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e, June 3{6, 1999Verlag Johannes Heyn, Klagenfurt 2000ADVANCES AND PROBLEMS IN ALGEBRAICCOMPUTATIONFRANZ WINKLERAbstra
t. In the last years there has been dramati
 progress in all areasof algebrai
 
omputation. Many working mathemati
ians have a

ess toand a
tually use algebrai
 software systems for their resear
h. No end ofthis development is in sight. We report on some a
tive topi
s in algebrai

omputation, namely the theory of integration and symboli
 solution ofsystems of di�erential equations, the solution of systems of algebrai
 equa-tions, the fa
torization of polynomials, and the design and analysis ofalgebrai
 
urves and surfa
es.1. Introdu
tionThe enormous development of s
ienti�
 
omputation has pla
ed mathemat-i
al 
apabilities at the �ngertips of s
ientists and engineers. It has also pro-vided mathemati
ians with a wealth of interesting new problems and resear
htopi
s. There are, of 
ourse, di�erent approa
hes to s
ienti�
 
omputation. Ifthe goal is to 
reate approximate solutions to inexa
tly stated problems, wewill probably apply the methods of numeri
al analysis and 
omputation. Vi-sualization in s
ienti�
 
omputation is gaining ever more importan
e, and themathemati
s behind some of the visualization algorithms is rather involved.But there are also many important problems, in whi
h we need to do ex-a
t 
omputation, 
ompute and reason about symboli
 obje
ts su
h as mathe-mati
al equations, algebrai
 
urves, logi
al formulae, programs in a program-ming language, and similar obje
ts. In the last years there has been dramati
progress in all areas of algebrai
 
omputation, both in algorithm developmentand in the design of program systems su
h as Maple [Char92℄, Mathemati
a[Wolf91℄, and Redu
e [Ma
C91℄. Many working mathemati
ians have a

essRe
eived by the editors O
tober 10, 1999.



2 FRANZ WINKLERto and a
tually use algebrai
 software systems for their resear
h. Even hand-held 
omputers are 
apable of performing symboli
 algebrai
 
omputationsnowadays. No end of this development is in sight.In Se
tion 2 we report on some a
hievements in symboli
 
omputation inthe last few de
ades, su
h as the algebrai
 theory of integration and symboli
solution of systems of di�erential equations, the solution of systems of algebrai
equations, the fa
torization of polynomials, and the design and analysis ofalgebrai
 
urves and surfa
es. In Se
tion 3 we outline some 
urrently a
tiveresear
h topi
s in these and related areas.2. Advan
es in algebrai
 
omputationThe resear
h area of 
omputer algebra was 
reated about 40 years ago.Mu
h of the mathemati
al development in making ever more parts of algebratreatable by 
omputers was 
entered around the 
reation of software systemsfor algebrai
 
omputation. Some of the most important of these systems,started in the pioneering time of 
omputer algebra, are Ma
syma, SAC, Re-du
e, and Derive. Later starters are Maple, Mathemati
a, Axiom, and Magma.All important algorithmi
 ideas of 
omputer algebra sooner or later have beenimplemented in these systems.Of 
ourse, we 
annot attempt to present a uni�ed pi
ture of 
omputeralgebra or algebrai
 
omputation in this limited spa
e. We 
an only pointto some of the more interesting a
hievements. For a general introdu
tion tothe mathemati
al ba
kground, we refer the reader to books su
h as [Bron97℄,[GeCL92℄, [Mign92℄, [Wink96℄.2.1. Integration theory. Algorithmi
 methods for inde�nite integration goba
k a long way, 
ertainly to the work of Abel and Liouville in the 19th 
entury.In his book [Ritt48℄ J.F. Ritt began to apply new algebrai
 te
hniques tothe problem of integration in �nite terms. But it took until the 1960's and1970's for a de
isive breakthrough to be a
hieved and de
ision pro
eduresfor inde�nite integration to be implemented in software systems for 
omputeralgebra.Let us start by 
onsidering rational fun
tions. I.e. for given p(x); q(x) 2Q [x℄ we want to 
ompute Z p(x)q(x)dx :By partial integration and the Hermite redu
tion pro
ess we 
an determine arational fun
tion g(x)=h(x) and a polynomial p�(x) su
h that the integrationproblem 
an be rewritten asZ p(x)q(x)dx = g(x)h(x) + Z p�(x)q�(x)dx;



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 3where q�(x) is the square-free part of q(x), i.e. the multipli
ity of every fa
toris redu
ed to 1, and deg(p�) < deg(q�).The integral R p�=q� 
an be 
omputed in the following well{known 
lassi
alway: Let q�(x) = (x��1) � � � (x��n), where �1; : : : ; �n are the distin
t rootsof q�. ThenZ p�(x)q�(x)dx = nXi=1 Z 
ix� �i dx = nXi=1 
i log(x� �i) ;with 
i = p�(�i)q�0(�i) ; 1 � i � n:No part of this sum of logarithms 
an be a rational fun
tion. A

ording to thisapproa
h we have to 
ompute the splitting �eld of the square-free denominatorq�(x), whi
h might be of high algebrai
 extension degree over the original
oeÆ
ient �eld.Example 2.1.1: Let us integrate x=(x2 � 2) a

ording to this pro
ess. Thedenominator is square-free, and the numerator has lower degree than the de-nominator. So our integrand already has the form p�(x)=q�(x) as 
onsideredabove. Thus, we getR xx2�2dx = R 1=2x�p2dx + R 1=2x+p2dx= 12 (log(x�p2) + log(x+p2)) = 12 log(x2 � 2):So obviously we do not always need the full splitting �eld of q� in order toexpress the integral of h=q�. 2Of 
ourse there is no theoreti
al problem with working in algebrai
 exten-sions of the ground �eld for expressing the integral. But high degree algebrai
extensions (or multiple extensions, for that matter) are 
ostly in terms of
omputational 
omplexity. So the problem arises of representing the result,and also the intermediate 
omputations, over the algebrai
 extension �eld oflowest possible degree. The following theorem, whi
h has been independentlydis
overed by M. Rothstein and B. Trager in 1976, answers the question ofwhat is the smallest �eld in whi
h we 
an express the integral of a rationalfun
tion.Theorem 2.1.1: Let p; q 2 Q [x℄ be relatively prime, q moni
 and squarefree,and deg(p) < deg(q). Let Z pq dx = nXi=1 
i log vi;where the 
i are distin
t non{zero 
onstants and the vi are moni
 squarefreepairwise relatively prime elements of Q [x℄ (Q is the algebrai
 
losure of Q , i.e.the �eld of algebrai
 numbers). Let 
 be a new variable. Then the 
i are the



4 FRANZ WINKLERdistin
t roots of the resultant of p(x)� 
 � q0(x) and q(x) w.r.t. x, and the vi
orresponding to 
i are vi = g
d(p(x)� 
i � q0(x); q(x)).Example 2.1.1. (
ontinued) We apply Theorem 2.1.1. r(
) = resx(p �
q0; q) = resx(x� 
(2x); x2 � 2) = �2(2
� 1)2. There is only one root of r(
),namely 
1 = 1=2. We get the argument of the 
orresponding logarithm asv1 = g
d(x� 12(2x); x2 � 2) = x2 � 2. SoZ xx2 � 2dx = 12 log(x2 � 2):So we arrive at the �nal answer over Q without having to take the detour viaQ(p2), the splitting �eld of x2 � 2 over Q . 2Example 2.1.2: Let us determineZ x4 � 3x2 + 6x6 � 5x4 + 5x2 + 4dx:The denominator q(x) = x6 � 5x4 + 5x2 + 4 is squarefree, and a
tually irre-du
ible over Q . The resultant in the Rothstein-Trager theorem isresx(x4�3x2+6�
(6x5�20x3+10x); x6�5x4+5x2+4) = 45796(4
2+1)3:So we 
an express the integral in Q(i), namely asZ x4 � 3x2 + 6x6 � 5x4 + 5x2 + 4dx = i2 log(x3+ix2�3x�2i)� i2 log(x3�ix2�3x+2i):2In fa
t, the fa
torization of the resultant in the Rothstein-Trager theorem
an be avoided, if one uses the subresultant algorithm for 
omputing the re-sultant.Mu
h of the theory of integration of rational fun
tions 
an be transferredto integration of fun
tions whi
h 
an be expressed in elementary Liouvilleextensions of a �eld of 
onstants. We start with a di�erential �eld C (of
onstants) with di�erentiation operation 0, i.e. 
0 = 0 for all 
 2 C. Nextwe adjoin a variable of di�erentiation, i.e. a trans
endental element x withx0 = 1. Now we are allowed to extend the �eld by so-
alled simple elementaryextensions i.e. by adjoining algebrai
 elements, logarithms (i.e. � = log � i��0 = �0=� for some non-zero �), or exponentials (i.e. � = exp� i� �0=� = �0 forsome �). A di�erential �eld L is an elementary Liouville extension of C(x), i�there exists a tower of di�erential �eld extensionsC(x) = F0 � F1 � � � � � Fn = L;su
h that Fi is a simple elementary extension of Fi�1 for all 1 � i � n. Thealgorithmi
 theory of integration in elementary Liouville extensions is basedon the following theorem.



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 5Theorem 2.1.2 (Strong Liouville Theorem): Let L be an elementary Liouvilleextension of the di�erential �eld K and let C be the �eld of 
onstants of K.Let f 2 K. If there exists an elementary Liouville extension L of K andg 2 L su
h that g0 = f (i.e. f has an integral in L), then there are v 2 K,
1; : : : ; 
n 2 C, and v1; : : : ; vn 2 K(
1; : : : ; 
n)� su
h thatf = v0 + nXi=1 
i v0ivi(i.e. the integral 
an be expressed in a purely logarithmi
 extension).The �rst purely algorithmi
 proof of Liouville's Theorem was published byRosenli
ht [Rose68℄, and the �rst 
omplete integration algorithm for purelytrans
endental elementary fun
tions by Ris
h [Ris
69℄. The 
ase of algebrai
fun
tions was treated by Davenport [Dave81℄ and Trager [Trag84℄. Most 
om-puter algebra systems nowadays 
ontain an implementation of the Ris
h inte-gration algorithm. It is important to note that the Ris
h algorithm is NOTa 
olle
tion of heuristi
s for possibly �nding an integral of a given fun
tion,but it is a
tually a de
ision algorithm for integrability (in elementary Liouvilleextensions).Example 2.1.3: By appli
ation of the Ris
h algorithm we see for instan
ethat Z 3x3 + 9x2 + x� 6x e1=xdx = (x3 + 5x2 + 6x)e1=x + 
onst;and we get that Z 1(log x)2 � x2dxis not elementary, i.e. there is no elementary Liouville extension of the �eldC (x; log x), in whi
h this integral 
an be expressed. 22.2. Solution of systems of algebrai
 equations. We 
onsider a systemof algebrai
 equations f1(x1; : : : ; xn) = 0;...fm(x1; : : : ; xn) = 0; (2:2:1)over some �eld K, i.e. fi 2 K[x1; : : : ; xn℄. Let K be the algebrai
 
losureof K, and A n(K) = A n the n-dimensional aÆne spa
e over K. A root � =(�1; : : : ; �n) 2 A n of (2.2.1) is also a root of any linear 
ombination of the fi's,i.e. of any element of the ideal I = hf1; : : : ; fmi generated by the fi's. So whenwe are studying solutions of systems of algebrai
 equations, we are a
tuallystudying 
ommon solutions for all elements of a polynomial ideal. On theother hand, be
ause of Hilbert's basis theorem, every ideal in K[x1; : : : ; xn℄ is



6 FRANZ WINKLERgenerated by a �nite basis. So the 
ommon solutions of any polynomial idealI are a
tually the solutions of a �nite system of algebrai
 equations.The 
olle
tion of points in A n satifying (2.2.1) is a so-
alled algebrai
 set(or variety), and we denote it by V (I). If V (I) 
onsists of only �nitely manypoints, i.e. its dimension is 0, then we also say that I is a 0-dimensional ideal.In this se
tion we assume that the ideal I generated by the polynomials in(2.2.1) is 0-dimensional (although mu
h of this theory applies also to higherdimensional ideals). The problem we are 
onsidering in this se
tion is thefollowing.Problem \Solution of 0-dimensional system of algebrai
 equations":given: I = hf1; : : : ; fmi � K[x1; : : : ; xn℄, 0-dimensional,�nd: all solutions of I in A n .What we a
tually want are the elimination ideals of I, i.e.Ik = I \K[x1; : : : ; xk℄; for 1 � k � n;the ideals 
onsisting of all those polynomials in I just depending on the �rstk variables. Having determined these elimination ideals, we 
an su

essivelysolve for the variables. So the determination of the elimination ideals plays thesame rôle for nonlinear algebrai
 equations as the Gaussian algorithm playsfor linear equations.The method of resultants:Let R be a 
ommutative ring, f(x); g(x) 2 R[x℄ two univariate polyno-mials over R. The resultant of f and g, h = res(f; g), is an element ofhf; gi, and res(f; g) = 0 if and only if f and g have a 
ommon fa
tor (ref.[vdWa91℄,[Wink96℄, [CoLO98℄).Example 2.2.1: Consider the following system of equations:f1(x; y) = 2x4 � 3x2y + y4 � 2y3 + y2 = 0;f2(x; y) = ��xf1(x; y) = 8x3 � 6xy = 0:The solutions of this system are those points on the ta
node 
urve (see Fig.2.4.3), whi
h are either singular or have a verti
al tangent. We are looking forthe solutions in the plane over an algebrai
ally 
losed �eld 
ontaining the �eldof de�nition Q , i.e. over C or a
tually over Q , the �eld of algebrai
 numbers.The resultant w.r.t. x isr(y) = resx(f1; f2) = (y4 � 2y3 + y2)(64y4 � 128y3 � 8y2)2:r(y) has the roots y = 0; 1; 1 + 34p2; 1� 34p2:



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 7If, for instan
e, we substitute 1 + 34p2 for y in f1 and f2, we getx = 14q12 + 9p2:So (1 + 34p2; 14q12 + 9p2)is one of the roots of this system of algebrai
 equations. 2This works perfe
tly for equations in 2 variables. For more variables, there
an be \extraneous fa
tors" of the resultant, i.e. solutions of the resultant,whi
h 
annot be 
ontinued to solutions of the given system.Example 2.2.2: Consider the systemf1(x; y; z) = 2xy + yz � 3z2 = 0;f2(x; y; z) = x2 � xy + y2 � 1 = 0;f3(x; y; z) = yz + x2 � 2z2 = 0:We 
omputea(x) = resz(resy(f1; f3); resy(f2; f3))= x6(x� 1)(x+ 1)(127x4 � 167x2 + 4);b(y) = resz(resx(f1; f3); resx(f2; f3))= (y � 1)3(y + 1)3(3y2 � 1)(127y4 � 216y2 + 81)(457y4 � 486y2 + 81);
(z) = resy(resx(f1; f3); resx(f2; f3))= z4(z � 1)(z + 1)(3z2 � 1)(127z4 � 91z2 + 16)(457z4 � 175z2 + 16):All the solutions of the system, e.g. (1; 1; 1), have 
oordinates whi
h are rootsof a; b; 
. But there is no solution of the system having y-
oordinate 1=p3,although b(1=p3) = 0. So not every root of these resultants 
an be extendedto a solution of the whole system. 2The method of Gr�obner bases:This method in elimination theory was invented by Bu
hberger in 1965. Foran overview of appli
ations and 
urrent resear
h topi
s we refer to [BuWi98℄.We don't want to go into details of de�nition and properties of Gr�obner bases,this is done for instan
e in [Wink96℄. Let us just make a few 
ru
ial remarks:� a Gr�obner basis is a parti
ular basis for a polynomial ideal (over a �eldor 
ertain other domains), depending on an \admissible" ordering of theterms or monomials,� every polynomial ideal has a Gr�obner basis,� for every given �nite basis for a polynomial ideal I, we 
an e�e
tively de-termine, by Bu
hberger's algorithm or variants thereof, a �nite Gr�obnerbasis generating I, i.e. 
hange from an arbitrary basis of I to a Gr�obnerbasis of I,



8 FRANZ WINKLER� Bu
hberger's algorithm is implemented in the major 
omputer algebrasystems su
h as Maple, Mathemati
a, and Redu
e.Be
ause of the elimination property of Gr�obner bases, we 
an exa
tly de-termine the elimination ideals of a given ideal I by 
omputing a Gr�obner basisfor I.Theorem 2.2.1: (Elimination property) Let I = hf1; : : : ; fmi be an ideal inK[x1; : : : ; xn℄. Let G be a Gr�obner basis for the ideal I w.r.t. the lexi
ographi
term ordering with x1 < � � � < xn. ThenI \K[x1; : : : ; xk℄ = hG \K[x1; : : : ; xk℄i;where the ideal on the right-hand side is generated over K[x1; : : : ; xk℄.Example 2.2.2 (
ontinued) We are 
onsidering the system of equationsf1(x; y; z) = 2xy + yz � 3z2 = 0;f2(x; y; z) = x2 � xy + y2 � 1 = 0;f3(x; y; z) = yz + x2 � 2z2 = 0:The set of polynomials F = ff1; f2; f3g generates an ideal I = hf1; f2; f3i inQ [x1 ; x2; x3℄. The Gr�obner basis for I w.r.t. the lexi
ographi
 term orderingwith x > y > z (i.e., we 
onsider x as the highest variable) isG = fg1; g2; g3; g4g;with g1 = 78x� 2921z5 + 3744z3 � 901z;g2 = 104y2 � 2667z6 + 3562z4 � 895z2 � 104;g3 = 52yz � 2667z6 + 3562z4 � 947z2;g4 = 127z7 � 218z5 + 107z3 � 16z:From this Gr�obner basis G we 
an see immediately:� every solution of g4(z) = z(z�1)(z+1)(127z4�91z2+16) = 0, e.g. �1,
an be extended to a solution of the system g2; g3; g4, e.g. (�1;�1), andevery su
h solution 
an be extended to a solution of the whole system,e.g. (�1;�1;�1);� the system has 8 solutions (
ounted with multipli
ity). This number
orresponds to the 8 terms 1; y; z; z2; : : : ; z6, whi
h are not a multiple ofany leading term in G,� the 2-nd elimination ideal (eliminating x), for instan
e, is hg2; g3; g4i. 2Although the basis G in the previous example might not look simpler thanF , it has obvious advantages over F . In parti
ular, G is triangularized, i.e. it
ontains one polynomial, g4, whi
h depends only on the least variable, z. Infa
t, be
ause of the elimination property of Gr�obner bases, every polynomialg(z) 2 I\Q [z℄ is a multiple of g4. Similarly, all the polynomials in I dependingonly on z and y are linear 
ombinations of g2; g3; g4 (over Q [y; z℄).



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 9In order to de
ide, whether a polynomial f(x; y; z) is in I, we 
an employthe division algorithm, i.e. in f we su

essively repla
e any o

urren
e of x by178(2921z5 � 3744z3 + 901z);any o

urren
e of y2 by1104(2667z6 � 3562z4 + 895z2 + 104);any o

urren
e of yz by 152(2667z6 � 3562z4 + 947z2);and any o

urren
e of z7 by1127(218z5 � 107z3 + 16z):Obviously, if we rea
h 0 by this division pro
ess, we have represented f as alinear 
ombination of the basis polynomials, i.e. f 2 I. Conversely, w.r.t. aGr�obner basis, f must be redu
ible to 0 by the division algorithm (this failsto be so for an arbitrary basis).Besides determination of elimination ideals, there are many other algebrai
and geometri
 problems that 
an be su

essfully treated by Gr�obner bases.Let us list just a few of them:� ideal membership problem, i.e. \f 2 I ?",� radi
al membership problem, i.e. \f 2 pI ?",� equality of ideals, i.e. \I = J ?",� arithmeti
 of ideals, i.e. 
omputation of I \J; I : J (I+J; I �J are easy),� 
omputation of dimension of ideals, dim(I),� 
omputation of syzygies of sequen
es of polynomials.Appli
ations of the Gr�obner basis method in mathemati
s, s
ien
es, and en-gineering are 
olle
ted in [TrWi00℄.The method of Gr�obner bases has enormous power, but despite, or ratherbe
ause of, this power, there are also serious problems with Gr�obner bases.Some of them need further resear
h, and 
an, perhaps, be over
ome. Othersstem from intrinsi
 limitations. We just list a few of these problems andlimitations:� Given any basis for an ideal I, Bu
hberger's algorithm su

essively adds
ertain new elements of I to the basis, su
h that ultimately the basisbe
omes a Gr�obner basis, i.e. the ideal membership problem 
an besolved by the division algorithm. This pro
ess is 
ompletely insensitiveto the parti
ular problem at hand. For instan
e, it destroys any spar-sity present in the original system F . Spe
ially taylored Gr�obner basis



10 FRANZ WINKLERalgorithms for various problems in algebra and geometry are still to bedeveloped.� The ideal membership problem (whi
h is solved by Gr�obner bases) has
omplexity whi
h is double exponential in the number of variables n[MaMe82℄. So any algorithm for 
omputing a Gr�obner basis must ne
-essarily have 
omplexity at least double exponential in n. Bu
hberger'salgorithm has this 
omplexity. For spe
ial problems, for instan
e 0-dimensional ideals, the 
omplexity is only single exponential in n.� For solving algebrai
 equations, we want a Gr�obner basis w.r.t. a lex-i
ographi
 term ordering, but this is mu
h harder to 
ompute than aGr�obner basis w.r.t. a graduated ordering. For 0-dimensional ideals,Faug�ere et al. [FGLM93℄ developed linear algebra te
hniques for trans-forming a Gr�obner basis w.r.t. some term ordering into a Gr�obner basisw.r.t. a desired ordering. For ideals of arbitrary dimension Collart et al.[CoKM97℄ have introdu
ed the idea of the Gr�obner walk for a
hievingsu
h a transformation. Although this idea works very ni
ely in pra
ti
alappli
ations, there are still unresolved 
omplexity questions 
on
erningthe Gr�obner walk.2.3. Fa
torization of polynomials. The fa
torization of (multivariate) po-lynomials is one of the most frequent subproblems in algebrai
 
omputation.We have seen it o

ur in integration of rational fun
tions, it allows us to sim-plify algebrai
 equation problems, we need irredu
ible polynomials for gen-erating �nite �elds and algebrai
 �eld extensions, and for most algorithmsin algebrai
 geometry we need the irredu
ibility of the algebrai
 variety as aprerequisite.Be
ause of this fundamental importan
e, the fa
torization problem has re-
eived the attention of algebraists for a long time. In 1882 L. Krone
kerdes
ribed a redu
tion algorithm for the fa
torization of multivariate polyno-mials to the fa
torization of univariate polynomials. His idea was to mapf(x1; : : : ; xn), an n-variate polynomial over the unique fa
torization domainR, to the univariate polynomial f(y; yd; : : : ; ydn�1), where d is an upper boundfor the degree of f w.r.t. any one of the variables. In this way, one gets a 1-1,easily 
omputable mapping� : R[x1; : : : ; xn℄=hxd1 ;::: ;xdni �! R[y℄=hydn i:Now for every irredu
ible fa
tor g of f there are irredu
ible fa
tors g1; : : : ; gsof �(f), su
h that g = ��1(Qsj=1 gj).Although this algorithm works perfe
tly �ne, it has the drawba
k of expo-nentially in
reasing the degree of the polynomial. For this reason, wheneverpossible, other approa
hes are used nowadays, based on Berlekamp's fa
tor-ization algorithm over �nite �elds and Hensel's lifting lemma.



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 11In 1968 E.R. Berlekamp [Berl68℄ published his algorithm for fa
toring uni-variate polynomials over �nite �elds GF(p) = Zp, p a prime. Let f(x) 2GF(p)[x℄ be the squarefree polynomial to be fa
tored. Let n be the degreeof f . The key step in Berlekamp's algorithm is the 
omputation of the null-spa
e of a 
ertain (n�n)-matrix with 
oeÆ
ients in GF(p), followed by a fewg
d-
omputations in GF(p)[x℄. The 
omplexity of the Berlekamp fa
torizationalgorithm is proportional to pn3.In 1969 H. Zassenhaus [Zass69℄ showed how to use Hensel's p{adi
 liftinglemma for fa
toring univariate polynomials, for instan
e over the integers Z.Theorem 2.3.1: (Hensel's Lemma) Let p be a prime number and f(x); f1(x);: : : ; fr(x) 2 Z[x℄. Let (f1 mod p); : : : ; (fr mod p) be pairwise relativelyprime in Zp[x℄ and f(x) �Qri=1 fi(x) mod p. Then for every natural numberk there are polynomials f (k)1 (x); : : : ; f (k)r (x) 2 Z[x℄ su
h thatf(x) � rYi=1 f (k)i (x) mod pkand f (k)i (x) � fi(x) mod p for 1 � i � r:This Hensel lifting pro
ess 
an a
tually be 
arried out algorithmi
ally, byappli
ation of the extended Eu
lidean algorithm.The basi
 idea of the so-
alled Berlekamp{Hensel algorithm is the following:� given a primitive squarefree polynomial f(x) 2 Z[x℄, 
hoose a prime p notdividing the leading 
oeÆ
ient of f , and su
h that f remains squarefreemodulo p;� apply Berlekamp's algorthm for fa
toring f modulo p;� apply the Hensel Lemma to this fa
torization, to get a fa
torization off modulo pk, for high enough p (so that within this range of 
oeÆ
ientsthe 
oeÆ
ients of any fa
tor f 
an be represented uniquely);� now, every irredu
ible fa
tor of f in Z[x℄ must 
orrespond to a 
ombi-nation of fa
tors modulo pk.Example 2.3.1: Let us use the Berlekamp{Hensel algorithm for fa
toring thepolynomial f(x) = 6x7 + 7x6 + 4x5 + x4 + 6x3 + 7x2 + 4x+ 1in Z[x℄. f is squarefree and it stays squarefree modulo p = 5. By an appli
ationof the Berlekamp algorithm, f(x) is fa
tored modulo 5 intof(x) � (x� 2)(x2 � 2)(x2 + 2)(x2 � x+ 2) mod 5:



12 FRANZ WINKLERBy an appli
ation of Hensel's Lemmawe lift this fa
torization to a fa
torizationmodulo 25, gettingf(x) � 6 � (x� 12)| {z }v1 � (x2 � 7)| {z }v2 � (x2 + 7)| {z }v3 � (x2 + 9x� 8)| {z }v4 mod 25:Suppose we know that all the integer 
oeÆ
ients of the fa
torization of fare 
ontained in the range [�12; 12℄. So then, we 
he
k whether any one ofthe fa
tor 
andidates, together with a fa
tor of 6, gives us a fa
tor over theintegers. In fa
t, 2 � v1 � 2x + 1 mod 25, and this is indeed a fa
tor. v2 andv3 do not lead to su
h a fa
tor, but 3 � v4 � 3x2 + 2x+ 1 mod 25 does. Nowwe try to 
ombine v2 and v3, and indeed v2 � v3 � x4 + 1 mod 25 leads to afa
tor. Thus, we have found the fa
torization of f(x) in Z[x℄, namelyf(x) = (2x+ 1) � (x4 + 1) � (3x2 + 2x+ 1): 2The idea of the Hensel lifting 
an be generalized to multivariate polynomi-als. Be
ause of the �nal fa
tor 
ombination step, the Berlekamp-Hensel algo-rithm still has exponential worst 
ase 
omplexity. In 1982 Lenstra, Lenstra,and Lov�asz [LeLL82℄ des
ribed an algorithm for fa
toring polynomials in Z[x℄in polynomial time. The LLL algorithm is based on a pro
ess for �ndingshortest ve
tors in latti
es.On
e we 
an fa
tor polynomials over a �eld K, we 
an also fa
tor overany algebrai
 extension of K. An algorithm based on norm 
omputation isdes
ribed in [vdWa91℄. But this is still not the end of the story. Given abivariate (or multivariate) polynomial f(x; y) 2 K[x; y℄, we might want todetermine, whether it 
an be fa
tored over any algebrai
 extension of K, i.e.whether it 
an be fa
tored in K[x; y℄. This problem of fa
toring over the alge-brai
 
losure of the given ground �eld is 
alled absolute fa
torization. In re
entyears several people have suggested algorithms for absolute fa
torization. Foran overview see [Wink96℄. Many 
omputer algebra software systems alreadyhave implementations of absolute fa
torization.2.4. Geometry of algebrai
 
urves and surfa
es. Algebrai
 
urves andsurfa
es have been studied intensively in algebrai
 geometry for de
ades andeven 
enturies. Thus, there exists a huge amount of theoreti
al knowledgeabout these geometri
 obje
ts. Re
ently, algebrai
 
urves and surfa
es play animportant and ever in
reasing rôle in 
omputer aided geometri
 design, 
om-puter vision, and 
omputer aided manufa
turing. Consequently, theoreti
alresults need to be adapted to pra
ti
al needs. We need eÆ
ient algorithms forgenerating, representing, manipulating, analyzing, rendering algebrai
 
urvesand surfa
es.One interesting subproblem is the rational parametrization of 
urves andsurfa
es. Consider an aÆne plane algebrai
 
urve C in A 2(K) de�ned by the



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 13bivariate polynomial f(x; y) 2 K[x; y℄, i.e.C = f(a; b) j (a; b) 2 A 2(K) and f(a; b) = 0g:Of 
ourse, we 
ould also view this 
urve in the proje
tive plane P2(K), de�nedby F (x; y; z), the homogenization of f(x; y).A pair of rational fun
tions (x(t); y(t)) 2 K(t) is a rational parametriza-tion of the 
urve C, if and only if f(x(t); y(t)) = 0 and for almost everypoint (x0; y0) 2 C (i.e. up to �nitely many ex
eptions) there is a parame-ter value t0 2 K su
h that (x0; y0) = (x(t0); y(t0)). Only irredu
ible 
urves,i.e. 
urves whose de�ning polynomial is absolutely irredu
ible, 
an have arational parametrization. Almost any rational transformation of a rationalparametrization is again a rational parametrization, so su
h parametrizationsare not unique.Impli
it representations (by de�ning polynomial) and parametri
 represen-tations (by rational parametrization) both have their parti
ular advantagesand disadvantages. Given an impli
it representation of a 
urve and a pointin the plane, it is easy to 
he
k whether the point is on the 
urve. But itis hard to generate \good" points on the 
urve, i.e. for instan
e points withrational 
oordinates if the de�ning �eld is Q . On the other hand, generatinggood points is easy for a 
urve given parametri
ally, but de
iding whether apoint is on the 
urve requires the solution of a system of algebrai
 equations.So it is highly desirable to have eÆ
ient algorithms for 
hanging from impli
itto parametri
 representation, and vi
e versa.Example 2.4.1: Let us 
onsider 
urves in the plane (aÆne or proje
tive) overC . The 
urve de�ned by f(x; y) = y2 � x3 � x2 (see Fig. 2.4.1) is rationallyparametrizable, and a
tually a parametrization is (t2 � 1; t(t2 � 1)).On the other hand, the ellipti
 
urve de�ned by f(x; y) = y2 � x3 + x (seeFig 2.4.2) does not have a rational parametrization.The ta
node 
urve (see Fig. 2.4.3) de�ned by f(x; y) = 2x4 � 3x2y + y4 �2y3 + y2 has the parametrizationx(t) = t3 � 6t2 + 9t� 22t4 � 16t3 + 40t2 � 32t+ 9 ; y(t) = t2 � 4t+ 42t4 � 16t3 + 40t2 � 32t+ 9 :The 
riterion for parametrizability of a 
urve is its genus. Only 
urves ofgenus 0, i.e. 
urves having as many singularities as their degree permits, havea rational parametrization. 2Computing su
h a parametrization essentially requires the full analysis ofsingularities (either by su

essive blow-ups, or by Puiseux expansion) and thedetermination of a regular point on the 
urve. We 
an 
ontrol the qualityof the resulting parametrization by 
ontrolling the �eld over whi
h we 
hoosethis regular point. Thus, �nding a regular 
urve point over a minimal �eldextension on a 
urve of genus 0 is one of the 
entral problems in rational



14 FRANZ WINKLERparametrization, 
ompare [SeWi97℄, [SeWi99℄. The determination of rationalpoints on algebrai
 
urves 
an be an extremely 
ompli
ated problem. But for
urves of genus 0 the situation 
an a
tually be 
ontrolled very well. For a
urve over a �eld K of 
hara
teristi
 0, we 
an determine whether the 
urvehas a regular point over K, or otherwise �nd a quadrati
 �eld extension whi
hadmits su
h a regular point.
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Fig. 2.4.4Example 2.4.2: Let C be the 
urve in the 
omplex plane de�ned byf(x; y) = (x2 + 4y + y2)2 � 16(x2 + y2) = 0:For a pi
ture of this 
urve in the real aÆne plane see Fig. 2.4.4.



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 15The 
urve C has the following rational parametrization:x(t) = �32 � �1024i + 128t � 144it2 � 22t3 + it42304 � 3072it � 736t2 � 192it3 + 9t4 ;y(t) = �40 � 1024 � 256it � 80t2 + 16it3 + t42304 � 3072it � 736t2 � 192it3 + 9t4 :So, as we see in Fig.2.4.4, C has in�nitely many real points. But generatingany one of these real points from the above parametrization is not obvious.Does this real 
urve C also have a parametrization over R? Indeed it does,let's see how we 
an get one.In the proje
tive plane over C , C has three double points, namely (0 : 0 : 1)and (1 : �i : 0). Let ~H be the linear system of 
oni
s passing through all thesedouble points. The system ~H has dimension 2 and is de�ned byh(x; y; z; s; t) = x2 + sxz + y2 + tyz = 0;i.e., for any parti
ular values of s and t we get a 
oni
 in ~H. Three elementsof this linear system de�ne a birational transformationT = (h(x; y; z; 0; 1) : h(x; y; z; 1; 0) : h(x; y; z; 1; 1))= (x2 + y2 + yz : x2 + xz + y2 : x2 + xz + y2 + yz)whi
h transforms C to the 
oni
 D de�ned by15x2 + 7y2 + 6xy � 38x� 14y + 23 = 0:For a 
oni
 de�ned over Q we 
an de
ide whether it has a point over Q or R. Inparti
ular, we determine the point (1; 8=7) on D, whi
h, by T �1, 
orrespondsto the regular point P = (0;�8) on C. Now, by restri
ting ~H to 
oni
sthrough P and interse
ting ~H with C (for details see [SeWi97℄), we get theparametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :over the reals. 2Many of these ideas whi
h work for 
urves 
an a
tually be generalizedto higher dimensional geometri
 obje
ts. For instan
e, one subproblem in
omputer aided geometri
 design is the manipulation of o�set 
urves, o�setsurfa
es, pipe and 
anal surfa
es. These are geometri
 obje
ts keeping 
ertaindistan
es from a generating obje
t. Let us just 
onsider the 
ase of a pipesurfa
e in an example.Example 2.4.3: We 
onsider the spa
e 
urve C in A 2 (R) given parametri
allyby (x(t); y(t); z(t)) = (t; t2; t3). We want to 
onstru
t a parametri
 representa-tion of the pipe surfa
e S (at distan
e 1) along C, i.e. the lo
us of points havingnormal distan
e 1 from C. This pipe surfa
e S is the envelope of spheres of



16 FRANZ WINKLERradius 1 moving along C, i.e. every point on S lies on a 
ir
le in a hypersurfa
eperpendi
ular to the 
urve C. If we 
an �nd a parametri
 representation of a
urve ~C on S, whi
h meets every one of these 
ir
les, then by a pen
il of linesin the 
orresponding hypersurfa
e we 
an generate a rational representationfor all the points on this 
ir
le, and thus �nally a rational parametrization ofthe pipe surfa
e.Su
h a 
urve 
an by determined by algebrai
 
omputation, giving for in-stan
e the parametrization (~
1(t); ~
2(t); ~
3(t)) with0� ~
1(t)~
2(t)~
3(t) 1A = 0BBB� t+ 3(36t4�13t2�4p5t�5)t2(1+4t2)(21t2+2p5t+5+27t4)t2 � 3(60t3+14t�p5+4p5t2)t2(1+4t2)(21t2+2p5t+5+27t4)t3 + 21t2+2p5t+521t2+2p5t+5+27t4 1CCCA :From this parametri
 representation of ~C we 
an 
ompute a parametri
 repre-sentation of the pipe surfa
e. 2For a geometri
 approa
h to parametrization of pipe and 
anal surfa
es see[PePo97℄, an algebrai
 approa
h 
an be found in [HLSW99℄.Now that we have seen some examples of parametrization treated by sym-boli
 algebrai
 
omputation, let us just brie
y dis
uss the inverse problem,namely the problem of impli
itization. If we are given, for instan
e, a rationalparametrization in K(t) of a plane 
urve, i.e.x(t) = p(t)=r(t); y(t) = q(t)=r(t);we essentially want to eliminate the parameter t from these relations, and geta relation just between x and y. We also want to make sure that we do not
onsider 
omponents for whi
h the denominator r(t) vanishes. This leads tothe system of algebrai
 equationsx � r(t)� p(t) = 0;y � r(t)� q(t) = 0;r(t) � z � 1 = 0:The impli
it equation of the 
urve must be the generator of the idealI = hx � r(t)� p(t); y � r(t)� q(t); r(t) � z � 1i \ K[x; y℄:Using the elimination property of Gr�obner bases, we 
an 
ompute this gener-ator by a Gr�obner basis 
omputation w.r.t. the lexi
ographi
 ordering basedon x < y < z < t.Example 2.4.4: Let us do this for the 
urve of Example 2.4.2. We start fromthe parametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 17So we have to solve the equationsx � (256t4 + 32t2 + 1) + 1024t3 = 0;y � (256t4 + 32t2 + 1) + 2048t4 � 128t2 = 0;(256t4 + 32t2 + 1) � z � 1 = 0:The Gr�obner basis of this system w.r.t. the lexi
ographi
 ordering based onx < y < z < t isG = f::::::::; x4 + y4 + 8x2y + 2x2y2 + 8y3 � 16x2g:So we have found the impli
it equation of the 
urve. 23. Problems in algebrai
 
omputationAfter having des
ribed some of the a
hievements in di�erent areas of alge-brai
 
omputation, let us now point out some topi
s whi
h are 
urrently beinginvestigated.3.1. Di�erential equations. The integration problem dis
ussed in Se
tion2.1, i.e. the problem of �nding an expression y su
h that R f = y, or f = y0,is a parti
ular di�erential equation problem. As we have seen above, symboli
algorithmi
 approa
hes are already quite powerful in treating this integrationproblem. For more general di�erential equation systems, algorithmi
 methodsare far more s
ar
e.In 1978 Kova
i
 developed an algorithm for 
omputing \
losed-form" solu-tions of 2-nd order linear homogeneous di�erential equations of the formy00(x) + a(x) � y0(x) + b(x) � y(x) = 0;where a; b 2 C (x), and the solution is sought in a Liouvillian extension ofC (x). Kova
i
's algorithm de
ides, whether su
h a solution exists, and if so,
onstru
ts the solutions. So, for example, for the di�erential equationy00(x) = 4x6 � 8x5 + 12x4 + 4x3 + 7x2 � 20x+ 44x4 � y(x);Kova
i
's algorithm determines the solution� = x2 � 1x3=2 � e�1=x+x2=2�x:Starting in 1991 Singer [Sing91℄, [SiUl93℄ extended Kova
i
's algorithm andpresented an algorithm for �nding a basis for the spa
e of Liouvillian solutionsof a linear di�erential equation of arbitrary ordery(n) + an�1y(n�1) + � � � + a0y = b;where the 
oeÆ
ients an�1; : : : ; a0 and the right hand side b are from a dif-ferential �eld K. Singer's algorithm works by determining di�erential Galoisgroups and is of high 
omplexity.



18 FRANZ WINKLERThe �eld of symboli
 solution of di�erential equations is still wide open, inparti
ular when partial di�erential equations are 
onsidered.3.2. Fast 
omputation of Gr�obner bases. As we have noted in Se
tion2.2, the 
omputing time for determining a Gr�obner basis may vary 
onsider-ably depending on the term ordering. Although there are in�nitely many termorderings, 
f. [Robb85℄, there are only �nitely many di�erent Gr�obner basesfor a �xed ideal I, 
f. [MoRo88℄. By \walking around" in the Gr�obner fanof the ideal I, one may transform a Gr�obner basis w.r.t. to a term ordering<1 to a Gr�obner basis w.r.t. a term ordering <2. This idea was �rst devel-oped in [CoKM97℄. Pra
ti
al experiments have shown 
onsiderable savingsin 
omputing time, 
f. [AmGK96℄, [Tran98℄. Re
ently Kalkbrener [Kalk99℄has started to investigate the theoreti
al reasons for this pra
ti
al speed-up.But we 
ertainly need more 
omplexity investigations for understanding thesephenomena.3.3. Computations on algebrai
 
urves and surfa
es. For algebrai
 
ur-ves over a 
omputable �eld of 
hara
teristi
 0 the problem of symboli
 alge-brai
 parametrization is 
ompletely solved. More pre
isely, we 
an determinewhether a 
urve has a rational parametrization over the algebrai
 
losure of theground �eld, and in the aÆrmative 
ase we 
an 
ompute a proper parametriza-tion with 
oeÆ
ients in an algebrai
 extension of the ground �eld of lowestextension degree. If the given irredu
ible 
urve has 
oeÆ
ients in Q , is ratio-nal, and has in�nitely many real points, then it a
tually has a parametrizationover R whi
h 
an be determined algorithmi
ally, see [SeWi99℄.But even so there remains the following open problem: a 
urve de�ned overQ might have a parametrization with 
oeÆ
ients in Z. If so, it has in�nitelymany su
h parametrizations. How 
an we �nd the one with the smallest
oeÆ
ients?Also for algebrai
 surfa
es the algorithmi
 parametrization problem is solved(with the ex
eption of del Pezzo surfa
es) in prin
ipal, see [S
hi98a℄, [S
hi98b℄.But both for 
urves and for surfa
es one of the most 
riti
al subproblems isthe analysis of the singularities and the determination of adjoints. There areseveral theoreti
al approa
hes to these problems, e.g. blow-ups, or Puiseuxseries expansion. Mu
h work is still needed for developing algorithms withgood theoreti
ally and pra
ti
al 
omplexity.3.4. Integration of symboli
 and numeri
al 
omputation. Many prob-lems in s
ien
e and engineering are a
tually inexa
tly stated, but still we wanta symboli
 solution. For instan
e, we might have inexa
tly de�ned polynomi-als for two surfa
es, know that they should have an interse
tion of dimension 2,and want to determine the de�ning polynomial of the interse
tion. The ques-tion then is a
tually: how 
an we vary the 
oeÆ
ients of the given polynomialsslightly so that we get non-trivial interse
tion?



ADVANCES AND PROBLEMS IN ALGEBRAIC COMPUTATION 19On the other hand, we might have an exa
t symboli
 de�nition of, say,an algebrai
 
urve or surfa
e, and we want to 
reate pixel information forrendering this obje
t on a s
reen. How mu
h algebrai
 
omputation do wereally have to do for making sure that we get the topology of the obje
t right?The remaining job should be handed over to a fast numeri
al approximationalgorithm for �lling in the regular parts of the obje
t.Re
ently Watt and Stetter [WaSt98℄ have 
olle
ted approa
hes to the in-tegration of symboli
 and numeri
al 
omputation. At the University of Linz,resear
h groups in symboli
 
omputation, numeri
al 
omputation, and engi-neering have re
ently started a big 
ooperation proje
t for trying to bridge thegap between these di�erent paradigms of s
ienti�
 
omputation. But obviouslythere is still a long way to go.A
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