Buchber ger-Theorema.nb 1

THAOREMY:
Extending Mathematica by Automated Proving

Bruno Buchberger
Research Institute for Symbolic Computation
University of Linz, Austria

Bruno.Buchberger @RISC.Uni-Linz.ac.at

Invited talk atthe conferencé The ProgrammindSystemMathematican Science;TechnologyandTeaching"
Zagreb,SeptembeR7-28,2001.

Acknowledgement: The researchdescribedn this paperis supportedy the Austrian National ScienceFoundation(Fonds
zur Férderungder WissenschaftlicheRorschungFWF) undercontractnumberSFB 1302.

m | ntroduction

Theorema is a system aiming at computer-supporting proving, solving, and simplifying as the three basic activities of formal
mathematics. The system is programmed in the Mathematica programming language and, hence, is available on all
platforms on wich Mathematica isinstalled. Theorema also heavily uses advanced features of the Mathematica front-end and
it is aso possible to access the complete computational functionality (the algorithm library) of Mathematica from the
Theorema surface. Thus, Theorema can be seen as an extension of the typical current mathematical software systems
towards making them atool aso for mathematical reasoning and mathematical knowledge management.

The main innovative feature of Theorema is its library of general and special automated theorem provers and its logical
coherence: The Theorema language is a version of higher order predicate logic in attractive syntax, which comes close to the
usua syntax of informal mathematics commonly used in mathematical textbooks and publications. The Theorema language
alows to formulate non-a gorithmic and algorithmic mathematics in one uniform frame. Part of the Theorema language is a
universal programming language. Thus, formulae in Theorema can be processed either by provers (for deciding about the
truth of formulae), or by solvers (for finding substitutions that make the formulae true) or by simplifyers (for finding
equivalent simplified versions of the formulag). Collections of statements in the Theorema system can be organized in
hierarchical knowledge bases that alow to express structure in mathematical knowledge and to access well-defined parts of
the mathematical knowledge in a controlled way. The Theorema library of general and specia provers, solvers, and
simplifiersis permanently growing.

In this talk, we present Theorema by a sequence of live demo examples and we will then discuss the possible implications of
systems like Theorema for the future of mathematics (research, teaching, applications).

The Theorema system is a joint effort of the Theorema Group at RISC under the direction of Bruno Buchberger with
essential contributions by Tudor Jebelean, Wolfgang Windsteiger, Temur Kutsia, and Koji Nakagawa and the former and
current PhD students Elena Tomuta, Franz Kriftner, Daniela Vasaru, Claudio Dupret, Florina Piroi, Markus Rosenkranz,
and Christian Vogt.

Buchberger-Theorema.nb 2

= Example: Manipulating Mathematical Text

We first give a couple of mathematical formulae in the syntax of Theorema, which essentialy is a higher order predicate
logic. The notation of Theorema is two-dimensional and should come as close as possible to the usua notation in
mathematical text books. Before one can use Theorema, one must install the system and then load the system by entering

Needs["Theoremd']

into a Mathematicacell.

The actual Theorema formulae are labeledby key words like 'Definition’, 'Proposition’,etc. and short text in quotation
marks. Theselabels can be used later for referencingformulae. The 'any' constructdeclaresthe free variablesin the
formulae. All identifiers that are neither free nor quantified variablesare constants.Theorema mathematicaltext like
definitions, propositionsetc. maybe enterednto

Definition|"limit:", any[f, al,
limit[f, ale= v 3V [f[n] - &l <¢]
€ n

e0 n=N

Proposition["limit of sum", any[f, &, g, b],
(limit[f, a] Alimit[g, b)) = limit[f + g, a+ b]]

Definition["+:", any[f, g, x],
(f +9Ix] = f[x] + glx]]

Lemma["|+|", any[Xx, Y, & b, §, €],
(Ix+y)-(@+b|<(@+€) « (x-a<sAly-b<e]

Lemma["max", any[m, M1, M2],
m=ma{M1, M2] = (Mm=M1Amz=M2)]

Now we illustratehow formulaecanbe composednto knowledgebasedy the Theory'construct:

Theory["limit",
Definition["limit:"]
Definition["+:"]
Lemma["[+]"]]
Lemma["max’]

This knowledgebasemay later be referredto by Theory["limit"]. The 'Theory'constructis recursive.Thus, hierarchical
knowledgebasesanbecomposed.

Note that Theorema allows to expressall formulae expressiblein TeX and similar systemsbut is wysiwyg (like
Mathematica)and, in contrastto ordinary mathematicaltext processingsystems,producesformulae whose syntactical
structureis entirely accessibleso that formal mathematicamanipulation(proving, simplifying, solving) can be donewith
suchformulae.

Buchberger-Theorema.nb 3

m | ogicographic Symbols

In addition, and in contrast to all existing mathematical systems, Theorema provides the facility to design and introduce
arbitrary new symbols for function and predicate constants, which may convey the intuitive meaning of these symbols by
arbitrary complex and user-defined graphics. We call these symbols "logicographic symbols’. An example of some
Theorema formal text using logicographic symbols is given below. This text forms part of a theory of tuples on which the
correctness proof of the merge-sort algorithm can be based.

Algorithm[” stmg" , any[X],
Definition[”istv” , any[X, Y],

X < X} =<1

- 1l ¥ E‘”{H/\]“

< otherwise

Lemma["mg” , any[A, B],
BE-8

Lemma[”ng” , any[A, B],

&

The above presentation of Algorithm["stmg"] (sorting by merging) states that the sorting a tuple X produces X if the length
of X isless or equal 1 and, otherwise, proceeds by merging the sorted left part of the sorted right part of X. Similarly,
Algorith["mg"] (merging) is defined recursively using various logicographic symbols whose meaning should be self-
explanatory or, at least, easy to remember. Definition["istv"] (is sorted version) states that tuple X is a sorted version of
tuple Y iff X is sorted and X is a permuted version of Y. Lemma["mg"] (a property of merge) states that, if tuple A is sorted
and tuple B is sorted, then the merge of A and B is aso sorted. Lemma["mg2"] (another property of merge) states that the
merge of A and B is a permuted version of the concatenation of A and B. Most of the symbols appearing in the above
formulae are not in the fixed arsenal of symbols of Mathematica but can be designed and then declared and used by the
Theorema user applying a couple of specia tools provided by Theorema.

m Example: The PCS Prover

The PCS proof method, proposed and developed by the author in 2000, is a heuristic proof method for predicate logic
whose main goal is to generate "natural” proofs.

Roughly, the PCS prover proceeds by iteratively going through the following three phases:
e P-phase ("Proving" phase)

e C-phase ("Computing" phase, simplifying phase)

Buchber ger-Theorema.nb 4

e S-phase ("Solving" phase).

The PCS method is particularly useful for proving theorems about notions defined by aternating quantifiers and reduces
proving of such formulae to constraints solving. A typical example of a notion defined by alternating quantifiers is the
notion of limit in analysis, see the definition above.Here is the call that calls the PCS prover for proving the above
Proposition["limit of sum"] using the knowledge in the Theory["limit"]:

Prove[Proposition["limit of sum"], using —» Theory["limit"], by - PCS]

After a couple of seconds, the following proof text (including the intermediate English explanatory text) will be produced
completely automatically.

Prove:

(Proposition (limit of sum)) . v b(Iimit[f, al Alimit[g, b] = limit[f + g, a+ b)),
,a,0,

under the assumptions:

(Definition (limit)) v |limit/f,a] < v 3 v (f[n]—a <),

e>0 n=N

(Definition (+:)) Y ((f +9)[x] = F[X]+g[xD),
,0.X

(Lemma (|+)) Vb - (X+y) —(@a+bl<d+e<c(Ix—a<dAly—-Db| < e)),
X,Y,8,0,¢

(Lemma (max)) Y (m=max[M1, M2] = m>= M1A m=>= M2).
mM1,M2

We assume
(D) limit[fg, ag] A limit[gg, bol,
and show
(2) limit[fo + o, & + bo].
Formula (1.1), by (Definition (limit:)), implies:

©) vav (Ifoln] — &l < €).

e>0 n=N

By (3), we can take an appropriate Skolem function such that

@ v v (folnl-al <),
>0 n=Ng|€]

Buchberger-Theorema.nb

Formula (1.2), by (Definition (limit:)), implies:

©) \Z' % \;’ (Igo[n] — bo| < €).

e>0 n=N

By (5), we can take an appropriate Skolem function such that

® v Y (goln] ~bol <o),

e>0 n=Nq[€]
Formula (2), using (Definition (limit:)), isimplied by:

(7) \;’ ﬁ \r{ (I(fo + 9o)[N] — (& + bo)| < €).

e>0 n=N

We assume
8 e >0,
and show

9 ’? \r{ (I(fo + go)[N] — (80 + bo)| <).

n=N

We havetofind N3 such that
(10) ¥V (n= N3 = |(fo + go)n] - (80 + bo)l < €0)-
Formula (10), using (Definition (+:)), isimplied by:
(11) ¥ (n=N3 = |(foln] + GolnD) ~ (20 + bo)l < €0).
Formula (11), using (Lemma (J+])), isimplied by:

(12) 036 \n/(n = N3 = [fo[n] — &l < J Algo[n] —bo| < €).

JS+e=€p

Wehavetofind &g, €;, and N5 such that
(13) 65+ei =) /\ Y (= N5 > ffoln] &l <5 Algoln] — bol < &),
Formula (13), using (6), isimplied by:
63 +€i =€0) \ ¥ (1= N3 = & > 0 An= Nal€fI A lfoln] - 2l < &),

which, using (4), isimplied by:

Buchberger-Theorema.nb 6

(65+e*1’=eo)/\\r{(nz N3 = 65 > 0A € > 0An=Nol[d5] An= Nil€]),
which, using(Lemma(max), is implied by:
(14) (5y+¢€; = eo)/\\nf (n= N3 = 65>0A€ >0An=maxNo[65], Ni[€]]).
Formula(14) is implied by
(15 @o+ei=co) /\o5>0/\ &> O/\\n! (n= N3 = n = ma{No[65], Na[€]]).
Partially solvingit, formula(15) is implied by
(16) (65 + €1 =€) Adp >0/ e >0A (N3 =maqNo[dp], Nilei]D.
Now,
Gh+€ =€) AN6y>0A€ >0
canbesolvedfor 65 ande; by a call to Collins cad-methodyielding a samplesolution
5 < 3
€e 3
Furthermore, we can immediately solve
N5 = max[No[dp], N1[€1]]
for N3 by taking
N3 « max[Nol 1, N[5 1].

Hence formula (16) is solved, and we are done.

We hope that, from the sample proof, it is clear what we mean by a "natural” proof: It is structured very much the way a
proof produced by a human mathematician would be structured and it should be "easy to read and understand”. Note that, in
addition, the proof generated by our PCS method aso produces interesting information that is normally not produced in the
proofs given in the usual mathematical textbooks: The explicit term for N3 explains in detail how an index bound for the
sequence f+g can be obtained from an index bound for the input sequences f and g. In alive session of Theorema, additional
tools are available that support easy understanding of the proof. For example, the label hyperlinks can be used in order to
open a small window in which the formula referenced will be displayed. Also, on the right-hand margin of the proof
notebook, nested brackets are shown that make it possible to contract subproofs to just one line so that it is easy to preserve
overview on the overall structure of the proof while studying certain details.

Buchber ger-Theorema.nb 7

In fact, as simple as they may seem for well-trained mathematicians, proofs in elementary analysis are still a challenge for
automated proving methods. Hence, the possibility to generate such proofs automatically and, in addition, come up with
natural and readable proofsin this area, is quite a strong indication of the potential of the PCS method.

m Example: Set Theory Prover

The Theorema set theory prover is also based on the PCS principle. In addition to the predicate logic natural deduction
inference rules it incorporates specia inference rules for the basic notions of set theory, in particular the special set
quantifiers. We show a typical Theorema formal text in set theory consisting of a couple of definitions and a proposition
whose proof is then automatically generated by the Theorema set theory prover:

Definition["reflexivity", any[~, Al,

is—eflexivea[~]:& V x~ x]
XeA

Definition["symmetry, any[~, Al,

is-ssymmetrig[~]:= V X~y=y~ x)]
X,yeA

Definition["transitivity', any ~, Al,

istransitive[~]:& V (X~YyAy~zZ=X~ z)]
X,y,zeA

Definition["equivalencia any ~, Al,

is—reflexivea[~]
is—equivalencg[~]:<:>/\ is—symmetrig [~]]
is—transitive\[~]

Definition["clas$, any[x, ~, Al,
clasg -[X] :={acA|a~xAXxeA}]]

Proposition["equalclasses anyix e A,y € A, ~, A], with[is—equivalencg[~ 1],
X ~y = (clasg -[x] = clasa ~[y])]

ProvdPropositiofi"equalclassey,
using— (Definition["equivalence'], Definition["transitivity"], Definition["symmetry"], Definition["class']),
by — SetTheoryPCSProver,
transformBy — Proof Simplifier, TransformerOptions - {branches — Proved, steps —» Useful}, ShowOptions - {},
ProverOptions » {GRWTarget - {"goal”, "kb"}, AllowlIntroduceQuantifiers— True,
UseCyclicRules— True, DisableProver - {STC, PND}, ApplyBuiltins - {}}, SearchDepth — 50]

This call generates the following proof completely automatically. Note that, typicaly, in addition to the three essentia
arguments (proof goal, knowledge base, and prover) of the Theorema Prove function, the user may provide optional
information that gives strategic help to the prover, determines the appearance of the output, etc.

Buchberger-Theorema.nb

(Proposition (equal classes))
N Y (xe AAye AAis—equivalencgl ~]= (X ~y= (clasg -[X] = class, -[Y]))),
XY~
undertheassumptions:
(Definition (equivalence))

AV (is—equivalencg] ~] :< is—reflexivea[~] A is—symmetrig[~] A is—transitive\[~ 1),

(Definition (transitivity))

\4 (is—transitive\[~] = VY (Xe A/\yeA/\zeA:>(x~y/\y~z:>x~z))),
X,Y,Z

(Definition (symmetry)) Av (is—symmetrig\[~]lie VXeAANyeA=s(X~y=2y ~ x))),
~ Xy
(Definition (class)) AV (clasay~[x] ={al(@~xAxeAAae A})
WXy~ a

We assume

(1) xo Ao Yoe Ao Ais—equivalencg [~o 1,
andshow

(2 %o ~o0 Yo = (clasg,, - [%] = class,, [Yo)).
We prove(2) by thedeductiorrule.
We assume

() X ~oYo
andshow

(6) clasg, -,[%0] = class,, [Yol
Formula(6), using(Definition (class), is implied by:

(7 {a:!XOEAO/\aE AoAamxo}z{aallyoer/\ae Ao Aa~p Yol

We show(7) by mutualinclusion:

c: Weassume

(8 xoeAghalge AgAalg ~Xo

Buchberger-Theorema.nb

andshow:
(9 YoeAoAalpe AgAaly ~o Yo
We provetheindividual conjunctivepartsof (9):
Proofof (9.1) yp € Ag:
Formula(9.1) is truebecausd is identicalto (1.2).
Proofof (9.2) aly € Ao:
Formula(9.2) is truebecausét is identicalto (8.2).
Proofof (9.3) aly ~o Yo:
Formula(1.3), by (Definition (equivalence) implies:
is—reflexives,[~o] A is-symmetrig [~o] A is-transitive,[~o],
which, by (Definition (transitivity)), implies:
(12
xzz Xe AoANye AgANze Apg=> (X~ YAY ~pZ=> X~ z))/\ is—reflexiven,[~o] /\ is=symmetrig_[~o].
Formula(9.3), using(12.1), is implied by:
(13) 3(alo€AoAYO€A0/\y€Ao/\alo ~0 YAY ~o Yo)-
Now, let y := xo. Thus,for proving(13) it is sufficientto prove:
(14) aloe AoAYoe AoAXoe AgAaly ~o Xo A Xo ~o Yo-
We provetheindividual conjunctivepartsof (14):
Proofof (14.1) aly € Ao:
Formula(14.1) is truebecausét is identicalto (8.2).
Proofof (14.2) yp € Ao:
Formula(14.2) is truebecausét is identicalto (1.2).
Proofof (14.3) xo € Ao:

Formula(14.3) is truebecausét is identicalto (8.1).

Buchberger-Theorema.nb 10

Proof of (14.4) aly ~g Xo:

Formula (14.4) istrue becauseit isidentical to (8.3).
Proof of (14.5) Xy ~o Yo:

Formula (14.5) istrue because it isidentical to (5).
2: Now we assume

..... We do not print the second part of the proof (whichissimilar to thefirst part) in this paper ...

m Exampe: Induction Proofsand the Cascade

Now we demonstrate a special induction prover for equalities on natural numbers in the representation 0, 07, 0**, ..., where
ot denotes the successor function. This prover, in its current version, is not very powerful because the underlying simplifier
is not very strong. (A much better equatioanl simplifier is under development.) The main point of this demo will be the use
of ageneral strategy, the "cascade", which often yields proofs by "inventing intermediate lemmata’ for which a given prover
would not be able to provide a proof by asingle application. We start with an inductive definition of addition:

Definition["addition", any[m, n],
m+0=m " +O:"]

m+nt=(m+n* "+ .
Now let ustry to provecommutativityby induction:

Proposition["commutativityof additior', anyim, n],
m+n=n+m "+ ="]

ProvdPropositiofi"commutativityof additiori],
using- (Definition["additior']),
by - NNEgIndProver
ProverOptions»> {TermOrder-» LeftToRight, presentation» 100];

The attemptto generatea proof automaticallyby the induction prover NNEqIndProverfails. In Theorema, in contrastto
other theoremproving systemswe also generatethe output for failing proofs becausea lot can be learnedfrom failing
proofs.We do not showall detailsof thefailing proof but only anessentiaportionof it:

Simplification of thelhsterm:

Buchberger-Theorema.nb 11

my* +0= by (Definition (addition): +0:)
m*]

Simplification of the rhs term:
(0+my)”]

Hence, it is sufficient to prove:
(14) m* = (0+m)*.

It turns out that the prover is, basically, stuck at (14). A human prover would immediately guess that proving
x m=0+m

as alemma, before proceeding with the proof of commutativity, would be a promising approach. This fundamental strategy
of analyzing failing proofs and generating a genera conjecture from the situation at which the prover is stuck, is
implemented, in a recursive way, in Theorema. It is called the "cascade", which has basically two arguments: a prover and a
conjecture generator (based on the analysis of failing proofs). In our case, the procedure can be started by entering

Prove[Proposition["commutativity of addition"],

using — Definition["addition"],
by —» CascadelNNEqIndProver, ConjectureGenerator], ProverOptions - {TermOrder — LeftToRight}];

This call results in the automated generation of the following sequence of proof attempts and, finaly, a successful proof of
commutativity. Note that, in the course of producing these proof attempts and the final proof, the initial knowledge base is
automatically enlarged by lemmata, and in fact quite natural and interesting lemmata, which are invented automatically in
the course of analyzing the failing proof attempts:

Prove:
(Proposition (+=): +=) n\;’n (M+n=n+m),
under the assumptions;
(Definition (addition): +0:) x (m+ 0 =m),
(Definition (addition): + .:) n\{n (M+n* = (m+n)*).

.... Proof fails and leads to the automated invention of the following lemma:

Y (0O+m=m).
m

whose proof is now attempted next.

Buchberger-Theorema.nb 12

Prove:
(Proposition (19): 19) X O+ m=m),

under the assumptions:
(Definition (addition): +0:) ¥ (m+0=m),
(Definition (addition): + .:) n\{’n (M+n* =(M+n)*).

... This proof succeeds and, hence, the lemma can be added to the knowledge base and the proof of
commutativity is attempted again.

Prove:
(Proposition (+=): +=) n\{’n (M+n=n+m),
under the assumptions;
(Proposition (19): 19) x (0O+ m=m),
(Definition (addition): +0:) ¥ (m+0=m),
(Definition (addition): + .:) n\{n (M+n* =(M+n)*).
.... Proof fails and leads to the automated invention of the following lemma:
n‘{m " +m=n+m").

whose proof is now attempted next.

Prove:

(Proposition (15): 15) V (n* + m= (n+m)"),
nm

under the assumptions;

(Proposition (19): 19) vV (0+ m=m),
m

Buchberger-Theorema.nb 13

(Definition (addition): +0:) vV (m+ 0= m),
m

(Definition (addition): +.:) V¥ (m+n* = (m+n)").
m,n

... This proof succeeds and, hence, the lemma can be added to the knowledge base and the proof of
commutativity is attempted again.

whose proof is now attempted next.
Prove:

(Proposition(+=): +=) VY (m+n=n+m),
m,n

undertheassumptions:

(Proposition(15): 15) n\?rlﬂ (" +m=n+m"),
(Proposition(19):19) r\i (O+m=m),

(Definition (addition): +0:) g: (m+0=m),
(Definition (addition): + .:) n\fn (M+n* =(mM+ny*).

.... This proof succeeds and, hence, commutativity is proved.

The cascadecan also be viewed as a kind of generalcompletion procedurethat goesfar beyondthe Knuth-Bendix
completionprocedurdor equationatheoremproving.

m Example: Proving Booleans of Equalities by Groebner Bases

The next exampleconcernsa special,but quite powerful, prover/ disprover(decisionalgorithm) basedon the author's
Groebnerbasesmethodfor arbitrary universally quantified booleancombinationsof arithmeticalequalitiesover complex
numbersHereis atypical formulain this class:

Formula["Test’, anyx, yl,

(0CYy=3x))V (xy+x+y) 0V "B1"
(CPY+3X=0)V (—2X2+ -TXY+ X2y + X3y + -2y? + —2xy? + 2x2y?) = 0))]
AOC + =Xy + X2y + =2y? + =2xy?) = 0)
The following Theorema call produces, fully automatically a proof that thisformulais true over the complex numbers:
Prove[Formula"Test"], using - {}, by —» GroebnerBasesProver]

- ProofObject -

Buchberger-Theorema.nb 14

Hereisthe automatically generated proof text:
Prove:

(Formula (Test): B1)

x\fy(((xz*y—s*x)aeO)V(X*y+x+y¢0)v«x2>:<y+3>:«x=0)v ,

(25 X%+ (=X Y+ X x Y+ XCx Y+ (=2 x Y2 + (=2 s Xx Y2 + 25 X2 x Y2 = O) A
P+ (=X) Y+ Xx Y+ (=2 % Y2 + (=2) x Xx Y2 = 0))

with no assumptions.

Proved.

The Theorem is proved by the Groebner Bases method.

The formulain the scope of the universal quantifier istransformed into an equivalent formulathat isa
conjunction of disiunctions of equalities and negated equalities. The universal quantifier can then be
distributed over the individual parts of the conjunction. By this, we obtain:

Independent proof problems:
(Formula (Test): B1.1)

V(O + (=X Y)+ XY+ (=2 x Y2 + (=2 Xx Y2 = 0) V (-3 X+ X2 x Y £ 0) V/ (X+ Y+ Xx Y # 0))
Xy

(Formula (Test): B1.2)

V (Bxx+X2xy=0)V
Xy

(=2) 5 X2 + (=) X Y+ X2 Y+ X Y+ (=2 Y2 + (=2) 5 X Y2 + 25 X2 Y2 = 0)
(=3 x+X2xy£0)V (X+ Y+ X+ Yy #0))

We now prove the above individual problems separately:
Proof of (Formula (Test): B1.1):

... We do not print this part of the proof in this paper, sinceit is easier than the second part of the proof. ...
Proof of (Formula (Test): B1.2):

This proof problem has the following structure:

Buchberger-Theorema.nb 15

(Formula (Test): B1.2.structure) vV ((Poly[1] #+ 0) V (Poly[2] + 0) V (Poly[3] = 0) V (Paly[4] = 0)),
Xy

where

Poly[1] = (-3)#X+X2xy

Poly[2] = X+y+Xxy

Poly[3] = 3xXx+X2xy

Poly[4] = (=2)#X°+ (=D Xx Y+ X5 Y+ X5 Y+ (=2 Y2 + (—2) # X5 Y2 + 25 X2 5 Y2

(Formula (Test): B1.2.structure) is equivalent to

(Formula (Test): B1.2.implication) Vv ((Poly[1] = 0) A (Poly[2] = 0) = (Poly[3] = 0) V (Poly[4] = 0))
Y

(Formula (Test): B1.2.implication) is equivaent to

(Formula (Test): B1.2.not-exists)

Xﬂy (((Poly[1] = 0) A (Poly[2] = 0)) A ((Poly[3] + 0) A (Poly[4] # 0))).

By introducing the slack variable(s)

{€1,62}

(Formula (Test): B1.2.not-exists) is transformed into the equivaent formula

(Formula (Test): B1.2.not-exists-slack)

A ((Poly[1] = 0) A (Poly[2] = 0) A (=1 + &1 Poly[3] = 0) A (=1 + €2 Poly[4] = 0)).
X,Y,£1,62

Hence, we see that the proof problem is transformed into the question on whether or not a system of
polynomial eguations has a solution or not. This question can be answered by checking whether or not the
(reduced) Groebner basis of

{Poly[1], Poly[2], -1+ £1 Poly[3], -1 + £2 Poly[4]}
isexactly {1}.
Hence, we compute the Groebner basis for the following polynomial list:

(—1+3x&1+x%yé&l,
—1-2XPE2-TXYE2+XPyE2+ X3y E2 —2Y2 E2 - 2X Y2 E2 4+ 2X2 Y2 £2, —3X + X2y, X+ Y + X Y}

The Groebner basis:

{1

Buchberger-Theorema.nb 16

Hence(Formula(Test):B1.2) is proved.

Sinceall of theindividual subtheoremareproved the original formulais proved.

In fact, the proof text produceddoesnot only showthe essentiaktepsin the proof but alsoexplainsthe proof methoditself
in everyparticularexampleproof: It shows,at the beginningof the proof, how the initial proof problemcanbe reducedto
the problemof computingcertainGroebnebases.

= Example: Inventing and Proving Combinatorial 1dentities | nvolving the Sum Quantifier

Recently, much progresshas beenmadeon the invention and proof of combinatorialidentities, i.e identities involving
combinatorialfunctionsandthe summatiorandproductquantifiers.Someof the methodsusedin this areaarealsobasedon
a non-commutativesersionof the Groebnerbaseamethod.In Theorema, the work of the researchgroup of PeterPauleat
RISC is also integrated.The respectiveprover can be called under the name 'Paule-SchorriFelescope'method. For
example for thefollowing sum

Formula["SIAM series,

D 4k + 1) (2k)!]
L 2X2K=1)(k+ 1! 2¢K!

thecall

ProvgFormuld"SIAM serie$], by -» PauleSchorriFelescopgbuilt—in - Built—in["PauleSchorf]

automaticallyinventsthefollowing closedform andprovidesthefollowing prooffor its correctness:

Theorem
If —1+n isanatural number, then:

—(=DK 272k 2k)1 (L + 4K) —(=1" 272" 2n)!
Z(KasRC1+20)~ Y " hiaan

Proof:

Let Ay denote the forward difference operator in k then

the Theorem follows from summing the equation

—(=D* 272k 2k (1 +4k) (=D 212k 211 (1 + k)
KIQ+K!(-1+2k) { KIA+ K (—1+2K]

overtherangek =1, ..., n.

Buchberger-Theorema.nb 17

Theequationis routinelyverifiable
by dividing theright-handsideby theleft-handside
andsimplifying theresultingrationalfunction
(k2040 @ a4k 24k (=D 212K 21 (1+k)
(14+K)! (2+K)! (—1+2 (1+k)) k! (1+K)! (-1+2k)
—(=1K 22K 2 k)1 (1+4k)

The proof of the (automaticallyinvented)theoremis, hencereducedo atestwhethera certainexpressiorcanbe simplified
to 1. Thistestcanbe executedy calling the Mathematicalgorithm'FullSimplify' (which, of course couldalsobe built into
the aboveTheorema proverasalaststep):

(~DMk 2240 @ (14K (2+K) (-DX 242k 241 (1+k)
(LR (2R (—L+2(1+K) K (1+K)! (-1+2K)]
—(=Dk2-2k 2K)! (1+4 k)
K 1+K)! (-1+2K)

System‘FuIISimpIif{/

This example demonstrates the power of this recent method: The problem of constructing a closed form for the above input
expression was an open problem for many years! The solution was given in P. Paule, Computer-Solution of Problem 94-2,
SIAM REVIEW Vo0l.37 (1995), 105-106 using the Paule-Schorn automated conjecture generator / prover.

m Example: Calling External Provers(e.g. Resolution)

We have aso provide links from Theorema to various existing theorem provers, for example to the Otter prover for
predicate logic which is based on the resolution method. For example, after entering the definitions
Definition["lnclusjon",
M ((ac B)e=V (xe A)= (xe B))) "c_::"]
Definition["Union",
Y ((x cUA—=I(xe)A(Y e A))) "U:"]
Definition|"Powerset",

AVX (XePlAD) =KX cA)) "P:"]

we can generated an Otter proof of the following proposition

Proposition["Union of powerset isincluded...”,
Y (UPIAIC A) "PUQ"]

by the Theorema call

ProveExternal[Proposition["Union of powerset isincluded..."],
using - {Definition["Inclusion”], Definition["Union"], Definition["Powerset"]}, by — Otter]

Buchberger-Theorema.nb 18

On termination,variousinformationon theresolutionproof is returned.The mostessentiapartis the sequencef resolution
stepsthatleadto theemptyclauseIn our casethis sequencéasthefollowing form:

1[]-subsetequal (union(powerset($cl)),$cl).

2[]-subsetequal (A,B)|-element(C,A) |element(C,B).

3[] subsetequal(A,B)|-element($f1(A,B),B).

4[]-element(A,union(B))|element(A,$f2(B,A)).

5[]-element(A,union(B))|element($f2(B,A),B).

7[]-element(A,powerset(B))|subsetequal (A,B).

10[] subsetequal(A,B)|element($f1(A,B),A).
12[hyper,10,1element($f1(union(powerset($cl)),$cl),union(powerset($cl))).
35[hyper,12,5klement($f2(powerset($cl),$f1(union(powerset($cl)),$cl)),powerset($cl)).
36[hyper,12,4Element($fl(union(powerset($cl)),$cl), $f2(powerset($cl), $f1(union(powerset($cl)),$cl))).
1376[hyper,35,7subsetequal ($f2(powerset($cl),$f1(union(powerset($cl)), $cl)),$cl).
5347[hyper,36,2,137&lement($f1(union(powerset($cl)),$cl),$cl).
5407[hyper,5347,3%ubsetequal(union(powerset($cl)),$cl).

5408[binary,5407.1,1.1$F.

We seethat, in fact, severalthousandintermediateclauseswere producedduring the resolutionproof. Of course,the
resultingproof is not meantto be "understood'or "read" by humansThis is in sharpcontrasto the proverswhich wetry to
produceasinternalproversof the Theorema systemwhoseemphasiss on readabilityandnaturalness.

m Example: Computation Using Functors

Finally, we wantto illustratethat Theorema smoothlyintegrateshe entirecomputationapowerof Mathematicaand,in fact,
goesbeyondMathematicaasa computingenginein two importantrespectsWe providethe functor constructandwe allow
the explict indication of knowledgebasesw.r.t. which a computation(i.e. iteratedsimplification) shouldbe executed The
Theorema functor construct,which is similar to but more generalthan the functor constructin ML, allows to define
processeshy which new domains (carrierstogetherwith functions and predicates)are producedfrom arbitrary given
domains.As an example we showthe functor 'pol’ thattakesa domainC of coefficientsanda domainT of terms(power
products)andconstructghe domainP of polynomialsoverC andT represente@dstuplesof pairsof coefficientsandpower
productsorderedby the orderingavailableon theterms.

Buchberger-Theorema.nb 19

Definition["pol" , any[C, T],

pol[C, T] = Functor[P, any[c,d,i,m,m,p,q,s,t],

s =)
(P)=<)
1=z 1)
0+a=q
pgo=p

(© 9, M+ (0, M = (e, - (M) 1 «cd, M) < s>,
A o-(Ccomim)etss
(e d 9)- (cm £) = (c# <),
((m) JE (‘n)) < otherwise”
50=0
5((€, 9, M = (¢, 5) - (5(m)
Psa=p%(59)
05a=0
P50 =0
6, 9 M (¢d, 1, = (e, sut)) £ e, 9) 2 M) + (M5 (d, v, M)

I

Having introduced this functor, one can now apply it to particular coefficient and power product domains and produce, by
one functor call, the corresponding polynomia domain in tuple representation. Let us assume, for example, that the two
domains Z (integers) and T (trivariate power products as triples of natural numbers encoding the exponents at the three
indeterminates) have aready been defined (using appropriate parameter-less functors) in appropriate definitions
Definition["integers'] and Definition["power products']. Building up the corresponding polynomial domain [P and
computing in P would then proceed as follows:

Theory["F",
Definition["integers']
Definition["power products']]
Definition["pol"]
Definition["D",
P = pol[Z, T]]

Buchberger-Theorema.nb 20

Usd(Built—in["Quantifiers], Built—in["Connectivey, Built—in["Numbers],
Built—in["Tuples], Built—in["Set$], Built-in["naturalnumbers], Theon|"F"], Definition["D"])]

Note that,in additionto user-definedknowledgelike Theory["F"] andDefinition[*D"], in Theorema one canalsoexplicitly
make availablebuilt-in computationaknowledge(algorithms)from the underlyingMathematicaand Theorema library by
usingthe'Built—in' constructNow, for examplethecall

Computd{((5, (2, 3, 1)), (3, (1, 6, 3N £((5, 23, 1), (B, (1,6, 3N £(5, 2,3, 1), G, (1, 6, 3|
produces
((125, (6, 9, 3)), (225, (5, 12, 5)), (135, (4, 15, 7)), (27, (3, 18, 9)))
which, in the usual representation of trivariate polyonomials, is the result
125x1°8 x2° x3® + 225 x1° x21? x3° + 135x1* x2'° x37 + 27 x13 x2'® x3° of expanding (5 x1% x23 x3 + 3x1x2° x33)°.
= Conclusion
| believe that, going into the direction of systems like Theorema, the following will soon be possible:

o Computer-support of all aspects of doing mathematics will reach higher and higher levels including inventing,
exploring, proving, and managing mathematical knowledge.

o All aspects of doing mathematics are supportable in one common logical and software-technological frame.

e |n particular, nonalgorithmic and agorithmic mathematics are supportable in one common logical and
software-technological frame (in other words, mathematics, and computer science will reconcile).

As a result, the way how we invent, teach, and apply mathematics and the way how mathematical knowledge is published,
stored in knowledge bases and retrieved will change drastically. For this change to happen, the improvement of
mathematical systems along the lines of systems like Theorema is one important prerequisite but on the only one. The other
one is that the way how the next generation of math students is trained must drastically change, namely into the direction of
giving them much more formal training and culture.

