Example of Using a Theorema Prover (the PCS Prover)

```
Definition["limit:", any[f, a],
    \(\operatorname{limit}[\mathrm{f}, \mathrm{a}] \Longleftrightarrow \underset{\epsilon}{\epsilon} \underset{\epsilon 0}{\forall} \underset{\mathrm{~N}}{\mathrm{~N} \geq \mathrm{N}} \underset{\mathrm{n}}{\forall}|\mathrm{f}[\mathrm{n}]-\mathrm{a}|<\epsilon]\)
```

Proposition["limit of sum", any[f, a, g, b],
$(\operatorname{limit}[f, a] \wedge \operatorname{limit}[g, b]) \Rightarrow \operatorname{limit}[f+g, a+b]]$
Definition["+:", any[f, g, x],
$(\mathrm{f}+\mathrm{g})[\mathrm{x}]=\mathrm{f}[\mathrm{x}]+\mathrm{g}[\mathrm{x}]]$
Lemma["|+|", any $[\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b}, \delta, \epsilon]$,
$(|(\mathrm{x}+\mathrm{y})-(\mathrm{a}+\mathrm{b})|<(\delta+\epsilon)) \Longleftarrow(|\mathrm{x}-\mathrm{a}|<\delta \wedge|\mathrm{y}-\mathrm{b}|<\epsilon)]$

Lemma["max", any[m, M1, M2],

$$
\mathrm{m} \geq \max [\mathrm{M} 1, \mathrm{M} 2] \quad \Rightarrow \quad(\mathrm{m} \geq \mathrm{M} 1 \wedge \mathrm{~m} \geq \mathrm{M} 2)]
$$

Theory["limit",
Definition["limit:"]
Definition["+:"]
Lemma["|+|"]
Lemma["max"]

The PCS prover: A heuristic proof method (by Bruno Buchberger 2000) for predicate logic.

Generates "natural" proofs.

For formulae with alternating quantifiers.

The proof of the above theorem (and hundreds of other theorems in analysis) can now be generated completely automatically by calling the PCS prover:

Prove[Proposition["limit of sum"], using \rightarrow Theory["limit"], by \rightarrow PCS]

The proof generated completely automatically by the above call of the PCS algorithm is shown below:

Prove:
(Proposition (limit of sum)) $\underset{f, a, g, b}{\forall}(\operatorname{limit}[f, a] \wedge \operatorname{limit}[g, b] \Rightarrow \operatorname{limit}[f+g, a+b])$,
under the assumptions:

$$
\begin{aligned}
& \text { (Definition (+:)) } \underset{f, g, x}{\forall}((f+g)[x]=f[x]+g[x]) \text {, } \\
& \text { (Lemma }(|+|)) \underset{x, y, a, b, \delta, \epsilon}{\forall}(|(x+y)-(a+b)|<\delta+\epsilon \Leftarrow(|x-a|<\delta \wedge|y-b|<\epsilon)), \\
& \text { (Lemma (max)) } \underset{m, M 1, M 2}{\forall}(m \geq \max [M 1, M 2] \Rightarrow m \geq M 1 \wedge m \geq M 2) .
\end{aligned}
$$

We assume
(1) $\operatorname{limit}\left[\mathrm{f}_{0}, \mathrm{a}_{0}\right] \wedge \operatorname{limit}\left[\mathrm{g}_{0}, \mathrm{~b}_{0}\right]$,
and show
(2) $\operatorname{limit}\left[f_{0}+g_{0}, a_{0}+b_{0}\right]$.

Formula (1.1), by (Definition (limit:)), implies:

By (3), we can take an appropriate Skolem function such that

Formula (1.2), by (Definition (limit:)), implies:
(5) $\underset{\substack{\epsilon \\ \epsilon>0}}{\forall} \underset{\substack{\exists \\ n \geq N}}{\forall}\left(\left|\mathrm{~g}_{0}[n]-\mathrm{b}_{0}\right|<\epsilon\right)$.

By (5), we can take an appropriate Skolem function such that
(6) $\underset{\substack{\epsilon \\ \epsilon>0} \underset{n \geq \mathrm{N}_{1}[\epsilon]}{\forall}}{\forall}\left(\left|g_{0}[n]-\mathrm{b}_{0}\right|<\epsilon\right)$,

Formula (2), using (Definition (limit:)), is implied by:

We assume
(8) $\epsilon_{0}>0$,
and show
(9) $\underset{N}{\exists} \underset{\substack{n \\ n \geq N}}{\forall}\left(\left|\left(\mathrm{f}_{0}+\mathrm{g}_{0}\right)[n]-\left(\mathrm{a}_{0}+\mathrm{b}_{0}\right)\right|<\epsilon_{0}\right)$.

We have to find N_{2}^{*} such that
(10) $\quad \underset{n}{\forall}\left(n \geq \mathrm{N}_{2}^{*} \Rightarrow\left|\left(\mathrm{f}_{0}+\mathrm{g}_{0}\right)[n]-\left(\mathrm{a}_{0}+\mathrm{b}_{0}\right)\right|<\epsilon_{0}\right)$.

Formula (10), using (Definition (+:)), is implied by:
(11) $\quad \underset{n}{\forall}\left(n \geq \mathrm{N}_{2}^{*} \Rightarrow\left|\left(\mathrm{f}_{0}[n]+\mathrm{g}_{0}[n]\right)-\left(\mathrm{a}_{0}+\mathrm{b}_{0}\right)\right|<\epsilon_{0}\right)$.

Formula (11), using (Lemma $(|+|))$, is implied by:

$$
\begin{equation*}
\underset{\substack{\delta, \epsilon \\ \delta+\epsilon=\epsilon_{0}}}{\exists} \underset{n}{\forall}\left(n \geq \mathrm{N}_{2}^{*} \Rightarrow\left|\mathrm{f}_{0}[n]-\mathrm{a}_{0}\right|<\delta \wedge\left|\mathrm{g}_{0}[n]-\mathrm{b}_{0}\right|<\epsilon\right) . \tag{12}
\end{equation*}
$$

We have to find δ_{0}^{*}, ϵ_{1}^{*}, and N_{2}^{*} such that

$$
\begin{equation*}
\left(\delta_{0}^{*}+\epsilon_{1}^{*}=\epsilon_{0}\right) \bigwedge_{n}^{\forall}\left(n \geq \mathrm{N}_{2}^{*} \Rightarrow\left|\mathrm{f}_{0}[n]-\mathrm{a}_{0}\right|<\delta_{0}^{*} \bigwedge\left|\mathrm{~g}_{0}[n]-\mathrm{b}_{0}\right|<\epsilon_{1}^{*}\right) \tag{13}
\end{equation*}
$$

Formula (13), using (6), is implied by:

$$
\left(\delta_{0}^{*}+\epsilon_{1}^{*}=\epsilon_{0}\right) \bigwedge_{n}^{\forall}\left(n \geq \mathrm{N}_{2}^{*} \Rightarrow \epsilon_{1}^{*}>0 \wedge n \geq \mathrm{N}_{1}\left[\epsilon_{1}^{*}\right] \bigwedge\left|\mathrm{f}_{0}[n]-\mathrm{a}_{0}\right|<\delta_{0}^{*}\right)
$$

which, using (4), is implied by:

$$
\left(\delta_{0}^{*}+\epsilon_{1}^{*}=\epsilon_{0}\right) \bigwedge \bigwedge_{n}^{\forall}\left(n \geq \mathrm{N}_{2}^{*} \Rightarrow \delta_{0}^{*}>0 \wedge \epsilon_{1}^{*}>0 \bigwedge n \geq \mathrm{N}_{0}\left[\delta_{0}^{*}\right] \wedge n \geq \mathrm{N}_{1}\left[\epsilon_{1}^{*}\right]\right)
$$

which, using (Lemma (max)), is implied by:

$$
\begin{equation*}
\left(\delta_{0}^{*}+\epsilon_{1}^{*}=\epsilon_{0}\right) \bigwedge \underset{n}{\forall}\left(n \geq \mathrm{N}_{2}^{*} \Rightarrow \delta_{0}^{*}>0 \bigwedge \epsilon_{1}^{*}>0 \bigwedge n \geq \max \left[\mathrm{N}_{0}\left[\delta_{0}^{*}\right], \mathrm{N}_{1}\left[\epsilon_{1}^{*}\right]\right]\right) . \tag{14}
\end{equation*}
$$

Formula (14) is implied by

$$
\begin{equation*}
\left(\delta_{0}^{*}+\epsilon_{1}^{*}=\epsilon_{0}\right) \bigwedge \delta_{0}^{*}>0 \bigwedge \epsilon_{1}^{*}>0 \bigwedge \underset{n}{\forall}\left(n \geq \mathrm{N}_{2}^{*} \Rightarrow n \geq \max \left[\mathrm{N}_{0}\left[\delta_{0}^{*}\right], \mathrm{N}_{1}\left[\epsilon_{1}^{*}\right]\right]\right) \tag{15}
\end{equation*}
$$

Partially solving it, formula (15) is implied by
(16) $\left(\delta_{0}^{*}+\epsilon_{1}^{*}=\epsilon_{0}\right) \wedge \delta_{0}^{*}>0 \wedge \epsilon_{1}^{*}>0 \wedge\left(N_{2}^{*}=\max \left[\mathrm{N}_{0}\left[\delta_{0}^{*}\right], \mathrm{N}_{1}\left[\epsilon_{1}^{*}\right]\right]\right)$.

Now,

$$
\left(\delta_{0}^{*}+\epsilon_{1}^{*}=\epsilon_{0}\right) \wedge \delta_{0}^{*}>0 \wedge \epsilon_{1}^{*}>0
$$

can be solved for δ_{0}^{*} and ϵ_{1}^{*} by a call to Collins cad-method yielding a sample solution

$$
\begin{aligned}
& \delta_{0}^{*} \leftarrow \frac{\epsilon_{0}}{2}, \\
& \epsilon_{1}^{*} \leftarrow \frac{\epsilon_{0}}{2} .
\end{aligned}
$$

Furthermore, we can immediately solve

$$
\mathrm{N}_{2}^{*}=\max \left[\mathrm{N}_{0}\left[\delta_{0}^{*}\right], \mathrm{N}_{1}\left[\epsilon_{1}^{*}\right]\right]
$$

for N_{2}^{*} by taking

$$
\mathrm{N}_{2}^{*} \leftarrow \max \left[\mathrm{~N}_{0}\left[\frac{\epsilon_{0}}{2}\right], \mathrm{N}_{1}\left[\frac{\epsilon_{0}}{2}\right]\right] .
$$

Hence formula (16) is solved, and we are done.

