
TH�OREM�:
Extending Mathematica by Automated Proving

Bruno Buchberger
Research Institute for Symbolic Computation

University of Linz, Austria

Bruno.Buchberger@RISC.Uni-Linz.ac.at

Invited talk at the conference "The Programming System Mathematica in Science, Technology and Teaching"

Zagreb, September 27-28, 2001.

Acknowledgement: The research described in this paper is supported by the Austrian National Science Foundation (Fonds

zur Förderung der Wissenschaftlichen Forschung, FWF) under contract number SFB 1302.

� Introduction

Theorema is a system aiming at computer-supporting proving, solving, and simplifying as the three basic activities of formal

mathematics. The system is programmed in the Mathematica programming language and, hence, is available on all

platforms on wich Mathematica is installed. Theorema also heavily uses advanced features of the Mathematica front-end and

it is also possible to access the complete computational functionality (the algorithm library) of Mathematica from the

Theorema surface. Thus, Theorema can be seen as an extension of the typical current mathematical software systems

towards making them a tool also for mathematical reasoning and mathematical knowledge management.

The main innovative feature of Theorema is its library of general and special automated theorem provers and its logical

coherence: The Theorema language is a version of higher order predicate logic in attractive syntax, which comes close to the

usual syntax of informal mathematics commonly used in mathematical textbooks and publications. The Theorema language

allows to formulate non-algorithmic and algorithmic mathematics in one uniform frame. Part of the Theorema language is a

universal programming language. Thus, formulae in Theorema can be processed either by provers (for deciding about the

truth of formulae), or by solvers (for finding substitutions that make the formulae true) or by simplifyers (for finding

equivalent simplified versions of the formulae). Collections of statements in the Theorema system can be organized in

hierarchical knowledge bases that allow to express structure in mathematical knowledge and to access well-defined parts of

the mathematical knowledge in a controlled way. The Theorema library of general and special provers, solvers, and

simplifiers is permanently growing.

In this talk, we present Theorema by a sequence of live demo examples and we will then discuss the possible implications of

systems like Theorema for the future of mathematics (research, teaching, applications).

The Theorema system is a joint effort of the Theorema Group at RISC under the direction of Bruno Buchberger with

essential contributions by Tudor Jebelean, Wolfgang Windsteiger, Temur Kutsia, and Koji Nakagawa and the former and

current PhD students Elena Tomuta, Franz Kriftner, Daniela Vasaru, Claudio Dupret, Florina Piroi, Markus Rosenkranz,

and Christian Vogt.

Buchberger-Theorema.nb 1

� Example: Manipulating Mathematical Text

We first give a couple of mathematical formulae in the syntax of Theorema, which essentially is a higher order predicate

logic. The notation of Theorema is two-dimensional and should come as close as possible to the usual notation in

mathematical text books. Before one can use Theorema, one must install the system and then load the system by entering

Needs
�
"Theorema"̀ �

into a Mathematica cell.

The actual Theorema formulae are labeled by key words like 'Definition', 'Proposition', etc. and short text in quotation

marks. These labels can be used later for referencing formulae. The 'any' construct declares the free variables in the

formulae. All identifiers that are neither free nor quantified variables are constants. Theorema mathematical text like

definitions, propositions etc. may be entered into

Definition � "limit:", any � f , a � ,
limit � f , a � � � �� 	

0

N � n

n � N

f � n � � a � � � �

Proposition � "limit of sum", any � f , a, g, b � ,�
limit � f, a � � limit � g, b � � � limit � f g, a b ! !

Definition " " :", any " f , g, x ! ,#
f g $ " x ! % f & x ' (g & x' '

Lemma & ") *) ", any + x, y, a, b, , , - . ,/ 0 /
x 1 y2 3 /

a 1 b 2 4 5 / , 1 - 2 2 6 7 8 x 9 a : ; < = 8 y 9 b : ; > ? @
Lemma A "max", any A m, M1, M2 @ ,

m B maxC M1, M2 D E F m B M1 G m B M2 H D
Now we illustrate how formulae can be composed into knowledge bases by the 'Theory' construct:

Theory I "limit",

Definition C "limit:" D
Definition C " J :" D
Lemma C " K J K " D
Lemma C "max" D

L

This knowledge base may later be referred to by Theory["limit"]. The 'Theory' construct is recursive. Thus, hierarchical

knowledge bases can be composed.

Note that Theorema allows to express all formulae expressible in TeX and similar systems but is wysiwyg (like

Mathematica) and, in contrast to ordinary mathematical text processing systems, produces formulae whose syntactical

structure is entirely accessible so that formal mathematical manipulation (proving, simplifying, solving) can be done with

such formulae.

Buchberger-Theorema.nb 2

� Logicographic Symbols

In addition, and in contrast to all existing mathematical systems, Theorema provides the facility to design and introduce

arbitrary new symbols for function and predicate constants, which may convey the intuitive meaning of these symbols by

arbitrary complex and user-defined graphics. We call these symbols "logicographic symbols". An example of some

Theorema formal text using logicographic symbols is given below. This text forms part of a theory of tuples on which the

correctness proof of the merge-sort algorithm can be based.

The above presentation of Algorithm["stmg"] (sorting by merging) states that the sorting a tuple X produces X if the length

of X is less or equal 1 and, otherwise, proceeds by merging the sorted left part of the sorted right part of X. Similarly,

Algorith["mg"] (merging) is defined recursively using various logicographic symbols whose meaning should be self-

explanatory or, at least, easy to remember. Definition["istv"] (is sorted version) states that tuple X is a sorted version of

tuple Y iff X is sorted and X is a permuted version of Y. Lemma["mg"] (a property of merge) states that, if tuple A is sorted

and tuple B is sorted, then the merge of A and B is also sorted. Lemma["mg2"] (another property of merge) states that the

merge of A and B is a permuted version of the concatenation of A and B. Most of the symbols appearing in the above

formulae are not in the fixed arsenal of symbols of Mathematica but can be designed and then declared and used by the

Theorema user applying a couple of special tools provided by Theorema.

� Example: The PCS Prover

The PCS proof method, proposed and developed by the author in 2000, is a heuristic proof method for predicate logic

whose main goal is to generate "natural" proofs.

Roughly, the PCS prover proceeds by iteratively going through the following three phases:

� P-phase ("Proving" phase)

� C-phase ("Computing" phase, simplifying phase)

Buchberger-Theorema.nb 3

� S-phase ("Solving" phase).

The PCS method is particularly useful for proving theorems about notions defined by alternating quantifiers and reduces

proving of such formulae to constraints solving. A typical example of a notion defined by alternating quantifiers is the

notion of limit in analysis, see the definition above.Here is the call that calls the PCS prover for proving the above

Proposition["limit of sum"] using the knowledge in the Theory["limit"]:

Prove
�
Proposition

�
"limit of sum" � , using � Theory � "limit" � , by � PCS �

After a couple of seconds, the following proof text (including the intermediate English explanatory text) will be produced

completely automatically.

Prove:

(Proposition (limit of sum)) �
f ,a,g,b

�
limit � f , a 	
 limit � g, b � limit � f � g, a � b � � ,

under the assumptions:

(Definition (limit:)) �
f ,a

�
�
������� limit � f , a � � � �� �

0

�
N

�
n

n � N

�
f ! n " # a $ % & '

(
)

******* ,

(Definition (+:)) +
f ,g,x

, ,
f - g . / x 0 1 f 2 x 3 4 g 2 x 3 5 ,

(Lemma (|+|)) 6
x,y,a,b, 7 , 8

9 : 9
x ; y < = 9

a ; b < > ? @ A B C D E x F a G H I J E y F b G H K L L ,

(Lemma (max)) M
m,M1,M2

D m N max O M1, M2 P Q m N M1 R m N M2 S .

We assume

(1) limit O f0, a0 P R limit O g0, b0 P ,

and show

(2) limit O f0 T g0, a0 T b0 P .

Formula (1.1), by (Definition (limit:)), implies:

(3) U VV W
0

X
N

U
n

n Y N

Z [
f0 O n P \ a0] ^ _ S .

By (3), we can take an appropriate Skolem function such that

(4) U VV W
0

U
n

n Y N0 ` a b
c d

f0 e n f g a0 h i j k ,

Buchberger-Theorema.nb 4

Formula (1.2), by (Definition (limit:)), implies:

(5) � �� �
0

�
N

�
n

n � N

� �
g0 � n � 	 b0
 � � .

By (5), we can take an appropriate Skolem function such that

(6) � �� �
0

�
n

n � N1 � � � � �
g0 � n � 	 b0
 � � ,

Formula (2), using (Definition (limit:)), is implied by:

(7) � �� �
0

�
N

�
n

n � N

� � �
f0 � g0 � n � 	 �

a0 � b0
 � � .
We assume

(8) � 0 � 0,

and show

(9) �
N

�
n

n � N

� � �
f0 � g0 � � n � � �

a0 � b0 � � � � 0 � .
We have to find N2 such that

(10) !
n

"
n # N2 $ % "

f0 & g0 ' (n) * "
a0 & b0 ' + , - 0 ' .

Formula (10), using (Definition (+:)), is implied by:

(11) !
n

"
n # N2 $ % "

f0 (n) & g0 (n) ' * "
a0 & b0 ' + , - 0 ' .

Formula (11), using (Lemma (|+|)), is implied by:

(12) ./
, 0/ 1 2 3 4

0

5
n

6
n 7 N28 9 : f0 ; n < = a0 > ? @ A : g0 ; n < = b0 > ? B C .

We have to find D 0E , F 1E , and N2E such that

(13) G D 0E H F 1E I F 0 J K L
n M n N N2O P Q f0 R n S T a0 U V W 0O X Y g0 Z n [\ b0] ^ _ 1̀ a .

Formula (13), using (6), is implied by:

b c
0̀ d _ 1̀ e _ 0 a f g

n

b
n h N2̀ i _ 1̀ j 0 X n h N1 Z _ 1̀ [X Y f0 Z n [\ a0] ^ c

0̀ a ,
which, using (4), is implied by:

Buchberger-Theorema.nb 5

� �
0� � � 1� � � 0 � � �

n

�
n 	 N2�
 �

0� � 0 � � 1� � 0 � n 	 N0 �
0� � � n 	 N1 � 1� � � ,

which, using (Lemma (max)), is implied by:

(14)
� �

0� � � 1� � � 0 � � �
n

�
n 	 N2�
 �

0� � 0 � � 1� � 0 � n 	 max N0 �
0� � , N1 � 1� � � � .

Formula (14) is implied by

(15)
� �

0� � � 1� � � 0 � � �
0� � 0

� � 1� � 0
� �

n

�
n 	 N2�
 n 	 max N0 �

0� � , N1 � 1� � � � .
Partially solving it, formula (15) is implied by

(16)
� �

0� � � 1� � � 0 � � �
0� � 0 � � 1� � 0 � �

N2� � max N0 �
0� � , N1 � 1� � � � .

Now,

� �
0� � � 1� � � 0 � � �

0� � 0 � � 1� � 0

can be solved for
�

0� and � 1� by a call to Collins cad–method yielding a sample solution

�
0� � � 0� � � � � �

2 ,

�
1� � � 0� � � � � �

2 .

Furthermore, we can immediately solve

N2� � max � N0 � � 0� � , N1 � �
1� � �

for N2� by taking

N2� � max � N0 � � 0� � � � � �
2 � , N1 � � 0� � � � � �

2 � � .
Hence formula (16) is solved, and we are done. �

We hope that, from the sample proof, it is clear what we mean by a "natural" proof: It is structured very much the way a

proof produced by a human mathematician would be structured and it should be "easy to read and understand". Note that, in

addition, the proof generated by our PCS method also produces interesting information that is normally not produced in the

proofs given in the usual mathematical textbooks: The explicit term for N2� explains in detail how an index bound for the

sequence f+g can be obtained from an index bound for the input sequences f and g. In a live session of Theorema, additional

tools are available that support easy understanding of the proof. For example, the label hyperlinks can be used in order to

open a small window in which the formula referenced will be displayed. Also, on the right-hand margin of the proof

notebook, nested brackets are shown that make it possible to contract subproofs to just one line so that it is easy to preserve

overview on the overall structure of the proof while studying certain details.

Buchberger-Theorema.nb 6

In fact, as simple as they may seem for well-trained mathematicians, proofs in elementary analysis are still a challenge for

automated proving methods. Hence, the possibility to generate such proofs automatically and, in addition, come up with

natural and readable proofs in this area, is quite a strong indication of the potential of the PCS method.

� Example: Set Theory Prover

The Theorema set theory prover is also based on the PCS principle. In addition to the predicate logic natural deduction

inference rules it incorporates special inference rules for the basic notions of set theory, in particular the special set

quantifiers. We show a typical Theorema formal text in set theory consisting of a couple of definitions and a proposition

whose proof is then automatically generated by the Theorema set theory prover:

Definition
�
"reflexivity", any � � , A � ,

is–reflexiveA � � � : � �
x � A

x 	 x

Definition � "symmetry", any� , A � ,

is–symmetricA � � : � �
x,y � A � x y � y x �

Definition � "transitivity", any� , A � ,
is–transitiveA � � : � �

x,y,z � A � x y � y z � x z�

Definition � "equivalence", any� , A � ,

is–equivalenceA � � : � � ������ ����� is–reflexiveA � � �
is–symmetricA � � �
is–transitiveA � � �

�
Definition � "class", any� x, � , A � ,

classA, ! x " : # $ a % A & a ' x (x % A) *
Proposition + "equalclasses", any+ x , A, y , A, - , A * , with + is–equivalenceA + - * * ,

x - y . / classA, 0 + x * 1 classA, 0 + y* 2 *
Prove+ Proposition+ "equalclasses" * ,

using 3 4 Definition 5 "equivalence" 6 , Definition 5 "transitivity" 6 , Definition 5 "symmetry"6 , Definition 5 "class" 6 7 ,
by 8 SetTheoryPCSProver,

transformBy 8 ProofSimplifier, TransformerOptions 8 9 branches 8 Proved, steps 8 Useful : , ShowOptions 8 9 : ,
ProverOptions 8 9 GRWTarget 8 9 "goal", "kb" : , AllowIntroduceQuantifiers 8 True,

UseCyclicRules 8 True, DisableProver 8 9 STC, PND : , ApplyBuiltIns 8 9 : : , SearchDepth 8 50 ;
This call generates the following proof completely automatically. Note that, typically, in addition to the three essential

arguments (proof goal, knowledge base, and prover) of the Theorema Prove function, the user may provide optional

information that gives strategic help to the prover, determines the appearance of the output, etc.

Prove:

Buchberger-Theorema.nb 7

(Proposition (equal classes))
�

A,x,y, �
�
x � A � y � A � is–equivalenceA � � � � 	 x � y � 	 classA,
 � x � � classA,
 � y � ,

under the assumptions:

(Definition (equivalence))
�

A,
 	 is–equivalenceA � � � : � is–reflexiveA � � � � is–symmetricA � � � � is–transitiveA � � � ,

(Definition (transitivity))

�
A,

�
��� is–transitiveA � � � : � �

x,y,z 	 x � A � y � A � z � A � 	 x � y � y � z � x � z
�
� �� ,

(Definition (symmetry))
�

A,

�
��� is–symmetricA � � � : � �

x,y 	 x � A � y � A � 	 x � y � y � x
�
� �� ,

(Definition (class))
�

A,x,

�
��� classA,
 � x � : � �

a �
a � a � x � x � A � � a � A !" ## .

We assume

(1) x0 $ A0 % y0 $ A0 % is–equivalenceA0 & ' 0 (,
and show

(2) x0 ' 0 y0) * classA0, + 0 & x0 (, classA0, + 0 & y0 (- .
We prove (2) by the deduction rule.

We assume

(5) x0 ' 0 y0

and show

(6) classA0, + 0 & x0 (, classA0, + 0 & y0 (.
Formula (6), using (Definition (class)), is implied by:

(7) . a /
a

x0 $ A0 0 a $ A0 0 a ' 0 x0 , . a /
a

y0 $ A0 0 a $ A0 0 a ' 0 y0 .

We show (7) by mutual inclusion:

1 : We assume

(8) x0 2 A0 3 a10 2 A0 3 a10 4 0 x0

Buchberger-Theorema.nb 8

and show:

(9) y0 � A0
�

a10 � A0
�

a10 � 0 y0.

We prove the individual conjunctive parts of (9):

Proof of (9.1) y0 � A0:

Formula (9.1) is true because it is identical to (1.2).

Proof of (9.2) a10 � A0:

Formula (9.2) is true because it is identical to (8.2).

Proof of (9.3) a10 � 0 y0:

Formula (1.3), by (Definition (equivalence)), implies:

is–reflexiveA0

� � 0 � � is–symmetricA0

� � 0 � � is–transitiveA0

� � 0 � ,
which, by (Definition (transitivity)), implies:

(12)
�

x,y,z

�
x � A0

�
y � A0

�
z � A0 � �

x � 0 y
�

y � 0 z � x � 0 z 	 	
 is–reflexiveA0

� � 0 �
 is–symmetricA0

� � 0 � .
Formula (9.3), using (12.1), is implied by:

(13) �
y

�
a10 � A0

�
y0 � A0

�
y � A0

�
a10 � 0 y

�
y � 0 y0 	 .

Now, let y : � x0. Thus, for proving (13) it is sufficient to prove:

(14) a10 � A0
�

y0 � A0
�

x0 � A0
�

a10 � 0 x0
�

x0 � 0 y0.

We prove the individual conjunctive parts of (14):

Proof of (14.1) a10 � A0:

Formula (14.1) is true because it is identical to (8.2).

Proof of (14.2) y0 � A0:

Formula (14.2) is true because it is identical to (1.2).

Proof of (14.3) x0 � A0:

Formula (14.3) is true because it is identical to (8.1).

Buchberger-Theorema.nb 9

Proof of (14.4) a10 � 0 x0:

Formula (14.4) is true because it is identical to (8.3).

Proof of (14.5) x0 � 0 y0:

Formula (14.5) is true because it is identical to (5).

� : Now we assume

 We do not print the second part of the proof (which is similar to the first part) in this paper ...

� Exampe: Induction Proofs and the Cascade

Now we demonstrate a special induction prover for equalities on natural numbers in the representation 0, 0 � , 0 ��� , ..., where� � denotes the successor function. This prover, in its current version, is not very powerful because the underlying simplifier

is not very strong. (A much better equatioanl simplifier is under development.) The main point of this demo will be the use

of a general strategy, the "cascade", which often yields proofs by "inventing intermediate lemmata" for which a given prover

would not be able to provide a proof by a single application. We start with an inductive definition of addition:

Definition
�
"addition", any � m, n 	 ,

m
 0 � m "
 0:"

m
 n � � m � n� � " � .:" �
Now let us try to prove commutativity by induction:

Proposition � "commutativityof addition", any� m, n� ,
m � n n � m " � " �

Prove� Proposition� "commutativityof addition" � ,
using � � Definition � "addition" � � ,
by � NNEqIndProver,

ProverOptions� � TermOrder� LeftToRight� , presentation� 100� ;
The attempt to generate a proof automatically by the induction prover 'NNEqIndProver' fails. In Theorema, in contrast to

other theorem proving systems, we also generate the output for failing proofs because a lot can be learned from failing

proofs. We do not show all details of the failing proof but only an essential portion of it:

Simplification of the lhs term:

Buchberger-Theorema.nb 10

m1 � � 0 = by (Definition (addition): +0:)

m1 �
�

Simplification of the rhs term:

�
0 � m1 � �

�

Hence, it is sufficient to prove:

(14) m1 � �
�
0 � m1 � � .

It turns out that the prover is, basically, stuck at (14). A human prover would immediately guess that proving

�
m

m 	 0
 m

as a lemma, before proceeding with the proof of commutativity, would be a promising approach. This fundamental strategy

of analyzing failing proofs and generating a general conjecture from the situation at which the prover is stuck, is

implemented, in a recursive way, in Theorema. It is called the "cascade", which has basically two arguments: a prover and a

conjecture generator (based on the analysis of failing proofs). In our case, the procedure can be started by entering

Prove � Proposition � "commutativity of addition" � ,
using Definition � "addition"� ,

by Cascade � NNEqIndProver, ConjectureGenerator� , ProverOptions � TermOrder LeftToRight � � ;

This call results in the automated generation of the following sequence of proof attempts and, finally, a successful proof of

commutativity. Note that, in the course of producing these proof attempts and the final proof, the initial knowledge base is

automatically enlarged by lemmata, and in fact quite natural and interesting lemmata, which are invented automatically in

the course of analyzing the failing proof attempts:

Prove:

(Proposition (+ =): + =) �
m,n

�
m � n � n � m � ,

under the assumptions:

(Definition (addition): +0:) �
m

�
m � 0 � m � ,

(Definition (addition): + .:) �
m,n

�
m � n � �

�
m � n � � � .

.... Proof fails and leads to the automated invention of the following lemma:

�
m

�
0
 m 	 m � .

 whose proof is now attempted next.

Buchberger-Theorema.nb 11

Prove:

(Proposition (19): 19) �
m

�
0 � m � m � ,

under the assumptions:

(Definition (addition): +0:) �
m

�
m � 0 � m � ,

(Definition (addition): + .:) �
m,n

�
m � n � � �

m � n � � � .

.... This proof succeeds and, hence, the lemma can be added to the knowledge base and the proof of

commutativity is attempted again.

Prove:

(Proposition (+ =): + =) �
m,n

�
m � n � n � m � ,

under the assumptions:

(Proposition (19): 19) �
m

�
0 � m � m � ,

(Definition (addition): +0:) �
m

�
m � 0 � m � ,

(Definition (addition): + .:) �
m,n

�
m � n � � �

m � n � � � .

.... Proof fails and leads to the automated invention of the following lemma:

�
n,m

�
n � 	 m
 �

n 	 m � � � .

 whose proof is now attempted next.

Prove:

(Proposition (15): 15) �
n,m

�
n � � m � �

n � m � � � ,

under the assumptions:

(Proposition (19): 19) �
m

�
0 � m � m � ,

Buchberger-Theorema.nb 12

(Definition (addition): +0:) �
m

�
m � 0 � m � ,

(Definition (addition): + .:) �
m,n

�
m � n � � �

m � n � � � .
.... This proof succeeds and, hence, the lemma can be added to the knowledge base and the proof of

commutativity is attempted again.

 whose proof is now attempted next.

Prove:

(Proposition (+ =): + =) �
m,n

�
m � n � n � m � ,

under the assumptions:

(Proposition (15): 15) �
n,m

�
n � � m � �

n � m � � � ,
(Proposition (19): 19) �

m

�
0 � m � m � ,

(Definition (addition): +0:) �
m

�
m � 0 � m � ,

(Definition (addition): + .:) �
m,n

�
m � n � � �

m � n � � � .
.... This proof succeeds and, hence, commutativity is proved.

The cascade can also be viewed as a kind of general completion procedure that goes far beyond the Knuth-Bendix

completion procedure for equational theorem proving.

� Example: Proving Booleans of Equalities by Groebner Bases

The next example concerns a special, but quite powerful, prover / disprover (decision algorithm) based on the author's

Groebner bases method for arbitrary universally quantified boolean combinations of arithmetical equalities over complex

numbers. Here is a typical formula in this class:

Formula � "Test", any� x, y 	 ,

x2 y � 3 x � 0 � � � � x y � x � y� � 0 � �� � � x2 y � 3 x � 0 � � � � � 2 x2 � � 7 x y � x2 y � x3 y � � 2 y2 � � 2 x y2 � 2 x2 y2 � � 0 � �� � �

x2 � � x y � x2 y � � 2 y2 � � 2 x y2 � � 0 � �
"B1"�

The following Theorema call produces, fully automatically a proof that this formula is true over the complex numbers:

Prove � Formula � "Test"� , using � ! , by � GroebnerBasesProver�
" ProofObject "

Buchberger-Theorema.nb 13

Here is the automatically generated proof text:

Prove:

(Formula (Test): B1)

�
x,y

� � �
x2 � y � 3 � x � � 0 � � � x 	 y
 x
 y � 0 � � � � x2 	 y
 3 	 x 0 � �

� � � 2 � 	 x2
 � � 7 � 	 x 	 y
 x2 	 y
 x3 	 y
 � � 2 � 	 y2
 � � 2 � 	 x 	 y2
 2 	 x2 	 y2 0 � � �
� x2
 � � x � 	 y
 x2 	 y
 � � 2 � 	 y2
 � � 2 � 	 x 	 y2 0 � �

,

with no assumptions.

Proved.

The Theorem is proved by the Groebner Bases method.

 The formula in the scope of the universal quantifier is transformed into an equivalent formula that is a

conjunction of disjunctions of equalities and negated equalities. The universal quantifier can then be

distributed over the individual parts of the conjunction. By this, we obtain:

Independent proof problems:

(Formula (Test): B1.1)
�
x,y

� �
x2 � � �

x � y � � x2 � y � � �
2 � � y2 � � �

2 � � x � y2 � 0 � � � � �
3 � � x � x2 � y � 0 � � �

x � y � x � y � 0 � �

(Formula (Test): B1.2)

�
x,y

� �
3 � x � x2 � y � 0 � �

� � �
2 � � x2 � � �

7 � � x � y � x2 � y � x3 � y � � �
2 � � y2 � � �

2 � � x � y2 � 2 � x2 � y2 � 0 � �� � �
3 � � x � x2 � y � 0 � � �

x � y � x � y � 0 � �

We now prove the above individual problems separately:

Proof of (Formula (Test): B1.1):

 ... We do not print this part of the proof in this paper, since it is easier than the second part of the proof. ...

Proof of (Formula (Test): B1.2):

This proof problem has the following structure:

Buchberger-Theorema.nb 14

(Formula (Test): B1.2.structure) �
x,y

� �
Poly � 1 � � 0 � � � Poly � 2 	
 0 � � � Poly � 3 	 � 0 � � � Poly � 4 	 � 0 � � ,

where

Poly � 1 	 � � 3 � � x � x2 � y

Poly � 2 	 � x � y � x � y

Poly � 3 	 � 3 � x � x2 � y

Poly � 4 	 � � 2 � � x2 � � 7 � � x � y � x2 � y � x3 � y � � 2 � � y2 � � 2 � � x � y2 � 2 � x2 � y2

(Formula (Test): B1.2.structure) is equivalent to

(Formula (Test): B1.2.implication) �
x,y

� � Poly � 1 	 � 0 � � � Poly � 2 	 � 0 � � � Poly � 3 	 � 0 � � � Poly � 4 	 � 0 � �
.

(Formula (Test): B1.2.implication) is equivalent to

(Formula (Test): B1.2.not-exists)
�
x,y

� � �
Poly � 1 � � 0 � � �

Poly � 2 � � 0 � � � � �
Poly � 3 � � 0 � � �

Poly � 4 � � 0 � � � .

By introducing the slack variable(s)

{� 1, � 2}

(Formula (Test): B1.2.not-exists) is transformed into the equivalent formula

(Formula (Test): B1.2.not-exists-slack)
�

x,y,� 1, � 2

� �
Poly � 1 ! 0 " # �

Poly � 2 ! 0 " # � $
1 % & 1 Poly � 3 ! 0 " # � $

1 % & 2 Poly � 4 ! 0 " " .

Hence, we see that the proof problem is transformed into the question on whether or not a system of

polynomial equations has a solution or not. This question can be answered by checking whether or not the

(reduced) Groebner basis of

'
Poly (1) , Poly (2) , * 1 + , 1 Poly (3) , * 1 + , 2 Poly (4) -

is exactly {1}.

Hence, we compute the Groebner basis for the following polynomial list:

. /
1 0 3 x 1 1 0 x2 y 1 1,/
1

/
2 x2 1 2

/
7 x y 1 2 0 x2 y 1 2 0 x3 y 1 2

/
2 y2 1 2

/
2 x y2 1 2 0 2 x2 y2 1 2,

/
3 x 0 x2 y, x 0 y 0 x y -

The Groebner basis:

.
1 -

Buchberger-Theorema.nb 15

Hence, (Formula (Test): B1.2) is proved.

Since all of the individual subtheorems are proved, the original formula is proved. �

In fact, the proof text produced does not only show the essential steps in the proof but also explains the proof method itself

in every particular example proof: It shows, at the beginning of the proof, how the initial proof problem can be reduced to

the problem of computing certain Groebner bases.

� Example: Inventing and Proving Combinatorial Identities Involving the Sum Quantifier

Recently, much progress has been made on the invention and proof of combinatorial identities, i.e identities involving

combinatorial functions and the summation and product quantifiers. Some of the methods used in this area are also based on

a non-commutative version of the Groebner bases method. In Theorema, the work of the research group of Peter Paule at

RISC is also integrated. The respective prover can be called under the name 'Paule-Schorn–Telescope' method. For

example, for the following sum

Formula
�
"SIAM series",�

k � 1,…,n

� �
1� k � 1 �

4k 	 1� �
2k �
� �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �� � � � �

2k � 2k 1� � k � 1� � 2k k � �
the call

Prove� Formula� "SIAM series" � , by � PauleSchorn–Telescope, built–in � Built–in � "PauleSchorn" � �
automatically invents the following closed form and provides the following proof for its correctness:

Theorem:

If � 1 � n is a natural number, then:�
k � 1,…,n

������ � � � 1 � k 2 2 k ! 2 k " # $ 1 % 4 k &' '' '' ' ' ' ' ' ' '' ' ' ' ' ' ' '' ' ' '
k () 1 * k + () , 1 * 2 k + -. //// 0 1 1 2 3 2 1 4 n 2 5 2 n 3 2 n 4 67 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7

n 6 3 1 1 n 4 6
Proof:

Let 8 k denote the forward difference operator in k then

the Theorem follows from summing the equation9 : 9 1 ; k 2 < 2 k : 2 k ; = : 1 > 4 k ;? ?? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ?
k = : 1 > k ; = : 9 1 > 2 k ; @ 8 k A B C 1 D k 21 E F 2 k G 2 k H I G 1 J k HK KK KK K K K K K K KK K K K K K K K

k I G 1 J k H I G L 1 J 2 k H M
overtherangek N 1, …, n.

Buchberger-Theorema.nb 16

Theequationis routinelyverifiable

by dividing theright–handsideby theleft–handside

andsimplifying theresultingrationalfunction� �
1 � 1 � k 21 � � 2 � 1 � k � � 2 � 1 	 k

 � � 2 k �� �� �� � � � � � � �� � � � � � � �� 1 k � � � 2 k � � � � 1 2 � 1 k � � � � � 1� k 21� � 2k � 2 k � � � 1 k �� �� � � � � � � � � � � � � � � �� � � � � � � � �

k � � 1 k � � � � 1 2k �� �� �� �� �� � � � � � � � � � � � � � � �� � � � � � � �� � � 1� k 2 � 2 k � 2 k � � � 1 4k �� �� � � � � � � � � � � � � � � �� � � � � � � � � � �
k � � 1 k � � � � 1 2 k �

to 1.

The proof of the (automatically invented) theorem is, hence, reduced to a test whether a certain expression can be simplified

to 1. This test can be executed by calling the Mathematica algorithm 'FullSimplify' (which, of course, could also be built into

the above Theorema prover as a last step):

System`FullSimplify
� � � 1 � 1 � k 21 � � 2 � 1 � k � � 2 � 1 � k � � � � 2 k !" "" "" " " " " " " "" " " " " "� 1 k ! � � 2 k ! � � # 1 2 � 1 k ! ! $ � # 1 ! k 21 % & 2 k � 2 k ! � � 1 k !" "" " " " " " " " " " " " " " " "" " " " " " " "

k � � 1 k ! � � # 1 2 k !" "" "" "" "" " " " " " " "" " " " " " " " " " "# � # 1 ! k 2 & 2 k � 2 k ! � � 1 4 k !" "" " " " " " " " " " " " " " " "" " " " " " " " " "
k � � 1 k ! � � # 1 2 k !

'
1

This example demonstrates the power of this recent method: The problem of constructing a closed form for the above input

expression was an open problem for many years! The solution was given in P. Paule, Computer-Solution of Problem 94-2,

SIAM REVIEW Vol.37 (1995), 105-106 using the Paule-Schorn automated conjecture generator / prover.

(Example: Calling External Provers (e.g. Resolution)

We have also provide links from Theorema to various existing theorem provers, for example to the Otter prover for

predicate logic which is based on the resolution method. For example, after entering the definitions

Definition) "Inclusion",*
A,B + , A - B . / 0

x 1 1 x 2 A . 3 4 x 5 B 6 6 7 " 8 :" 9
Definition : "Union",;

A,x < = x > ? A @ A B
Y C C x D Y @ E C Y D A @ @ F " ? :" G

Definition H "Powerset",I
A,x C C x D J K A L M N O x P A M M "P:" Q

we can generated an Otter proof of the following proposition

Proposition R "Union of powerset is included...",S
A

O T J K A L P A M "P T P "Q
by the Theorema call

ProveExternal K Proposition K "Union of powerset is included..." L ,
using U V Definition K "Inclusion" L , Definition K "Union" L , Definition K "Powerset" L W , by U Otter L

Buchberger-Theorema.nb 17

On termination, various information on the resolution proof is returned. The most essential part is the sequence of resolution

steps that lead to the empty clause. In our case, this sequence has the following form:

1[]-subsetequal(union(powerset($c1)),$c1).

2[]-subsetequal(A,B)|-element(C,A)|element(C,B).

3[] subsetequal(A,B)|-element($f1(A,B),B).

4[]-element(A,union(B))|element(A,$f2(B,A)).

5[]-element(A,union(B))|element($f2(B,A),B).

7[]-element(A,powerset(B))|subsetequal(A,B).

10[] subsetequal(A,B)|element($f1(A,B),A).

12[hyper,10,1] element($f1(union(powerset($c1)),$c1),union(powerset($c1))).

35[hyper,12,5] element($f2(powerset($c1),$f1(union(powerset($c1)),$c1)),powerset($c1)).

36[hyper,12,4] element($f1(union(powerset($c1)),$c1),$f2(powerset($c1),$f1(union(powerset($c1)),$c1))).

1376[hyper,35,7] subsetequal($f2(powerset($c1),$f1(union(powerset($c1)),$c1)),$c1).

5347[hyper,36,2,1376] element($f1(union(powerset($c1)),$c1),$c1).

5407[hyper,5347,3] subsetequal(union(powerset($c1)),$c1).

5408[binary,5407.1,1.1] $F.

We see that, in fact, several thousand intermediate clauses were produced during the resolution proof. Of course, the

resulting proof is not meant to be "understood" or "read" by humans. This is in sharp contrast to the provers which we try to

produce as internal provers of the Theorema system whose emphasis is on readability and naturalness.

� Example: Computation Using Functors

Finally, we want to illustrate that Theorema smoothly integrates the entire computational power of Mathematica and, in fact,

goes beyond Mathematica as a computing engine in two important respects: We provide the functor construct and we allow

the explict indication of knowledge bases w.r.t. which a computation (i.e. iterated simplification) should be executed. The

Theorema functor construct, which is similar to but more general than the functor construct in ML, allows to define

processes by which new domains (carriers together with functions and predicates) are produced from arbitrary given

domains. As an example, we show the functor 'pol' that takes a domain C of coefficients and a domain T of terms (power

products) and constructs the domain P of polynomials over C and T represented as tuples of pairs of coefficients and power

products ordered by the ordering available on the terms.

Buchberger-Theorema.nb 18

Definition
�
"pol" , any � C, T� ,

pol � C, T� � Functor
�
P, any � c, d, i, m��� � , n� � , p, q, s, t � ,

� � 	

0
P

� 	

1
P

� � � 1
C
, 1

T � � � �
P

q � q

p
�
P

 � � p
c, s

�
, m
��� � � �

P

d, t

�
, n
� � � � � � c, s � � � � m��� � � �

P
� � d, t � , n� � � � � s �

T
t,�

d, t ! " � � c, s , m#�# # $
P

�
n# # % & t �

T
s,

" ' c $
C

d, s (% ! " � m#�# # $
P

�
n# # % &) c * +

C
d , ,- .

m/�/ / 0 1
P

.
n/ / 0 2 3 otherwise 45

P 6 7 8 6 75
P 6 6 c, s 7 , m

9�9 9 7 8 : ;C c, s < = > ?
P @ mA�A A B C

p ?
P

q D p E
P

> ?P q C
@ B F

P
q G H I

p F
P

H I G H I
H H c, s I , m

J�J J I F
P

H H d, t I , n
J J I G K L L c F

C
d, s F

T
t M M N

P
H H c, s I I F

P
H nJ J I O N

P
H mJ�J J I F

P
H H d, t I , n

J J I

P P
Having introduced this functor, one can now apply it to particular coefficient and power product domains and produce, by

one functor call, the corresponding polynomial domain in tuple representation. Let us assume, for example, that the two

domains Q (integers) and R (trivariate power products as triples of natural numbers encoding the exponents at the three

indeterminates) have already been defined (using appropriate parameter-less functors) in appropriate definitions

Definition["integers"] and Definition["power products"]. Building up the corresponding polynomial domain S and

computing in S would then proceed as follows:

Theory T "F",

Definition U "integers" V
Definition U "power products" V
Definition U "pol" V

W

Definition U "D",X Y
pol Z [, \]]

Buchberger-Theorema.nb 19

Use� � Built–in � "Quantifiers" � , Built–in � "Connectives" � , Built–in � "Numbers" � ,
Built–in � "Tuples" � , Built–in � "Sets" � , Built–in � "naturalnumbers" � , Theory� "F" � , Definition � "D" � � �

Note that, in addition to user–defined knowledge like Theory["F"] and Definition["D"], in Theorema one can also explicitly

make available built-in computational knowledge (algorithms) from the underlying Mathematica and Theorema library by

using the 'Built–in' construct. Now, for example, the call

Compute
� � � � 5, � 2, 3, 1� � , � 3, � 1, 6, 3� � � �� � 	 	 5, 	 2, 3, 1

 , 	 3, 	 1, 6, 3

 �� 	 	 5, 	 2, 3, 1

 , 	 3, 	 1, 6, 3

 � �

produces

	 	 125, 	 6, 9, 3

 , 	 225, 	 5, 12, 5

 , 	 135, 	 4, 15, 7

 , 	 27, 	 3, 18, 9

which, in the usual representation of trivariate polyonomials, is the result

125 x16 x29 x33 � 225 x15 x212 x35 � 135 x14 x215 x37 � 27 x13 x218 x39 of expanding � 5 x12 x23 x3 � 3 x1 x26 x33 � 3
.

� Conclusion

I believe that, going into the direction of systems like Theorema, the following will soon be possible:

� Computer-support of all aspects of doing mathematics will reach higher and higher levels including inventing,

exploring, proving, and managing mathematical knowledge.

� All aspects of doing mathematics are supportable in one common logical and software-technological frame.

� In particular, nonalgorithmic and algorithmic mathematics are supportable in one common logical and

software-technological frame (in other words, mathematics, and computer science will reconcile).

As a result, the way how we invent, teach, and apply mathematics and the way how mathematical knowledge is published,

stored in knowledge bases and retrieved will change drastically. For this change to happen, the improvement of

mathematical systems along the lines of systems like Theorema is one important prerequisite but on the only one. The other

one is that the way how the next generation of math students is trained must drastically change, namely into the direction of

giving them much more formal training and culture.

Buchberger-Theorema.nb 20

