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à First  Floor:  An Algorithm  for  Nonlinear  Problems

� Some Nonlinear  Problems

� Nonlinear  Polynomial  Equations

x y - 2 y z - z = 0
y2 - x2 z + x z = 0
z2 - y2 x + x = 0

(x, y, z) ?

� Linear  Representability  of  Nonlinear  Polynomials

Do there exist polynomials (h1, h2, h3) such that



Hx y - 2 y z - zL h1 +Hy2 - x2 z + x zL h2+Hz2 - y2 x + xL h3 = x2  y - 3 z2 + z

?

(If yes, find them "all".)

� Nonlinear  Representability  of  Nonlinear  Polynomials

Can 

x1
7  x2 - x1 x2

7

be expressed as a polynomial in 

x1
2 + x2

2

x1
2  x2

2

x1
3  x2 - x1 x2

3

?

Note: The above polynomials forms a system of fundamental invariants for Ÿ4 , i.e. a set of generators for the ring

8f Î ¬@x1 , x2 D È f  Hx1 , x2 L = f  H-x2 , x1 L<.
� Other  Problems  

é determine dimension of algebraic manifolds,

é ideal and radical membership decision,

é effective operations on ideals

é effective computation in residue class rings modulo polynomial  
ideals, 

é Hilbert functions,

é implicitization,

é inverse polynomial mappings

é ....

é dozens  of  problems  in  invariant  theory,  automated  geometric  theorem  proving,  coding  theory,
integer programming, symbolic summation, statistics, systems theory, ...
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� The Problem  of  Constructing  Gröbner  Bases

� All  these  Problems  Can be Reduced  to the Construction  of  Gröbner  Bases

 Find algorithm Gb such that

"
F

i
k
jjjjjjjjj is|finite@ Gb@FD D

is|Gröbner|basis@ Gb@FDD
ideal@FD = ideal@ Gb@FDD.

y
{
zzzzzzzzz

Definitions [BB 1965, 1970]:

is|Gröbner|basis@GD � is|confluent@ ®G D.
� h1 ®G  h2 : h2 results from h1 by one "division step " using divisors from G

Hh1 ®G h2L � $
gÎG

 
ikjjjlomno lp@gD È lp@h1D

h2 = h1- Hlm@h1D � lm@gDL g
y{zzz,

� Confluence  (Uniqueness)  of  Division

is|confluent@ ® D : � "
f1,f2

Hf1 «* f2 Þ f1¯* f2L
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� An Algorithm  for  the Construction  of  Gröbner  Bases  [BB  1965, 1970]

Gb@FD = Gb@F, pairs@FDD
Gb@F, X\D = F

Gb@F, XXg1, g2\, p��\D =
with Af = lcm@ lp@g1D, lp@g2DD,

h1 = trd@ rd@f , g1D, FD, h2 = trd@ rd@f , g2D, FD,
loooomnoooo

Gb@F, Xp��\D Ü h1 = h2

GbAF[ Hh1- h2L, Xp��\ ^ [XFk , h1- h2\ È
k=1,¼, F¤_E Ü otherwise E

The algorithm terminates by Dickson’s lemma.

After termination: The finitely many lcm conflue.

Correctness Theorem and Proof: From the finitely many confluences infer all the infinitely many confluences:

                                                                     lcm[ lp[g1], lp[g2] ]

� Application  of  the Algorithm:  Example

For example, solve nonlinear equations:

x y - 2 y z - z = 0
y2 - x2 z + x z = 0
z2 - y2 x + x = 0

G = GroebnerBasis@8x y - 2 y z - z, y2 - x2 z + x z, z2 - y2 x + x<, 8x, y, z<D
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8z + 4z3 - 17z4 + 3z5 - 45z6 + 60z7 - 29z8 + 124z9 - 48z10 + 64z11 - 64z12,

-22001z + 14361y z + 16681z2 + 26380z3 + 226657z4 +
11085z5 - 90346z6 - 472018z7 - 520424z8 - 139296z9 - 150784z10 + 490368z11,

43083y2 - 11821z + 267025z2 - 583085z3 + 663460z4 - 2288350z5 +
2466820z6 - 3008257z7 + 4611948z8 - 2592304z9 + 2672704z10 - 1686848z11,

43083x - 118717z + 69484z2 + 402334z3 + 409939z4 + 1202033z5 -
2475608z6 + 354746z7 - 6049080z8 + 2269472z9 - 3106688z10 + 3442816z11<

The Groebner basis has the "elimination" property: one can solve "one equation after the other".

� Summary  of  Gröbner  Bases  Theory

My Gröbner bases algorithm is now routinely available in all math software systems like Mathematica, Maple, etc.

Approx. 500 papers on Gröbner bases and 10 textbooks.

Dozens of non−trivial problems reducible to the construction of Gröbner bases.

à Second  Floor:  An Algorithm  for  Inventing  Algorithms

� The Algorithm  Invention  ("Synthesis")  Problem:  "One  Floor  Higher  Up"

Given a problem specification P, find an algorithm A such that

"
x

P@x, A@xDD.
Higher "order": Find an algorithm ("method") S such that

"
P

"
x

P@x, S@PD@xDD.
Examples of specifications P:

P@x, yD � is|greater@x, yD
P@x, yD � is|sorted|version@x, yD
P@x, yD � is|finite|Gröbner|basis@x, yD

� The "Lazy  Thinking"  Method  [BB  2001]

Given a problem specification P

é consider various "algorithm schemes" for A
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é and try to prove (automatically) "
x

P@x, A@xDD.
é This proof will normally fail because nothing is known on the auxiliary functions in the algorithm scheme.

é From  the  temporary  assumptions  and  goals  in  the  failing  proof  situation  (automatically)  generate
specifications for the auxiliary functions that would make the proof possible.

Now, apply the method recursively to the auxiliary functions.

� 2003: Synthesis  of  Easy Algorithms  

Example: Synthesize A such that 

"
x

is|sorted|version@x, A@xDD.
Example of algorithm scheme: "divide and conquer"

"
x

 
ikjjjA@xD = 9 s@xD Ü is|trivial|tuple@xD

m@A@l@xDD, A@r@xDDD Ü otherwise
y{zzz

Lazy Thinking automatically (in approx. 2 minutes), using the Theorema system, finds the following specifications
for the auxiliary functions

"
x

 Hs@xD = xL
"
y,z

 
ikjjjlomno is|sorted@yD

is|sorted@zD Þ
lomno is|sorted@m@y, zDD
m@y, zD » Hy ^ zL y{zzz

"
x

 Hl@xD ^ r@xD » xL
� 2004: Synthesis  of  My Gröbner  Bases  Algorithm  

� Algorithm  Scheme  "Critical  Pair / Completion"

A@FD = A@F, pairs@FDD
A@F, X\D = F

A@F, XXg1, g2\, p��\D =
whereAf = lc@g1, g2D, h1 = trd@rd@f , g1D, FD, h2 = trd@rd@f , g2D, FD,loooomnoooo

A@F, Xp��\D Ü h1 = h2

AAF[ df@h1, h2D, Xp��\ ^ [XFk , df@h1, h2D\ È
k=1,¼, F¤_E Ü otherwise E

This scheme can be tried in any domain, in which we have a reduction operation rd that depends on sets F of
objects and a Noetherian relation � which interacts with rd in the following natural way: 

"
f ,g

Hf � rd@f , gDL.
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� The Essential  Problem

The problem of synthesizing a Gröbner bases algorithm can now be also stated by asking whether starting with
the proof of

"
F

 is|finite|Gröbner|basis@F, A@FDD
 we can automatically arrive at the idea that

lc@g1, g2D = lcm@lp@g1D, lp@g2DD
and

df@h1, h2D = h1- h2

are suitable functions that specialize the algorithm scheme to an algorithm that constructs a Gröbner basis for the
input F.

(Detecting that lcm enables us to "master the infinite by the finite" was the main invention in algorithmic Gröbner
bases theory!)

� Now Start  the (Automated)  Correctness  Proof

Details cannot be presented in one talk.

With current theorem proving technology, in the Theorema system, the proof can be done automatically.

� Roughly,

It  should be clear that, if  the algorithm terminates, the final result is  a finite set (of polynomials) G that has the
property

"
g1,g2ÎG

 
ikjjjwithAf = lc@g1, g2D,

h1 = trd@rd@f , g1D, FD, h2 = trd@rd@f , g2D, FD,
ë lomno h1 = h2

df@h1, h2D Î G
Ey{zzz.

� Roughly,

We now try to prove that, if G has this property, then 

is|finite@GD,
ideal@FD = ideal@GD,

and

is|Gröbner|basis@GD, i.e. is|confluent@ ®G D.
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We only deal with the third, most important, property. For this, we assume

lomno p ®G f1

p ®G f2.

and have to find a polynomial g such that

f1 ®G
* g,

f2 ®G
* g.

� The Proof  Fails  but  ...

by  an  (automated)  analysis  of  the  failing  proof  situation  we  detect  that  the  proof  could  be  completed  if  the
unknown lc satisfied the following property:

lp@g1D È lc@g1, g2D,
lp@g2D È lc@g1, g2D,

"
p,g1,g2

 
ikjjjikjjjlomno lp@g1D È p

lp@g2D È p
y{zzz Þ Hlc@g1, g2D È pLy{zzz .

Heureka! It is clear that this specification is (only) met by

lc@g1, g2D = lcm@lp@g1D, lp@g2DD.
Similarly, it can be (automatically) detected that 

df@h1, h2D = h1- h2.

à Conclusion

ã The Status

BB 1970 invents an algorithm for Gröbner bases construction (and, hence, many other problems).

BB 2001−2004 invents algorithm for the invention of algorithms (including the BB 1970 algorithm).

Hence, "BB automated BB".
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ã What Does this  Mean?

The algorithmization of mathematics goes higher and higher becoming more and more "symbolic" ....

more symbolic = more automated proving + more mathematics.

ã Mathematical  Knowledge  Management:  The Future  of  Symbolic  Computation

All this is part of a major new worldwide endeavor: "Mathematical Knowledge Management".

MKM 2001 at RISC
MKM 2003 in Bologna
MKM 2004 in Byalostok
...

EU MKM Network, North American MKM Network. 

The Theorema system is one of the systems that aim at being a frame for MKM.

The higher we go in MKM, the more "Symbolic" Computation is needed.

bruno.buchberger@jku.at

Come to AISC 2004 !
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