by M. Rothstein and B. Trager in 1976, answers the question of
what is the smallest field in which we can express the integral of a rational
function.

Theorem 2.1.1: Let p,q € Q[x] be relatively prime, ¢ monic and squarefree,
and deg(p) < deg(q). Let

n

/de = Zcilogvi,

q =1

where the ¢; are distinct non—zero constants and the v; are monic squarefree
pairwise relatively prime elements of Q[z] (Q is the algebraic closure of Q, i.e.
the field of algebraic numbers). Let ¢ be a new variable. Then the ¢; are the
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distinct roots of the resultant of p(x) — ¢ ¢'(x) and q(x) w.r.t. x, and the v;
corresponding to ¢; are v; = ged(p(x) — ¢; - ¢'(x), ¢(x)).

Example 2.1.1. (continued) We apply Theorem 2.1.1. r(c) = res,(p —
cq',q) = resy(x — c(2x), 2% — 2) = —2(2¢ — 1)2. There is only one root of r(c),
namely ¢; = 1/2. We get the argument of the corresponding logarithm as
v = ged(z — $(22),2% —2) = 2% — 2. So

1
/ T iz = §log(x2—2).

x2 —2
So we arrive at the final answer over Q without having to take the detour via
Q(v/2), the splitting field of 22 — 2 over Q. 0

Example 2.1.2: Let us determine

/ zt =322 +6
dz.
26 — 5xt + 522 +4
The denominator q(x) = 2% — 52* + 522 + 4 is squarefree, and actually irre-

ducible over Q. The resultant in the Rothstein-Trager theorem is

res, (z1 =322 +6 — c(62° — 2023 +102), 2% — 52t +522 +4) = 45796(4¢% +1)3.

So we can express the integral in Q(i), namely as

4_ 9.2 . 4
/ x6f5x43f- 5:26+ = %log(x3+ix2_3x—2i)—%log(:v3—ix2—3x+2ié

In fact, the factorization of the resultant in the Rothstein-Trager theorem
can be avoided, if one uses the subresultant algorithm for computing the re-
sultant.

Much of the theory of integration of rational functions can be transferred
to integration of functions which can be expressed in elementary Liouville
extensions of a field of constants. We start with a differential field C' (of
constants) with differentiation operation ', i.e. ¢ = 0 for all ¢ € C. Next
we adjoin a variable of differentiation, i.e. a transcendental element x with
2’ = 1. Now we are allowed to extend the field by so-called simple elementary
extensions i.e. by adjoining algebraic elements, logarithms (i.e. 6 = logn iff
6" = n' /n for some non-zero n), or exponentials (i.e. § = expn iff §'/6 =’ for
some 7). A differential field L is an elementary Liouville extension of C(x), iff
there exists a tower of differential field extensions

C(I):FUCF1C"'CFTL:L,

such that F; is a simple elementary extension of F;_q for all 1 < i < n. The
algorithmic theory of integration in elementary Liouville extensions is based
on the following theorem.
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Theorem 2.1.2 (Strong Liouville Theorem): Let L be an elementary Liouville
extension of the differential field K and let C' be the field of constants of K.
Let f € K. If there exists an elementary Liouville extension L of K and
g € L such that ¢' = f (i.e. f has an integral in L), then there are v € K,
Cly...,cn €C,and vy,... ,vy € K(c1,... ,cp)* such that

n /
_ Vi
f=v+ Z i o
=1
(i.e. the integral can be expressed in a purely logarithmic extension).

The first purely algorithmic proof of Liouville’s Theorem was published by
Rosenlicht [Rose68], and the first complete integration algorithm for purely
transcendental elementary functions by Risch [Risc69]. The case of algebraic
functions was treated by Davenport [Dave81] and Trager [Trag84]. Most com-
puter algebra systems nowadays contain an implementation of the Risch inte-
gration algorithm. It is important to note that the Risch algorithm is NOT
a collection of heuristics for possibly finding an integral of a given function,
but it is actually a decision algorithm for integrability (in elementary Liouville
extensions).

Example 2.1.3: By application of the Risch algorithm we see for instance
that

6el/””dx = (2% 4522 4 62)e!/* + const,

/3:1:3+9a:2+m—
T

and we get that

1
———d
/(loga:)2 — 2"

is not elementary, i.e. there is no elementary Liouville extension of the field
C(x,log x), in which this integral can be expressed. O

2.2. Solution of systems of algebraic equations. We consider a system
of algebraic equations

fl(azl,... ,:Cn) = 0,
: (2.2.1)

fm(xl, N ,an) = 0,
over some ﬁeld_K, ie. f; € K[z1,...,xy]. Let K be the algebraic closure
of K, and A"(K) = A" the n-dimensional affine space over K. A root a =
(1,...,ap) € A" of (2.2.1) is also a root of any linear combination of the f;’s,

i.e. of any element of the ideal I = (f1,... , fi) generated by the f;’s. So when
we are studying solutions of systems of algebraic equations, we are actually
studying common solutions for all elements of a polynomial ideal. On the
other hand, because of Hilbert’s basis theorem, every ideal in K[x1,... ,x,] is
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generated by a finite basis. So the common solutions of any polynomial ideal
I are actually the solutions of a finite system of algebraic equations.

The collection of points in A" satifying (2.2.1) is a so-called algebraic set
(or variety), and we denote it by V' (I). If V/(I) consists of only finitely many
points, i.e. its dimension is 0, then we also say that I is a 0-dimensional ideal.
In this section we assume that the ideal I generated by the polynomials in
(2.2.1) is O0-dimensional (although much of this theory applies also to higher
dimensional ideals). The problem we are considering in this section is the
following.

Problem “Solution of 0-dimensional system of algebraic equations”:

given: I = (fy,..., fm) C K[z1,...,2,], 0-dimensional,
find: all solutions of I in A",

What we actually want are the elimination ideals of I, i.e.
Ik:IﬁK[azl,...,a:k], for 1 <k <n,

the ideals consisting of all those polynomials in I just depending on the first
k variables. Having determined these elimination ideals, we can successively
solve for the variables. So the determination of the elimination ideals plays the
same role for nonlinear algebraic equations as the Gaussian algorithm plays
for linear equations.

The method of resultants:

Let R be a commutative ring, f(z),g(x) € R[z] two univariate polyno-
mials over R. The resultant of f and g, h = res(f,g), is an element of
(f,g), and res(f,g) = 0 if and only if f and ¢ have a common factor (ref.
[vdWa91],[Wink96], [CoLO9S]).

Example 2.2.1: Consider the following system of equations:

filwy) =22 =322y +y* - 23 +y* =0,
f?(xvy) = %fl(xay) = 8%3 - 690y =0.

The solutions of this system are those points on the tacnode curve (see Fig.
2.4.3), which are either singular or have a vertical tangent. We are looking for
the solutions in the plane over an algebraically closed field containing the field
of definition Q, i.e. over C or actually over Q, the field of algebraic numbers.
The resultant w.r.t. = is

r(y) =resy(fi, f2) = (y* =2y + %) (64y" — 128" — 8y%)%.
r(y) has the roots

3 3
y=0, 1, 1+Z\/§’ 1—1\/5.
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If, for instance, we substitute 1 + %\/ﬁ for y in f; and fo, we get

= i\/m +9V2.

3 -1
(HZ\@’ . 12 + 9v/2)

is one of the roots of this system of algebraic equations. O

So

This works perfectly for equations in 2 variables. For more variables, there
can be “extraneous factors” of the resultant, i.e. solutions of the resultant,
which cannot be continued to solutions of the given system.

Example 2.2.2: Consider the system

fl(xayaz) = 2$y+y2 - 322 = 07
fZ(xayaZ) :xQ_xy-i_yQ_]- :07
f3($ayaz) Zy2+372—222 =0.

We compute

a(xr) = resz(resy(fl,f3),resy(f2,f3))
=2%(x — 1)(z + 1)(1272* — 16722 + 4),
b(y) :Tesz(resx(flafz%),feSx(fQ,f3))
= (y— 1)3(y + 1)3(3y% — 1)(127y* — 216y> + 81)(457y* — 486y> + 81),

C(Z) = resy(resx(flaf3)aresx(f2af3))
=24z = 1)(z +1)(322 = 1)(1272* — 9122 + 16)(4572* — 17522 + 16).

All the solutions of the system, e.g. (1,1,1), have coordinates which are roots
of a,b,c. But there is no solution of the system having y-coordinate 1/v/3,
although b(1/v/3) = 0. So not every root of these resultants can be extended
to a solution of the whole system. O

The method of Grobner bases:

This method in elimination theory was invented by Buchberger in 1965. For
an overview of applications and current research topics we refer to [BuWi98].
We don’t want to go into details of definition and properties of Grobner bases,
this is done for instance in [Wink96]. Let us just make a few crucial remarks:

e a Grobner basis is a particular basis for a polynomial ideal (over a field
or certain other domains), depending on an “admissible” ordering of the
terms or monomials,

e every polynomial ideal has a Grobner basis,

e for every given finite basis for a polynomial ideal I, we can effectively de-
termine, by Buchberger’s algorithm or variants thereof, a finite Grobner
basis generating [, i.e. change from an arbitrary basis of I to a Grobner
basis of 1,
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e Buchberger’s algorithm is implemented in the major computer algebra
systems such as Maple, Mathematica, and Reduce.

Because of the elimination property of Grobner bases, we can exactly de-
termine the elimination ideals of a given ideal I by computing a Grobner basis
for I.

Theorem 2.2.1: (Elimination property) Let I = (fi,..., fm) be an ideal in
K[xy,... ,xy]. Let G be a Grébner basis for the ideal I w.r.t. the lexicographic
term ordering with 1 < --- < x,. Then

In K[xl, - ,:Ck] = <G N K[xl, R ,xk]>,
where the ideal on the right-hand side is generated over K[xy,... , xf].

Example 2.2.2 (continued) We are considering the system of equations

fl(xayaz) :2ajy+yz—322 :07
fZ(xayaZ) :xQ_xy-i_yQ_]- :07
f3(r,y,2) =yz+a?-222 =0

The set of polynomials F' = {fi, fo, f3} generates an ideal I = (fy, fo, f3) in
Q[x1,x2,x3). The Grobner basis for I w.r.t. the lexicographic term ordering
with 2 > y > z (i.e., we consider z as the highest variable) is

G= {917 92,93, g4}a
with
g1 = T8x — 29212° 4 37442% — 901z,
go = 104y® — 266725 + 35622* — 89522 — 104,
g3 = 52yz — 266725 + 356224 — 94722,
gs = 12727 —2182° +1072% — 162.
From this Grobner basis G we can see immediately:

e every solution of g4(2) = z(z — 1) (2 +1)(1272* = 9122 4+16) = 0, e.g. —1,
can be extended to a solution of the system g9, g3, g4, €.g. (—1,—1), and
every such solution can be extended to a solution of the whole system,
eg. (—1,-1,-1),

e the system has 8 solutions (counted with multiplicity). This number
corresponds to the 8 terms 1,y, z, 22, ... , 2%, which are not a multiple of
any leading term in G,

e the 2-nd elimination ideal (eliminating z), for instance, is (g2, g3, g4). O

Although the basis G in the previous example might not look simpler than
F, it has obvious advantages over F'. In particular, G is triangularized, i.e. it
contains one polynomial, g4, which depends only on the least variable, z. In
fact, because of the elimination property of Grobner bases, every polynomial
g(z) € INQ[z] is a multiple of g4. Similarly, all the polynomials in I depending
only on z and y are linear combinations of go, g3, g4 (over Q[y, z]).
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In order to decide, whether a polynomial f(z,y, z) is in I, we can employ
the division algorithm, i.e. in f we successively replace any occurrence of x by

1
7—8(2921,25 — 37442 4 9012),
any occurrence of y2 by

1
m(266726 — 35622" + 89522 + 104),

any occurrence of yz by

1
5—2(2667z6 — 35622 + 9472%),

and any occurrence of 2z’ by

1
m(mzf’ — 1072 + 162).

Obviously, if we reach 0 by this division process, we have represented f as a
linear combination of the basis polynomials, i.e. f € I. Conversely, w.r.t. a
Grobner basis, f must be reducible to 0 by the division algorithm (this fails
to be so for an arbitrary basis).

Besides determination of elimination ideals, there are many other algebraic
and geometric problems that can be successfully treated by Grobner bases.
Let us list just a few of them:

ideal membership problem, i.e. “f € I 77,

radical membership problem, i.e. “f € /T 77,

equality of ideals, i.e. “I = .J 77,

arithmetic of ideals, i.e. computation of INJ, I :.J (I +.J,1-J are easy),
computation of dimension of ideals, dim(7),

computation of syzygies of sequences of polynomials.

Applications of the Grobner basis method in mathematics, sciences, and en-
gineering are collected in [TrWi00].

The method of Grobner bases has enormous power, but despite, or rather
because of, this power, there are also serious problems with Groébner bases.
Some of them need further research, and can, perhaps, be overcome. Others
stem from intrinsic limitations. We just list a few of these problems and
limitations:

e Given any basis for an ideal I, Buchberger’s algorithm successively adds
certain new elements of I to the basis, such that ultimately the basis
becomes a Grobner basis, i.e. the ideal membership problem can be
solved by the division algorithm. This process is completely insensitive
to the particular problem at hand. For instance, it destroys any spar-
sity present in the original system F. Specially taylored Grobner basis
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algorithms for various problems in algebra and geometry are still to be
developed.

e The ideal membership problem (which is solved by Grébner bases) has
complexity which is double exponential in the number of variables n
[MaMe82]. So any algorithm for computing a Grébner basis must nec-
essarily have complexity at least double exponential in n. Buchberger’s
algorithm has this complexity. For special problems, for instance 0-
dimensional ideals, the complexity is only single exponential in n.

e For solving algebraic equations, we want a Grobner basis w.r.t. a lex-
icographic term ordering, but this is much harder to compute than a
Grobner basis w.r.t. a graduated ordering. For 0O-dimensional ideals,
Faugere et al. [FGLM93] developed linear algebra techniques for trans-
forming a Grobner basis w.r.t. some term ordering into a Grobner basis
w.r.t. a desired ordering. For ideals of arbitrary dimension Collart et al.
[CoKM97] have introduced the idea of the Grébner walk for achieving
such a transformation. Although this idea works very nicely in practical
applications, there are still unresolved complexity questions concerning
the Grobner walk.

2.3. Factorization of polynomials. The factorization of (multivariate) po-
lynomials is one of the most frequent subproblems in algebraic computation.
We have seen it occur in integration of rational functions, it allows us to sim-
plify algebraic equation problems, we need irreducible polynomials for gen-
erating finite fields and algebraic field extensions, and for most algorithms
in algebraic geometry we need the irreducibility of the algebraic variety as a
prerequisite.

Because of this fundamental importance, the factorization problem has re-
ceived the attention of algebraists for a long time. In 1882 L. Kronecker
described a reduction algorithm for the factorization of multivariate polyno-
mials to the factorization of univariate polynomials. His idea was to map
f(x1,...,xy), an n-variate polynomial over the unique factorization domain
R, to the univariate polynomial f(y, y?,... ,ydn_1 ), where d is an upper bound
for the degree of f w.r.t. any one of the variables. In this way, one gets a 1-1,
easily computable mapping

¢ : R[.Cl?l7 e ,Zvn]/<$¢f77x%> — R[y]/<ydn>

Now for every irreducible factor g of f there are irreducible factors g1, ... ,gs
of ¢(f), such that g = ¢~ (TT5=; g5)-

Although this algorithm works perfectly fine, it has the drawback of expo-
nentially increasing the degree of the polynomial. For this reason, whenever
possible, other approaches are used nowadays, based on Berlekamp’s factor-
ization algorithm over finite fields and Hensel’s lifting lemma.
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In 1968 E.R. Berlekamp [Berl68] published his algorithm for factoring uni-
variate polynomials over finite fields GF(p) = Z,, p a prime. Let f(z) €
GF(p)[z] be the squarefree polynomial to be factored. Let n be the degree
of f. The key step in Berlekamp’s algorithm is the computation of the null-
space of a certain (n x n)-matrix with coefficients in GF(p), followed by a few
ged-computations in GF(p)[z]. The complexity of the Berlekamp factorization
algorithm is proportional to pn?.

In 1969 H. Zassenhaus [Zass69] showed how to use Hensel’s p-adic lifting

lemma for factoring univariate polynomials, for instance over the integers Z.

Theorem 2.3.1: (Hensel’s Lemma) Let p be a prime number and f(x), f1(z),

. fr(x) € Zlx]. Let (fi mod p),...,(fr mod p) be pairwise relatively
prime in Zy[z] and f(x) = [[;_, fi(x) mod p. Then for every natural number
k there are polynomials fl(k)(x), . ,f,gk)(x) € Z[x] such that

f) =T (@) mod p*

and
fi(k)(x) = fi(x) modpforl<i<r

This Hensel lifting process can actually be carried out algorithmically, by
application of the extended Euclidean algorithm.
The basic idea of the so-called Berlekamp—Hensel algorithm is the following;:

e given a primitive squarefree polynomial f(x) € Z[x], choose a prime p not
dividing the leading coefficient of f, and such that f remains squarefree
modulo p;

e apply Berlekamp’s algorthm for factoring f modulo p;

e apply the Hensel Lemma to this factorization, to get a factorization of
f modulo p*, for high enough p (so that within this range of coefficients
the coefficients of any factor f can be represented uniquely);

e now, every irreducible factor of f in Z[x] must correspond to a combi-
nation of factors modulo p*.

Example 2.3.1: Let us use the Berlekamp—Hensel algorithm for factoring the
polynomial

flx) =627 + 728 + da2® + 2 + 623 + 72? + 4z + 1

in Z[x]. f issquarefree and it stays squarefree modulo p = 5. By an application
of the Berlekamp algorithm, f(z) is factored modulo 5 into

fz)=(z—-2) (22 =2)(2®> +2)(z2 =2 +2) mod 5.
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By an application of Hensel’'s Lemma we lift this factorization to a factorization
modulo 25, getting

f@)=6-(x—12)-(2* = 7)- (2> +7) - (2* + 92— 8) mod 25.

SN—— N N—— S—,——
v1 V2 v3 v4

Suppose we know that all the integer coefficients of the factorization of f
are contained in the range [—12,12]. So then, we check whether any one of
the factor candidates, together with a factor of 6, gives us a factor over the
integers. In fact, 2-v; = 2x + 1 mod 25, and this is indeed a factor. vy and
vs do not lead to such a factor, but 3-vs = 322 4+ 22 +1 mod 25 does. Now
we try to combine vy and vz, and indeed vy - v3 = 2* + 1 mod 25 leads to a
factor. Thus, we have found the factorization of f(z) in Z[x], namely

flx)=Qx+1) - (z*+1) - Ba® +22 +1). O

The idea of the Hensel lifting can be generalized to multivariate polynomi-
als. Because of the final factor combination step, the Berlekamp-Hensel algo-
rithm still has exponential worst case complexity. In 1982 Lenstra, Lenstra,
and Lovéasz [LeLL82] described an algorithm for factoring polynomials in Z[z]
in polynomial time. The LLL algorithm is based on a process for finding
shortest vectors in lattices.

Once we can factor polynomials over a field K, we can also factor over
any algebraic extension of K. An algorithm based on norm computation is
described in [vdWa91]. But this is still not the end of the story. Given a
bivariate (or multivariate) polynomial f(z,y) € K[z,y], we might want to
determine, whether it can be factored over any algebraic extension of K, i.e.
whether it can be factored in K[z, y]. This problem of factoring over the alge-
braic closure of the given ground field is called absolute factorization. In recent
years several people have suggested algorithms for absolute factorization. For
an overview see [Wink96]. Many computer algebra software systems already
have implementations of absolute factorization.

2.4. Geometry of algebraic curves and surfaces. Algebraic curves and
surfaces have been studied intensively in algebraic geometry for decades and
even centuries. Thus, there exists a huge amount of theoretical knowledge
about these geometric objects. Recently, algebraic curves and surfaces play an
important and ever increasing role in computer aided geometric design, com-
puter vision, and computer aided manufacturing. Consequently, theoretical
results need to be adapted to practical needs. We need efficient algorithms for
generating, representing, manipulating, analyzing, rendering algebraic curves
and surfaces.

One interesting subproblem is the rational parametrization of curves and
surfaces. Consider an affine plane algebraic curve C in A% (K) defined by the
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bivariate polynomial f(x,y) € K[z,y], i.e.
C = {(a,b)| (a,b) € A*(K) and f(a,b) = 0}.

Of course, we could also view this curve in the projective plane P?(K), defined
by F(x,y, z), the homogenization of f(x,y).

A pair of rational functions (x(t),y(t)) € K(t) is a rational parametriza-
tion of the curve C, if and only if f(xz(t),y(t)) = 0 and for almost every
point (xg,y0) € C (i.e. up to finitely many exceptions) there is a parame-
ter value tg € K such that (zg,y0) = (z(to),y(tg)). Only irreducible curves,
i.e. curves whose defining polynomial is absolutely irreducible, can have a
rational parametrization. Almost any rational transformation of a rational
parametrization is again a rational parametrization, so such parametrizations
are not unique.

Implicit representations (by defining polynomial) and parametric represen-
tations (by rational parametrization) both have their particular advantages
and disadvantages. Given an implicit representation of a curve and a point
in the plane, it is easy to check whether the point is on the curve. But it
is hard to generate “good” points on the curve, i.e. for instance points with
rational coordinates if the defining field is Q. On the other hand, generating
good points is easy for a curve given parametrically, but deciding whether a
point is on the curve requires the solution of a system of algebraic equations.
So it is highly desirable to have efficient algorithms for changing from implicit
to parametric representation, and vice versa.

Example 2.4.1: Let us consider curves in the plane (affine or projective) over
C. The curve defined by f(z,y) = y*> — 2® — 2% (see Fig. 2.4.1) is rationally
parametrizable, and actually a parametrization is (t> — 1,¢(¢> — 1)).

On the other hand, the elliptic curve defined by f(z,y) = y? — 23 4+ (see
Fig 2.4.2) does not have a rational parametrization.

The tacnode curve (see Fig. 2.4.3) defined by f(z,y) = 22* — 322y + y* —
2y> + y? has the parametrization

2 — 617 + 9t — 2 (1) = > — 4t +4
207 — 165 + 402 — 32t +9° VT 2t 165 + 4062 — 326+ 9
The criterion for parametrizability of a curve is its genus. Only curves of

genus 0, i.e. curves having as many singularities as their degree permits, have
a rational parametrization. O

z(t) =

Computing such a parametrization essentially requires the full analysis of
singularities (either by successive blow-ups, or by Puiseux expansion) and the
determination of a regular point on the curve. We can control the quality
of the resulting parametrization by controlling the field over which we choose
this regular point. Thus, finding a regular curve point over a minimal field
extension on a curve of genus 0 is one of the central problems in rational
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parametrization, compare [SeWi97], [SeWi99]. The determination of rational
points on algebraic curves can be an extremely complicated problem. But for
curves of genus 0 the situation can actually be controlled very well. For a
curve over a field K of characteristic 0, we can determine whether the curve
has a regular point over K, or otherwise find a quadratic field extension which
admits such a regular point.

r0.5y 0.57

05 05

% 02040608 1214

Fig. 2.4.1 Fig. 2.4.2

Fig. 2.4.3 Fig. 2.4.4

Example 2.4.2: Let C be the curve in the complex plane defined by
fla.y) = (2" + 4y + )" = 16(a* + %) = 0.

For a picture of this curve in the real affine plane see Fig. 2.4.4.
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The curve C has the following rational parametrization:
—1024i + 128t — 144it> — 22¢3 4 it
2304 — 3072it — 7362 — 1924t + 9’
1024 — 2564t — 80t + 164t + t*

' 2304 — 3072it — 7362 — 19243 +9t4”

x(t) = —-32

y(t) = —40

So, as we see in Fig.2.4.4, C has infinitely many real points. But generating
any one of these real points from the above parametrization is not obvious.
Does this real curve C also have a parametrization over R? Indeed it does,
let’s see how we can get one.

In the projective plane over C, C has three double points, namely (0:0: 1)
and (1:=£i:0). Let # be the linear system of conics passing through all these
double points. The system H has dimension 2 and is defined by

h(z,y, 2, s,t) = 2° + szz + y* + tyz = 0,
i.e., for any particular values of s and ¢ we get a conic in 7. Three elements
of this linear system define a birational transformation
T = (h(z,y,2,0,1) : h(z,y,2,1,0) : h(z,y,2,1,1))
= @+ 4yl +az+yt e+ P +yz)
which transforms C to the conic D defined by
1522 4+ Ty* + 62y — 38z — 14y + 23 = 0.

For a conic defined over QQ we can decide whether it has a point over Q or R. In
particular, we determine the point (1,8/7) on D, which, by 7!, corresponds
to the regular point P = (0,—8) on C. Now, by restricting 7 to conics
through P and intersecting H with C (for details see [SeWi97]), we get the

parametrization
—1024¢3 —2048t* 4+ 1282
x(t) = 50— s y(t) = 1 R
256t* + 32t* + 1 256t* + 32t* + 1
over the reals. O

Many of these ideas which work for curves can actually be generalized
to higher dimensional geometric objects. For instance, one subproblem in
computer aided geometric design is the manipulation of offset curves, offset
surfaces, pipe and canal surfaces. These are geometric objects keeping certain
distances from a generating object. Let us just consider the case of a pipe
surface in an example.

Example 2.4.3: We consider the space curve C in A?(R) given parametrically
by (z(t),y(t), z(t)) = (t,12,#3). We want to construct a parametric representa-
tion of the pipe surface S (at distance 1) along C, i.e. the locus of points having
normal distance 1 from C. This pipe surface S is the envelope of spheres of
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radius 1 moving along C, i.e. every point on § lies on a circle in a hypersurface
perpendicular to the curve C. If we can find a parametric representation of a
curve C on S, which meets every one of these circles, then by a pencil of lines
in the corresponding hypersurface we can generate a rational representation
for all the points on this circle, and thus finally a rational parametrization of
the pipe surface.
Such a curve can by determined by algebraic computation, giving for in-

stance the parametrization (¢ (t), ¢a(t), ¢3(t)) with

} t 3(36t1 —13t2 —4v/5t—5)12

é (1) (14+4t2) (2142 +2v/5t+5+27t4)

y = 2= 3(60;3+14t7\/5+4\/5t2)t2

) (1+482) (2142 +2V/5t+542714)

3 216242V5t45
21¢242/5t+5+27t4

From this parametric representation of C we can compute a parametric repre-
sentation of the pipe surface. O

For a geometric approach to parametrization of pipe and canal surfaces see
[PeP097], an algebraic approach can be found in [HLSW99].

Now that we have seen some examples of parametrization treated by sym-
bolic algebraic computation, let us just briefly discuss the inverse problem,
namely the problem of implicitization. If we are given, for instance, a rational
parametrization in K (¢) of a plane curve, i.e.

z(t) =p)/r(t), y(t)=aq(t)/r),
we essentially want to eliminate the parameter ¢ from these relations, and get
a relation just between x and y. We also want to make sure that we do not
consider components for which the denominator r(¢) vanishes. This leads to
the system of algebraic equations

z-r(t)—plt) = 0,
y-r(t)—q(t) = 0,
r(t)-z—1 = 0.

The implicit equation of the curve must be the generator of the ideal

I=(z-r(t)=p(t),y-rt)—qt),r() -z =1) N Klz,y].
Using the elimination property of Grobner bases, we can compute this gener-
ator by a Grobner basis computation w.r.t. the lexicographic ordering based
onr<y<z<it.

Example 2.4.4: Let us do this for the curve of Example 2.4.2. We start from
the parametrization

—1024¢3 —2048t* + 128t2
x(t)

e v+ Y= emrser a1
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So we have to solve the equations

x- (25611 4+ 3212 + 1) +1024¢3 = 0,
y - (25681 + 3262 4+ 1) + 20481 — 128> = 0,
(256t1 +32t2 +1) -2 —1 = 0.

The Grébner basis of this system w.r.t. the lexicographic ordering based on
r<y<z<tis

G=A{.... b 4yt 822y + 2022 + 8y — 1622).

So we have found the implicit equation of the curve. O

3. PROBLEMS IN ALGEBRAIC COMPUTATION

After having described some of the achievements in different areas of alge-
braic computation, let us now point out some topics which are currently being
investigated.

3.1. Differential equations. The integration problem discussed in Section
2.1, i.e. the problem of finding an expression y such that [ f =y, or f =/,
is a particular differential equation problem. As we have seen above, symbolic
algorithmic approaches are already quite powerful in treating this integration
problem. For more general differential equation systems, algorithmic methods
are far more scarce.

In 1978 Kovacic developed an algorithm for computing “closed-form” solu-
tions of 2-nd order linear homogeneous differential equations of the form

y' (@) +alx) - y'(x) + b(x) - y(x) =0,
where a,b € C(x), and the solution is sought in a Liouvillian extension of

C(x). Kovacic’s algorithm decides, whether such a solution exists, and if so,
constructs the solutions. So, for example, for the differential equation

") 425 — 825 + 122* 4 423 4 T2® — 202 + 4
xT) = .
4 424

Kovacic’s algorithm determines the solution

y(x),

n = x? =1 . e—l/m+az2/2—az
32 '
Starting in 1991 Singer [Sing91], [SiU193] extended Kovacic’s algorithm and
presented an algorithm for finding a basis for the space of Liouvillian solutions
of a linear differential equation of arbitrary order

where the coefficients a,_1,...,ag and the right hand side b are from a dif-
ferential field K. Singer’s algorithm works by determining differential Galois
groups and is of high complexity.
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The field of symbolic solution of differential equations is still wide open, in
particular when partial differential equations are considered.

3.2. Fast computation of Grobner bases. As we have noted in Section
2.2, the computing time for determining a Grobner basis may vary consider-
ably depending on the term ordering. Although there are infinitely many term
orderings, cf. [Robb85], there are only finitely many different Grobner bases
for a fixed ideal I, cf. [MoRo88]. By “walking around” in the Grobner fan
of the ideal I, one may transform a Grobner basis w.r.t. to a term ordering
<1 to a Grobner basis w.r.t. a term ordering <. This idea was first devel-
oped in [CoKM97]. Practical experiments have shown considerable savings
in computing time, cf. [AmGK96], [Tran98]. Recently Kalkbrener [Kalk99]
has started to investigate the theoretical reasons for this practical speed-up.
But we certainly need more complexity investigations for understanding these
phenomena.

3.3. Computations on algebraic curves and surfaces. For algebraic cur-
ves over a computable field of characteristic 0 the problem of symbolic alge-
braic parametrization is completely solved. More precisely, we can determine
whether a curve has a rational parametrization over the algebraic closure of the
ground field, and in the affirmative case we can compute a proper parametriza-
tion with coefficients in an algebraic extension of the ground field of lowest
extension degree. If the given irreducible curve has coefficients in Q, is ratio-
nal, and has infinitely many real points, then it actually has a parametrization
over R which can be determined algorithmically, see [SeWi99].

But even so there remains the following open problem: a curve defined over
Q might have a parametrization with coefficients in Z. If so, it has infinitely
many such parametrizations. How can we find the one with the smallest
coefficients?

Also for algebraic surfaces the algorithmic parametrization problem is solved
(with the exception of del Pezzo surfaces) in principal, see [Schi98a], [Schi98b)].
But both for curves and for surfaces one of the most critical subproblems is
the analysis of the singularities and the determination of adjoints. There are
several theoretical approaches to these problems, e.g. blow-ups, or Puiseux
series expansion. Much work is still needed for developing algorithms with
good theoretically and practical complexity.

3.4. Integration of symbolic and numerical computation. Many prob-
lems in science and engineering are actually inexactly stated, but still we want
a symbolic solution. For instance, we might have inexactly defined polynomi-
als for two surfaces, know that they should have an intersection of dimension 2,
and want to determine the defining polynomial of the intersection. The ques-
tion then is actually: how can we vary the coefficients of the given polynomials
slightly so that we get non-trivial intersection?
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On the other hand, we might have an exact symbolic definition of, say,
an algebraic curve or surface, and we want to create pixel information for
rendering this object on a screen. How much algebraic computation do we
really have to do for making sure that we get the topology of the object right?
The remaining job should be handed over to a fast numerical approximation
algorithm for filling in the regular parts of the object.

Recently Watt and Stetter [WaSt98] have collected approaches to the in-
tegration of symbolic and numerical computation. At the University of Linz,
research groups in symbolic computation, numerical computation, and engi-
neering have recently started a big cooperation project for trying to bridge the
gap between these different paradigms of scientific computation. But obviously
there is still a long way to go.

Acknowledgement: The author wants to acknowledge support from the
Austrian Fonds zur Forderung der wissenschaftlichen Forschung under pro-

jects P11160-TEC (HySaX), and SFB F013/1304.

REFERENCES

[AmGK96] B. Amrhein, O. Gloor, W. Kiichlin, “Walking Faster”, Design and Implemen-
tation of Symbolic Computation Systems (Proc. DISC0’96), J. Calmet and C.
Limongelli (eds.), Springer-Verlag LNCS 1128, 150-161 (1996).

[Berl68]  E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York (1968).

[Bron97] M. Bronstein, Symbolic Integration I, Springer—Verlag, Berlin Heidelberg (1997).

[BuWi98] B. Buchberger, F. Winkler, Grébner Bases and Applications, London Math. Soc.
Lecture Note Series 251, Cambridge Univ. Press (1998).

[Char92] B.W. Char et al., First Leaves: A Tutorial Introduction to Maple V, Springer-
Verlag, Berlin Heidelberg New York (1992).

[CoKM97] S. Collart, M. Kalkbrener, D. Mall, “Converting Bases with the Grobner Walk”,
J. Symbolic Computation 24/3-4, 465-469 (1997).

[CoL0O98] D. Cox, J. Little, D. O’Shea, Using Algebraic Geomelry, Springer-Verlag, New
York (1998).

[Dave81] J.H. Davenport, On the Integration of Algebraic Functions, Lecture Notes in
Computer Science 102, Springer-Verlag, Heidelberg (1981).

[FGLM93] J.C. Faugere, P. Gianni, D. Lazard, T. Mora, “Efficient Computation of Zero-
Dimensional Grobner Bases by Change of Ordering”, J. Symbolic Computation
16/4, 377-399 (1993).

[GeCL92] K.O. Geddes, S.R. Czapor, G. Labahn, Algorithms for Computer Algebra, Kluwer
Acad. Publ., Boston (1992).

[HLSW99] E. Hillgarter, G. Landsmann, J. Schicho, F. Winkler, “Generalized Offsets as
Envelopes of a One-parameter Set of Spheres”, Techn. Rep. RISC 99-27, RISC-
Linz, J. Kepler Univ. Linz (1999).

[Kalk99] M. Kalkbrener, “On the Complexity of Grébner Bases Conversion”, J. Symbolic
Computation 28/1&2, 265-273 (1999).

[LeLL82] A.K. Lenstra, H.-W. Lenstra Jr., L. Lovédsz, “Factoring Polynomials with Rational
Coefficients”, Math. Ann. 261, 515-534 (1982).

[MacC91] M. MacCallum, F. Wright, Algebraic Computing with Reduce, Clarendon Press,
Oxford (1991).



20

FRANZ WINKLER

[MaMe82] E.W. Mayr, A.R. Meyer, “The Complexity of the Word Problem for Commuta-

[Mign92]
[MoRo8S]
[PeP097]
[Risc69]

[Ritt48]
[Robb85]

[Rose68]
[Schi98a]
[Schi98b)
[SeWi97]
[SeWi99]
[Sing91]
[SiU193]
[Trag84]
[Tran98]
[TrWi00]

[vdWa91]
[WaStog]

[Wink96]
[Wolf91]

[Zass69]

tive Semigroups and Polynomial Ideals”, Adv. in Math. 46, 305-329 (1982).

M. Mignotte, Mathematics for Computer Algebra, Springer-Verlag, New York
(1992).

T. Mora, L. Robbiano, “The Grébner Fan on an Ideal”, J. Symbolic Computation
6/2&3, 183-208 (1988).

M. Peternell, H. Pottmann, “Computing Rational Parametrizations of Canal
Surfaces”, J. Symbolic Computation 23/2&3, 255-266 (1997).

R. Risch, “The Problem of Integration in Finite Terms”, Transactions of the
American Mathematical Society 139, 167-189 (1969).

J.F. Ritt, Integration in Finite Terms, Columbia Univ. Press, New York (1948).
L. Robbiano, “Term Orderings on the Polynomial Ring”, Proceedings EURO-
CAL’85, B.F. Caviness (ed.), Springer-Verlag LNCS 204, 513-517, Berlin (1985).
M. Rosenlicht, “Liouville’s Theorem on Functions with Elementary Integrals”,
Pacific Journal of Mathematics 24, 153-161 (1968).

J. Schicho, “Rational Parametrization of Surfaces”, J. Symbolic Computation
26/1, 1-29 (1998).

J. Schicho, “Rational Parametrization of Real Algebraic Surfaces”, Proceedings
of ISSAC’98, O. Gloor (ed.), ACM-Press, New York (1998).

J.R. Sendra, F. Winkler, ”Parametrization of Algebraic Curves over Optimal
Field Extensions”, J. Symbolic Computation 23/2&3, 191-207 (1997).

J.R. Sendra, F. Winkler, ” Algorithms for Rational Real Algebraic Curves”, Fun-
damenta Informaticae 39/1-2, 211-228 (1999).

M.F. Singer, “Liouvillian Solutions of Linear Differential Equations with Liou-
villian Coefficients”, J. Symbolic Computation 11/3, 251-273 (1991).

M.F. Singer, F. Ulmer, “Galois Groups of Second and Third Order Linear Dif-
ferential Equations”, J. Symbolic Computation 16/1, 9-36 (1993).

B.M. Trager, On the Integration of Algebraic Functions, Ph.D. Thesis, Mas-
sachusetts Institute of Technology, Computer Science (1984).

Q.-N. Tran, “Parallel Computation and Grobner Bases: An Application for Con-
verting Bases with the Grébner Walk”, in [BuWi98], 519-531 (1998).

Q.-N. Tran, F. Winkler (eds.), Applications of Grobner Bases, special issue of
the J. Symbolic Computation, to appear (2000).

B.L. van der Waerden, Algebra, Vol.I, Springer-Verlag, New York (1991).

S.M. Watt, H.J. Stetter (eds.), Symbolic Numeric Algebra for Polynomials, spe-
cial issue of the J. Symbolic Computation 26/6 (1998).

F. Winkler, Polynomial Algorithms in Computer Algebra, Springer—Verlag, Wien
New York (1996).

S. Wolfram, Mathematica — A System for Doing Mathematics by Computer, 2nd
ed., Addison-Wesley, Reading, MA (1991).

H. Zassenhaus, “On Hensel Factorization, I”, J. Number Theory 1, 291-311
(1969).

Franz Winkler

RISC-Linz

Johannes Kepler Universitat Linz

A-4040 Linz, Austria

email: Franz.Winkler@risc.uni-linz.ac.at



