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� Introduction

Theorema is a system aiming at computer-supporting proving, solving, and simplifying as the three basic activities of formal

mathematics.  The  system  is  programmed  in   the  Mathematica  programming  language  and,  hence,  is  available  on  all

platforms on wich Mathematica is installed. Theorema also heavily uses advanced features of the Mathematica front-end and

it  is  also  possible  to  access  the  complete  computational  functionality  (the  algorithm  library)  of  Mathematica  from  the

Theorema  surface.  Thus,  Theorema  can  be  seen  as  an  extension  of  the  typical  current  mathematical  software  systems

towards making them  a tool also for mathematical reasoning and mathematical knowledge management.

The  main  innovative  feature  of  Theorema  is  its  library  of  general  and  special  automated  theorem  provers  and  its  logical

coherence: The Theorema language is a version of higher order predicate logic in attractive syntax, which comes close to the

usual syntax of informal mathematics commonly used in mathematical textbooks and publications. The Theorema language

allows to formulate non-algorithmic and algorithmic mathematics in one uniform frame. Part of the Theorema language is a

universal  programming language.  Thus,  formulae  in Theorema can be processed either  by provers  (for  deciding about  the

truth  of  formulae),  or  by  solvers  (for  finding  substitutions  that  make  the  formulae  true)  or  by  simplifyers  (for  finding

equivalent  simplified  versions  of  the  formulae).  Collections  of  statements  in  the  Theorema  system  can  be  organized  in

hierarchical knowledge bases that allow to express structure in mathematical knowledge and to access well-defined parts of

the  mathematical  knowledge  in  a  controlled  way.  The  Theorema  library  of  general  and  special  provers,  solvers,  and

simplifiers is permanently growing.

In this talk, we present Theorema by a sequence of live demo examples and we will then discuss the possible implications of

systems like Theorema for the future of mathematics (research, teaching, applications).

The  Theorema  system  is  a  joint  effort  of  the  Theorema  Group  at  RISC  under  the  direction  of  Bruno  Buchberger  with

essential  contributions  by Tudor  Jebelean,  Wolfgang Windsteiger,  Temur  Kutsia,  and  Koji  Nakagawa and  the former  and

current  PhD  students  Elena  Tomuta,  Franz  Kriftner,  Daniela  Vasaru,  Claudio  Dupret,  Florina  Piroi,  Markus  Rosenkranz,

and Christian Vogt.
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� Example: Manipulating Mathematical Text

We first give a couple of mathematical formulae in the syntax of   Theorema,  which essentially is a higher order predicate

logic.  The  notation  of  Theorema  is  two-dimensional  and  should  come  as  close  as  possible  to  the  usual  notation  in

mathematical text books. Before one can use Theorema, one must install the system and then load the system by entering

Needs
�
"Theorema"̀ �

into a Mathematica cell.

The actual Theorema  formulae are labeled by key words like  'Definition', 'Proposition', etc. and short text in  quotation

marks. These labels can be used later for  referencing formulae. The 'any' construct declares the free variables in  the

formulae. All  identifiers that are neither free nor quantified variables are constants. Theorema  mathematical text  like

definitions, propositions etc. may be entered into 

Definition � "limit:", any � f , a � ,
limit � f , a � � � �� 	

0



N � n

n � N



f � n � � a � � � �

Proposition � "limit of sum", any � f , a, g, b � ,�
limit � f, a � � limit � g, b � � � limit � f  g, a  b ! !

Definition " "  :", any " f , g, x ! ,#
f  g $ " x ! % f & x ' ( g & x' '

Lemma & " ) * ) ", any + x, y, a, b, , , - . ,/ 0 /
x 1 y2 3 /

a 1 b 2 4 5 / , 1 - 2 2 6 7 8 x 9 a : ; < = 8 y 9 b : ; > ? @
Lemma A "max", any A m, M1, M2 @ ,

m B maxC M1, M2 D E F m B M1 G m B M2 H D
Now we illustrate how formulae can be composed into knowledge bases by the 'Theory' construct:

Theory I "limit",

Definition C "limit:" D
Definition C " J :" D
Lemma C " K J K " D
Lemma C "max" D

L

This knowledge base may later be referred to by Theory["limit"].  The 'Theory' construct is recursive. Thus, hierarchical

knowledge bases can be composed.

Note  that  Theorema  allows  to  express all  formulae expressible in  TeX  and similar  systems but  is  wysiwyg  (like

Mathematica) and, in  contrast to  ordinary mathematical text  processing systems, produces formulae whose syntactical

structure is entirely accessible so that formal mathematical manipulation (proving, simplifying, solving) can be done with

such formulae.
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� Logicographic Symbols

In  addition,  and  in  contrast  to  all  existing  mathematical  systems,  Theorema  provides  the  facility  to  design  and  introduce

arbitrary  new symbols  for  function  and  predicate  constants,  which may convey the  intuitive  meaning of  these  symbols by

arbitrary  complex  and  user-defined  graphics.  We  call  these  symbols  "logicographic  symbols".  An  example  of  some

Theorema  formal text using logicographic symbols is given below. This text forms part of a theory of tuples on which the

correctness proof of the merge-sort algorithm can be based. 

The above presentation of Algorithm["stmg"] (sorting by merging) states that the sorting a tuple X produces X if the length

of  X  is  less  or  equal  1  and,  otherwise,  proceeds  by  merging  the  sorted  left  part  of  the  sorted  right  part  of  X.  Similarly,

Algorith["mg"]  (merging)  is  defined  recursively  using  various  logicographic  symbols  whose  meaning  should  be  self-

explanatory  or,  at  least,  easy  to  remember.  Definition["istv"]  (is  sorted  version)  states  that  tuple  X  is  a  sorted  version  of

tuple Y iff X is sorted and X is a permuted version of Y. Lemma["mg"] (a property of merge) states that, if tuple A is sorted

and tuple B is sorted, then the merge of A and B is also sorted. Lemma["mg2"] (another property of merge) states that the

merge  of  A  and  B  is  a  permuted  version  of  the  concatenation  of  A  and  B.  Most  of  the  symbols  appearing  in  the  above

formulae  are  not  in  the  fixed  arsenal  of  symbols  of  Mathematica  but  can  be  designed  and  then  declared  and  used  by the

Theorema user applying a couple of special tools provided by Theorema.

� Example: The PCS Prover

The  PCS  proof  method,  proposed  and  developed  by  the  author  in  2000,  is  a  heuristic  proof  method  for  predicate  logic

whose main goal is to generate "natural" proofs.

Roughly, the PCS prover proceeds by iteratively going through the following three phases:

� P-phase ("Proving" phase)

� C-phase ("Computing" phase, simplifying phase )
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� S-phase ("Solving" phase).

The  PCS  method  is  particularly  useful  for  proving  theorems  about  notions  defined  by  alternating  quantifiers  and  reduces

proving  of  such  formulae  to  constraints  solving.  A  typical  example  of  a  notion  defined  by  alternating  quantifiers  is  the

notion  of  limit  in  analysis,  see  the  definition  above.Here  is  the  call  that  calls  the  PCS  prover  for  proving  the  above

Proposition["limit of sum"] using the knowledge in the Theory["limit"]:

Prove
�
Proposition

�
"limit of sum" � , using � Theory � "limit" � , by � PCS �

After a couple of seconds,  the following proof text  (including the intermediate English explanatory text) will be  produced

completely automatically.

        -----------------------------------

Prove:

(Proposition (limit of sum)) �
f ,a,g,b

�
limit � f , a 	 
 limit � g, b � 
 limit � f � g, a � b � � ,

under the assumptions:

(Definition (limit:)) �
f ,a

�
�
������� limit � f , a � � � �� �

0

�
N

�
n

n � N

�  
f ! n " # a $ % & '

(
)

******* ,

(Definition (+:)) +
f ,g,x

, ,
f - g . / x 0 1 f 2 x 3 4 g 2 x 3 5 ,

(Lemma (|+|)) 6
x,y,a,b, 7 , 8

9 : 9
x ; y < = 9

a ; b < > ? @ A B C D E x F a G H I J E y F b G H K L L ,

(Lemma (max)) M
m,M1,M2

D m N max O M1, M2 P Q m N M1 R m N M2 S .

We assume

(1) limit O f0, a0 P R limit O g0, b0 P ,

and show

(2) limit O f0 T g0, a0 T b0 P .

Formula (1.1), by (Definition (limit:)), implies:

(3) U VV W
0

X
N

U
n

n Y N

Z [
f0 O n P \ a0 ] ^ _ S .

By (3), we can take an appropriate Skolem function such that

(4) U VV W
0

U
n

n Y N0 ` a b
c d

f0 e n f g a0 h i j k ,
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Formula (1.2), by (Definition (limit:)), implies:

(5) � �� �
0

�
N

�
n

n � N

� �
g0 � n � 	 b0 
 � � 
 .

By (5), we can take an appropriate Skolem function such that

(6) � �� �
0

�
n

n � N1 � � � � �
g0 � n � 	 b0 
 � � 
 ,

Formula (2), using (Definition (limit:)), is implied by:

(7) � �� �
0

�
N

�
n

n � N

� � �
f0 � g0 
 � n � 	 �

a0 � b0 
 
 � � 
 .
We assume

(8) � 0 � 0,

and show

(9) �
N

�
n

n � N

� � �
f0 � g0 � � n � � �

a0 � b0 � � � � 0 � .
We have to find  N2  such that

(10) !
n

"
n # N2 $ % "

f0 & g0 ' ( n ) * "
a0 & b0 ' + , - 0 ' .

Formula (10), using (Definition (+:)), is implied by:

(11) !
n

"
n # N2 $ % "

f0 ( n ) & g0 ( n ) ' * "
a0 & b0 ' + , - 0 ' .

Formula (11), using (Lemma (|+|)), is implied by:

(12) ./
, 0/ 1 2 3 4

0

5
n

6
n 7 N28 9 : f0 ; n < = a0 > ? @ A : g0 ; n < = b0 > ? B C .

We have to find  D 0E , F 1E , and N2E  such that

(13) G D 0E H F 1E I F 0 J K L
n M n N N2O P Q f0 R n S T a0 U V W 0O X Y g0 Z n [ \ b0 ] ^ _ 1̀ a .

Formula (13), using (6), is implied by:

b c
0̀ d _ 1̀ e _ 0 a f g

n

b
n h N2̀ i _ 1̀ j 0 X n h N1 Z _ 1̀ [ X Y f0 Z n [ \ a0 ] ^ c

0̀ a ,
which, using (4), is implied by:
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� �
0� � � 1� � � 0 � � �

n

�
n 	 N2� 
 �

0� � 0 � � 1� � 0 � n 	 N0 
 �
0� � � n 	 N1 
 � 1� � � ,

which, using (Lemma (max)), is implied by:

(14)
� �

0� � � 1� � � 0 � � �
n

�
n 	 N2� 
 �

0� � 0 � � 1� � 0 � n 	 max
 N0 
 �
0� � , N1 
 � 1� � � � .

Formula (14) is implied by

(15)
� �

0� � � 1� � � 0 � � �
0� � 0

� � 1� � 0
� �

n

�
n 	 N2� 
 n 	 max
 N0 
 �

0� � , N1 
 � 1� � � � .
Partially solving it, formula (15) is implied by

(16)
� �

0� � � 1� � � 0 � � �
0� � 0 � � 1� � 0 � �

N2� � max
 N0 
 �
0� � , N1 
 � 1� � � � .

Now,

� �
0� � � 1� � � 0 � � �

0� � 0 � � 1� � 0

can be solved for 
�

0�  and � 1�  by a call to Collins cad–method yielding a sample solution

�
0� � � 0� � � � � �

2 ,

�
1� � � 0� � � � � �

2 .

Furthermore, we can immediately solve

N2� � max � N0 � � 0� � , N1 � �
1� � �

for N2�  by taking

N2� � max � N0 � � 0� � � � � �
2 � , N1 � � 0� � � � � �

2 � � .
Hence formula (16) is solved, and we are done. �

        -----------------------------------

We hope that, from the sample proof,  it is clear what we mean by a "natural" proof: It  is structured  very much the way a

proof produced by a human mathematician would be structured and it should be "easy to read and understand". Note that, in

addition, the proof generated by our PCS method also produces interesting information that is normally not produced in the

proofs  given in the usual  mathematical  textbooks:  The explicit  term for  N2�  explains  in detail  how an index bound for  the

sequence f+g can be obtained from an index bound for the input sequences f and g. In a live session of Theorema, additional

tools are available that support easy understanding of  the proof.  For example, the label hyperlinks can be used in order to

open  a  small  window  in  which  the  formula  referenced  will  be  displayed.  Also,  on  the  right-hand  margin  of  the  proof

notebook, nested brackets are shown that make it possible to contract subproofs to just one line so that it is easy to preserve

overview on the overall structure of the proof while studying certain details.

Buchberger-Theorema.nb 6



In fact, as simple as they may seem for well-trained mathematicians, proofs in elementary analysis are still  a challenge for

automated  proving  methods.  Hence,  the  possibility  to  generate  such  proofs  automatically  and,  in  addition,  come  up  with

natural and readable proofs in this area, is quite a strong indication of the potential of the PCS method.

� Example: Set Theory Prover

The  Theorema  set  theory  prover  is  also  based  on  the  PCS  principle.  In  addition  to  the  predicate  logic  natural  deduction

inference  rules  it  incorporates  special  inference  rules  for  the  basic  notions  of  set  theory,  in  particular  the  special  set

quantifiers.  We show a typical  Theorema  formal  text  in  set  theory consisting  of  a  couple  of  definitions  and a  proposition

whose proof is then automatically generated by the Theorema set theory prover:

Definition
�
"reflexivity", any � � , A � ,

is–reflexiveA � � � : � �
x � A

x 	 x 

Definition � "symmetry", any� 
 , A � ,

is–symmetricA � 
 � : � �
x,y � A � x 
 y � y 
 x � 


Definition � "transitivity", any� 
 , A � ,
is–transitiveA � 
 � : � �

x,y,z � A � x 
 y � y 
 z � x 
 z� 

Definition � "equivalence", any� 
 , A � ,

is–equivalenceA � 
 � : � � ������ ����� is–reflexiveA � � �
is–symmetricA � � �
is–transitiveA � � �

�
Definition � "class", any� x, � , A � ,

classA,  ! x " : # $ a % A & a ' x ( x % A ) *
Proposition + "equalclasses", any+ x , A, y , A, - , A * , with + is–equivalenceA + - * * ,

x - y . / classA, 0 + x * 1 classA, 0 + y* 2 *
Prove+ Proposition+ "equalclasses" * ,

using 3 4 Definition 5 "equivalence" 6 , Definition 5 "transitivity" 6 , Definition 5 "symmetry"6 , Definition 5 "class" 6 7 ,
by 8 SetTheoryPCSProver,

transformBy 8 ProofSimplifier, TransformerOptions 8 9 branches 8 Proved, steps 8 Useful : , ShowOptions 8 9 : ,
ProverOptions 8 9 GRWTarget 8 9 "goal", "kb" : , AllowIntroduceQuantifiers 8 True,

UseCyclicRules 8 True, DisableProver 8 9 STC, PND : , ApplyBuiltIns 8 9 : : , SearchDepth 8 50 ;
This  call  generates  the  following  proof  completely  automatically.  Note  that,  typically,  in  addition  to  the  three  essential

arguments  (proof  goal,  knowledge  base,  and  prover)   of  the  Theorema  Prove  function,  the  user  may  provide  optional

information that gives strategic help to the prover, determines the appearance of the output, etc.

           -------------

Prove:

Buchberger-Theorema.nb 7



(Proposition (equal classes))
�

A,x,y, �
�
x � A � y � A � is–equivalenceA � � � � 	 x � y � 	 classA, 
 � x � � classA, 
 � y � 
 
 
 ,

under the assumptions:

(Definition (equivalence))
�

A, 
 	 is–equivalenceA � � � : � is–reflexiveA � � � � is–symmetricA � � � � is–transitiveA � � � 
 ,

(Definition (transitivity))

�
A, 


�
��� is–transitiveA � � � : � �

x,y,z 	 x � A � y � A � z � A � 	 x � y � y � z � x � z 
 

�
� �� ,

(Definition (symmetry))
�

A, 

�
��� is–symmetricA � � � : � �

x,y 	 x � A � y � A � 	 x � y � y � x 
 

�
� �� ,

(Definition (class))
�

A,x, 

�
��� classA, 
 � x � : � �

a �
a � a � x � x � A � � a � A  !" ## .

We assume

(1) x0 $ A0 % y0 $ A0 % is–equivalenceA0 & ' 0 ( ,
and show

(2) x0 ' 0 y0 ) * classA0, + 0 & x0 ( , classA0, + 0 & y0 ( - .
We prove (2) by the deduction rule.

We assume

(5) x0 ' 0 y0 

and show

(6) classA0, + 0 & x0 ( , classA0, + 0 & y0 ( .
Formula (6), using (Definition (class)), is implied by:

(7) . a /
a

x0 $ A0 0 a $ A0 0 a ' 0 x0  , . a /
a

y0 $ A0 0 a $ A0 0 a ' 0 y0  .

We show (7) by mutual inclusion:

1 : We assume 

(8) x0 2 A0 3 a10 2 A0 3 a10 4 0 x0
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and show:

(9) y0 � A0
�

a10 � A0
�

a10 � 0 y0.

We prove the individual conjunctive parts of (9):

Proof of (9.1) y0 � A0:

Formula (9.1) is true because it is identical to (1.2).

Proof of (9.2) a10 � A0:

Formula (9.2) is true because it is identical to (8.2).

Proof of (9.3) a10 � 0 y0:

Formula (1.3), by (Definition (equivalence)), implies:

is–reflexiveA0

� � 0 � � is–symmetricA0

� � 0 � � is–transitiveA0

� � 0 � ,
which, by (Definition (transitivity)), implies:

(12)
�

x,y,z

�
x � A0

�
y � A0

�
z � A0 � �

x � 0 y
�

y � 0 z � x � 0 z 	 	 
 is–reflexiveA0

� � 0 � 
 is–symmetricA0

� � 0 � .
Formula (9.3), using (12.1), is implied by:

(13) �
y

�
a10 � A0

�
y0 � A0

�
y � A0

�
a10 � 0 y

�
y � 0 y0 	 .

Now, let y : � x0. Thus, for proving (13) it is sufficient to prove:

(14) a10 � A0
�

y0 � A0
�

x0 � A0
�

a10 � 0 x0
�

x0 � 0 y0.

We prove the individual conjunctive parts of (14):

Proof of (14.1) a10 � A0:

Formula (14.1) is true because it is identical to (8.2).

Proof of (14.2) y0 � A0:

Formula (14.2) is true because it is identical to (1.2).

Proof of (14.3) x0 � A0:

Formula (14.3) is true because it is identical to (8.1).
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Proof of (14.4) a10 � 0 x0:

Formula (14.4) is true because it is identical to (8.3).

Proof of (14.5) x0 � 0 y0:

Formula (14.5) is true because it is identical to (5).

� : Now we assume 

           ....  We do not print the second part of the proof  (which is similar to the first part) in this paper ...

           --------------------

� Exampe: Induction Proofs and the Cascade

Now we demonstrate a special induction prover for equalities on natural numbers in the representation 0, 0 � , 0 ��� , ..., where� �  denotes the successor function.  This prover, in its current version, is not very powerful because the underlying simplifier

is not very strong. (A much better equatioanl simplifier is under development.) The main point of this demo will be the use

of a general strategy, the "cascade", which often yields proofs by "inventing intermediate lemmata" for which a given prover

would not be able to provide a proof by a single application.  We start with an inductive definition of addition:

Definition
�
"addition", any � m, n 	 ,

m 
 0 � m " 
 0:"

m 
 n � 
 � m � n� � " � .:" �
Now let us try to prove commutativity by induction:

Proposition � "commutativityof addition", any� m, n� ,
m � n 
 n � m " � 
 " �

Prove� Proposition� "commutativityof addition" � ,
using � � Definition � "addition" � � ,
by � NNEqIndProver,

ProverOptions� � TermOrder� LeftToRight� , presentation� 100� ;
The attempt to generate a proof automatically by the induction prover 'NNEqIndProver' fails. In Theorema,  in contrast to

other theorem proving systems, we also generate the output for  failing  proofs because a lot  can be learned from failing

proofs. We do not show all details of the failing proof but only an essential portion of it:

           -------------

           ....

           ....

Simplification of the lhs term:
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m1 � � 0 = by (Definition (addition):  +0:)

m1 �
�

Simplification of the rhs term:

�
0 � m1 � �

�

Hence, it is sufficient to prove:

(14) m1 � �
�
0 � m1 � � .

It turns out that the prover is, basically, stuck at (14). A human prover would immediately guess that proving 

�
m

m 	 0 
 m

as a lemma, before proceeding with the proof of commutativity, would be a promising approach. This fundamental strategy

of  analyzing  failing  proofs  and  generating  a  general  conjecture  from  the  situation  at  which  the  prover  is  stuck,  is

implemented, in a recursive way, in Theorema. It is called the "cascade", which has basically two arguments: a prover and a

conjecture generator (based on the analysis of failing proofs). In our case, the procedure can be started by entering

Prove � Proposition � "commutativity of addition" � ,
using 
 Definition � "addition"� ,

by 
 Cascade � NNEqIndProver, ConjectureGenerator� , ProverOptions 
 � TermOrder 
 LeftToRight � � ;

This call results in the automated generation of the following sequence of proof attempts and, finally, a successful proof of

commutativity. Note that, in the course of producing these proof attempts and the final proof, the initial knowledge base is

automatically  enlarged by lemmata,  and in fact  quite natural  and interesting lemmata,  which are  invented  automatically  in

the course of analyzing the failing proof attempts:

             ----------------

Prove:

(Proposition ( + = ):  + = ) �
m,n

�
m � n � n � m � ,

under the assumptions:

(Definition (addition):  +0:) �
m

�
m � 0 � m � ,

(Definition (addition):  + .:) �
m,n

�
m � n � �

�
m � n � � � .

.... Proof fails and leads to the automated invention of the following lemma:

�
m

�
0 
 m 	 m � .

              whose proof is now attempted next.
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             ----------------

Prove:

(Proposition (19): 19) �
m

�
0 � m � m � ,

under the assumptions:

(Definition (addition):  +0:) �
m

�
m � 0 � m � ,

(Definition (addition):  + .:) �
m,n

�
m � n � � �

m � n � � � .

....  This  proof  succeeds  and,  hence,  the  lemma  can  be  added  to  the  knowledge  base  and  the  proof  of

commutativity is attempted again.

             ----------------

Prove:

(Proposition ( + = ):  + = ) �
m,n

�
m � n � n � m � ,

under the assumptions:

(Proposition (19): 19) �
m

�
0 � m � m � ,

(Definition (addition):  +0:) �
m

�
m � 0 � m � ,

(Definition (addition):  + .:) �
m,n

�
m � n � � �

m � n � � � .

.... Proof fails and leads to the automated invention of the following lemma:

�
n,m

�
n � 	 m 
 �

n 	 m � � � .

              whose proof is now attempted next.

             ----------------

Prove:

(Proposition (15): 15) �
n,m

�
n � � m � �

n � m � � � ,

under the assumptions:

(Proposition (19): 19) �
m

�
0 � m � m � ,
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(Definition (addition):  +0:) �
m

�
m � 0 � m � ,

(Definition (addition):  + .:) �
m,n

�
m � n � � �

m � n � � � .
....  This  proof  succeeds  and,  hence,  the  lemma  can  be  added  to  the  knowledge  base  and  the  proof  of

commutativity is attempted again.

              whose proof is now attempted next.

Prove:

(Proposition ( + = ):  + = ) �
m,n

�
m � n � n � m � ,

under the assumptions:

(Proposition (15): 15) �
n,m

�
n � � m � �

n � m � � � ,
(Proposition (19): 19) �

m

�
0 � m � m � ,

(Definition (addition):  +0:) �
m

�
m � 0 � m � ,

(Definition (addition):  + .:) �
m,n

�
m � n � � �

m � n � � � .
.... This proof succeeds and, hence, commutativity is proved.

The cascade can also be viewed as a kind  of  general completion procedure that goes far  beyond the Knuth-Bendix

completion procedure for equational theorem proving.

� Example: Proving Booleans of Equalities by Groebner Bases

The next example concerns a special, but quite powerful, prover /  disprover (decision algorithm) based on the author's

Groebner bases method for  arbitrary universally quantified boolean combinations of  arithmetical equalities over complex

numbers. Here is a typical formula in this class:

Formula � "Test", any� x, y 	 ,
 

x2 y � 3 x � 
 0 � � � � x y � x � y� � 0 � �� � � x2 y � 3 x � 0 � � � � � 2 x2 � � 7 x y � x2 y � x3 y � � 2 y2 � � 2 x y2 � 2 x2 y2 � � 0 � �� � �

x2 � � x y � x2 y � � 2 y2 � � 2 x y2 � � 0 � �
"B1"�

The following Theorema call produces, fully automatically a proof that this formula is true over the complex numbers:

Prove � Formula � "Test"� , using �  ! , by � GroebnerBasesProver�
" ProofObject "
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Here is the automatically generated proof text:

             ------------------

Prove:

(Formula (Test): B1)

�
x,y

� � �
x2 � y � 3 � x � � 0 � � � x 	 y 
 x 
 y � 0 � � � � x2 	 y 
 3 	 x 
 0 � �

� � � 2 � 	 x2 
 � � 7 � 	 x 	 y 
 x2 	 y 
 x3 	 y 
 � � 2 � 	 y2 
 � � 2 � 	 x 	 y2 
 2 	 x2 	 y2 
 0 � � �
� x2 
 � � x � 	 y 
 x2 	 y 
 � � 2 � 	 y2 
 � � 2 � 	 x 	 y2 
 0 � �

,

with no assumptions.

Proved.

The Theorem is proved by the Groebner Bases method.      

      The formula in the scope of the universal quantifier is transformed into an equivalent formula that is a 

conjunction of disjunctions of equalities and negated equalities. The universal quantifier can then be 

distributed over the individual parts of the conjunction. By this, we obtain:

Independent proof problems:

(Formula (Test): B1.1)
�
x,y

� �
x2 � � �

x � y � � x2 � y � � �
2 � � y2 � � �

2 � � x � y2 � 0 � � � � �
3 � � x � x2 � y � 0 � � �

x � y � x � y � 0 � �  

(Formula (Test): B1.2)

�
x,y

� �
3 � x � x2 � y � 0 � �

� � �
2 � � x2 � � �

7 � � x � y � x2 � y � x3 � y � � �
2 � � y2 � � �

2 � � x � y2 � 2 � x2 � y2 � 0 � �� � �
3 � � x � x2 � y � 0 � � �

x � y � x � y � 0 � �

 

We now prove the above individual problems separately:

Proof of (Formula (Test): B1.1):

                     ... We do not print this part of the proof in this paper, since it is easier than the second part of the proof.  ...

Proof of (Formula (Test): B1.2):

This proof problem has the following structure:
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(Formula (Test): B1.2.structure) �
x,y

� �
Poly � 1 � � 0 � � � Poly � 2 	 
 0 � � � Poly � 3 	 � 0 � � � Poly � 4 	 � 0 � � ,

where

Poly � 1 	 � � 
 3 � � x � x2 � y

Poly � 2 	 � x � y � x � y

Poly � 3 	 � 3 � x � x2 � y

Poly � 4 	 � � 
 2 � � x2 � � 
 7 � � x � y � x2 � y � x3 � y � � 
 2 � � y2 � � 
 2 � � x � y2 � 2 � x2 � y2

(Formula (Test): B1.2.structure) is equivalent to

(Formula (Test): B1.2.implication) �
x,y

� � Poly � 1 	 � 0 � � � Poly � 2 	 � 0 � � � Poly � 3 	 � 0 � � � Poly � 4 	 � 0 � �
.

(Formula (Test): B1.2.implication) is equivalent to

(Formula (Test): B1.2.not-exists)
�
x,y

� � �
Poly � 1 � � 0 � � �

Poly � 2 � � 0 � � � � �
Poly � 3 � � 0 � � �

Poly � 4 � � 0 � � � .

By introducing the slack variable(s)

{� 1, � 2}

(Formula (Test): B1.2.not-exists) is transformed into the equivalent formula

(Formula (Test): B1.2.not-exists-slack)
�

x,y,� 1, � 2

� �
Poly � 1  ! 0 " # �

Poly � 2  ! 0 " # � $
1 % & 1 Poly � 3  ! 0 " # � $

1 % & 2 Poly � 4  ! 0 " " .

Hence, we see that the proof problem is transformed into the question on whether or not a system of 

polynomial equations has a solution or not. This question can be answered by checking whether or not the 

(reduced) Groebner basis of

'
Poly ( 1 ) , Poly ( 2 ) , * 1 + , 1 Poly ( 3 ) , * 1 + , 2 Poly ( 4 ) -

is exactly {1}.                  

Hence, we compute the Groebner basis for the following polynomial list:

. /
1 0 3 x 1 1 0 x2 y 1 1,/
1

/
2 x2 1 2

/
7 x y 1 2 0 x2 y 1 2 0 x3 y 1 2

/
2 y2 1 2

/
2 x y2 1 2 0 2 x2 y2 1 2,

/
3 x 0 x2 y, x 0 y 0 x y -

The Groebner basis:

.
1 -
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Hence, (Formula (Test): B1.2) is proved.

Since all of the individual subtheorems are proved, the original formula is proved. �
             ------------------

In fact, the proof text produced does not only show the essential steps in the proof but also explains the proof method itself

in every particular example proof: It  shows, at the beginning of the proof, how the initial proof problem can be reduced to

the problem of computing certain Groebner bases.

� Example: Inventing and Proving Combinatorial Identities Involving the Sum Quantifier

Recently, much progress has been made on the invention and proof of  combinatorial identities, i.e identities involving

combinatorial functions and the summation and product quantifiers. Some of the methods used in this area are also based on

a non-commutative version of the Groebner bases method. In Theorema, the work of the research group of Peter Paule at

RISC is  also integrated. The respective prover can be called under the name 'Paule-Schorn–Telescope' method. For

example, for the following sum

Formula
�
"SIAM series",�

k � 1,…,n

� �
1� k � 1 �

4k 	 1� �
2k � 
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �� � � � �

2k � 2k 
 1� � k � 1� � 2k k � �
the call

Prove� Formula� "SIAM series" � , by � PauleSchorn–Telescope, built–in � Built–in � "PauleSchorn" � �
automatically invents the following closed form and provides the following proof for its correctness:

           --------------

Theorem:

If � 1 � n is a natural number, then:�
k � 1,…,n

������ � � � 1 � k 2  2 k ! 2 k " # $ 1 % 4 k &' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '' ' ' ' ' ' ' '' ' ' ' ' ' ' '' ' ' '
k ( ) 1 * k + ( ) , 1 * 2 k + -. //// 0 1 1 2 3 2 1 4 n 2 5 2 n 3 2 n 4 67 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7

n 6 3 1 1 n 4 6
Proof:

Let 8 k denote the forward difference operator in k then

the Theorem follows from summing the equation9 : 9 1 ; k 2 < 2 k : 2 k ; = : 1 > 4 k ;? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ?
k = : 1 > k ; = : 9 1 > 2 k ; @ 8 k A B C 1 D k 21 E F 2 k G 2 k H I G 1 J k HK K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K KK K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K KK K K K K K K KK K K K K K K K

k I G 1 J k H I G L 1 J 2 k H M
overtherangek N 1, …, n.
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Theequationis routinelyverifiable

by dividing theright–handsideby theleft–handside

andsimplifying theresultingrationalfunction� �
1 � 1 � k 21 � � 2 � 1 � k � � 2 � 1 	 k 
 
 � � 2 
 k �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � �� 1 
 k � � � 2 
 k � � � � 1 
 2 � 1 
 k � � � � � 1� k 21� � 2k � 2 k � � � 1 
 k �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � �

k � � 1
 k � � � � 1 
 2k �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �� � � 1� k 2 � 2 k � 2 k � � � 1 
 4k �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � �
k � � 1 
 k � � � � 1
 2 k �

to 1.

           --------------

The proof of the (automatically invented) theorem is, hence, reduced to a test whether a certain expression can be simplified

to 1. This test can be executed by calling the Mathematica algorithm 'FullSimplify' (which, of course, could also be built into

the above Theorema prover as a last step):

System`FullSimplify
� � � 1 � 1 � k 21 � � 2 � 1 � k � � 2 � 1 � k � � � � 2  k !" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " "" " " " " "� 1  k ! � � 2  k ! � � # 1  2 � 1  k ! ! $ � # 1 ! k 21 % & 2 k � 2 k ! � � 1  k !" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " "" " " " " " " "

k � � 1  k ! � � # 1  2 k !" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " "" " " " " " " " " " "# � # 1 ! k 2 & 2 k � 2 k ! � � 1  4 k !" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " "" " " " " " " " " "
k � � 1  k ! � � # 1  2 k !

'
1

This example demonstrates the power of this recent method: The problem of constructing a closed form for the above input

expression was an open problem for many years! The solution was given in P. Paule,  Computer-Solution of Problem 94-2,

SIAM REVIEW Vol.37 (1995), 105-106 using the Paule-Schorn automated conjecture generator / prover.

( Example: Calling External Provers (e.g. Resolution)

We  have  also  provide  links  from  Theorema  to  various  existing  theorem  provers,  for  example  to  the  Otter  prover  for

predicate logic which is based on the resolution method. For example, after entering the definitions

Definition ) "Inclusion",*
A,B + , A - B . / 0

x 1 1 x 2 A . 3 4 x 5 B 6 6 7 " 8 :" 9
Definition : "Union",;

A,x < = x > ? A @ A B
Y C C x D Y @ E C Y D A @ @ F " ? :" G

Definition H "Powerset",I
A,x C C x D J K A L M N O x P A M M "P:" Q

we can generated an Otter proof of the following proposition 

Proposition R "Union of powerset is included...",S
A

O T J K A L P A M "P T P "Q
by the Theorema call

ProveExternal K Proposition K "Union of powerset is included..." L ,
using U V Definition K "Inclusion" L , Definition K "Union" L , Definition K "Powerset" L W , by U Otter L
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On termination, various information on the resolution proof is returned. The most essential part is the sequence of resolution

steps that lead to the empty clause. In our case, this sequence has the following form:

1[]-subsetequal(union(powerset($c1)),$c1).

2[]-subsetequal(A,B)|-element(C,A)|element(C,B).

3[] subsetequal(A,B)|-element($f1(A,B),B).

4[]-element(A,union(B))|element(A,$f2(B,A)).

5[]-element(A,union(B))|element($f2(B,A),B).

7[]-element(A,powerset(B))|subsetequal(A,B).

10[] subsetequal(A,B)|element($f1(A,B),A).

12[hyper,10,1] element($f1(union(powerset($c1)),$c1),union(powerset($c1))).

35[hyper,12,5] element($f2(powerset($c1),$f1(union(powerset($c1)),$c1)),powerset($c1)).

36[hyper,12,4] element($f1(union(powerset($c1)),$c1),$f2(powerset($c1),$f1(union(powerset($c1)),$c1))).

1376[hyper,35,7] subsetequal($f2(powerset($c1),$f1(union(powerset($c1)),$c1)),$c1).

5347[hyper,36,2,1376] element($f1(union(powerset($c1)),$c1),$c1).

5407[hyper,5347,3] subsetequal(union(powerset($c1)),$c1).

5408[binary,5407.1,1.1] $F.

We see that, in  fact, several thousand intermediate clauses were produced during the resolution proof. Of  course, the

resulting proof is not meant to be "understood" or "read" by humans. This is in sharp contrast to the provers which we try to

produce as internal provers of the Theorema system whose emphasis is on readability and naturalness.

� Example: Computation Using Functors

Finally, we want to illustrate that Theorema smoothly integrates the entire computational power of Mathematica and, in fact,

goes beyond Mathematica as a computing engine in two important respects: We provide the functor construct and we allow

the explict indication of knowledge bases w.r.t. which a computation (i.e. iterated simplification) should be executed. The

Theorema  functor construct, which is  similar to  but more general than the functor construct in  ML,  allows to  define

processes by  which new domains (carriers together with  functions and predicates) are produced from  arbitrary given

domains. As an example, we show the functor 'pol' that takes a domain C of coefficients and a domain T of terms (power

products) and constructs the domain P of polynomials over C and T represented as tuples of pairs of coefficients and power

products ordered by the ordering available on the terms.
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Definition
�
"pol" , any � C, T� ,

pol � C, T� � Functor
�
P, any � c, d, i, m��� � , n� � , p, q, s, t � ,

� � 	 

0
P

� 	 

1
P

� � � 1
C
, 1

T � �
 � �
P

q � q

p
�
P


 � � p
 

c, s

�
, m
��� � � �

P


 

d, t

�
, n
� � � � � � c, s � � � � m��� � � �

P
� � d, t � , n� � � � � s �

T
t,�

d, t  ! " � � c, s  , m#�# #  $
P

�
n# #  % & t �

T
s,

" ' c $
C

d, s ( % ! " � m#�# #  $
P

�
n# #  % & ) c * +

C
d , ,- .

m/�/ / 0 1
P

.
n/ / 0 2 3 otherwise 45

P 6 7 8 6 75
P 6 6 c, s 7 , m

9�9 9 7 8 : ;C c, s < = > ?
P @ mA�A A B C

p ?
P

q D p E
P

> ?P q C
@ B F

P
q G H I

p F
P

H I G H I
H H c, s I , m

J�J J I F
P

H H d, t I , n
J J I G K L L c F

C
d, s F

T
t M M N

P
H H c, s I I F

P
H nJ J I O N

P
H mJ�J J I F

P
H H d, t I , n

J J I

P P
Having introduced this functor, one can now apply it to particular coefficient and power product domains and produce, by

one  functor  call,  the  corresponding  polynomial  domain  in  tuple  representation.  Let  us  assume,  for  example,  that  the  two

domains  Q  (integers)  and  R  (trivariate  power  products  as  triples  of  natural  numbers  encoding  the  exponents  at  the  three

indeterminates)  have  already  been  defined  (using  appropriate  parameter-less  functors)  in  appropriate  definitions

Definition["integers"]  and  Definition["power  products"].  Building  up  the  corresponding  polynomial  domain  S  and

computing in S  would then proceed as follows:

Theory T "F",

Definition U "integers" V
Definition U "power products" V
Definition U "pol" V

W

Definition U "D",X Y
pol Z [ , \ ] ]
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Use� � Built–in � "Quantifiers" � , Built–in � "Connectives" � , Built–in � "Numbers" � ,
Built–in � "Tuples" � , Built–in � "Sets" � , Built–in � "naturalnumbers" � , Theory� "F" � , Definition � "D" � � �

Note that, in addition to user–defined knowledge like Theory["F"] and Definition["D"],  in Theorema one can also explicitly

make available built-in computational knowledge (algorithms) from the underlying Mathematica and Theorema  library by

using the 'Built–in' construct. Now, for example, the call

Compute
� � � � 5, � 2, 3, 1� � , � 3, � 1, 6, 3� � � �� � 	 	 5, 	 2, 3, 1 
 
 , 	 3, 	 1, 6, 3 
 
 
 �� 	 	 5, 	 2, 3, 1 
 
 , 	 3, 	 1, 6, 3 
 
 
 � � 


produces

	 	 125, 	 6, 9, 3 
 
 , 	 225, 	 5, 12, 5 
 
 , 	 135, 	 4, 15, 7 
 
 , 	 27, 	 3, 18, 9 
 
 

which,  in  the  usual  representation  of  trivariate  polyonomials,  is  the  result

125 x16 x29 x33 � 225 x15 x212 x35 � 135 x14 x215 x37 � 27 x13 x218 x39 of expanding � 5 x12 x23 x3 � 3 x1 x26 x33 � 3
.

� Conclusion

I believe that, going into the direction of systems like Theorema, the following will soon be possible:

� Computer-support of all aspects of doing mathematics will reach higher and higher levels including inventing,

exploring, proving, and managing mathematical knowledge.

� All aspects of doing mathematics are supportable in one common logical and software-technological frame.

� In  particular,  nonalgorithmic  and  algorithmic  mathematics  are  supportable  in  one  common  logical  and

software-technological frame (in other words, mathematics, and computer science will reconcile).

As a result, the way how we invent, teach, and apply mathematics and the way how mathematical knowledge is published,

stored  in  knowledge  bases  and  retrieved  will  change  drastically.   For  this  change  to  happen,  the  improvement  of

mathematical systems along the lines of systems like Theorema is one important prerequisite but on the only one. The other

one is that the way how the next generation of math students is trained must drastically change, namely into the direction of

giving them much more formal training and culture.
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