
Unification Procedure for Terms
with Sequence Variables and Sequence Functions

(Extended Abstract)

Temur Kutsia1? and Mircea Marin2

1 Research Institute for Symbolic Computation,
Johannes Kepler University Linz,

A-4040 Linz, Austria
kutsia@risc.uni-linz.ac.at

2 Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

A-4040 Linz, Austria
Mircea.Marin@oeaw.ac.at

1 Introduction

We study term equations with sequence variables and sequence function sym-
bols. A sequence variable can be instantiated by any finite sequence of terms,
including the empty sequence. A sequence function abbreviates a finite sequence
of functions all having the same argument lists3. An instance of such a function is
IntegerDivision(x,y) that abbreviates the sequence Quotient(x, y), Remainder(x, y).

Bringing sequence functions in the language naturally allows Skolemization
over sequence variables: Let x, y be individual variables, x be a sequence variable,
and p be a flexible arity predicate symbol. Then ∀x∀y∃x.p(x, y, x) Skolemizes to
∀x∀y.p(x, y, f(x, y)), where f is a binary Skolem sequence function symbol. An-
other example, ∀y∃x.p(y, x), where y is a sequence variable, after Skolemization
introduces a flexible arity sequence function symbol g: ∀y.p(y, g(y)).

In this paper we introduce a unification procedure for solving equations in
the free theory with individual and sequence variables, and individual and se-
quence function symbols. Function symbols can have either fixed or flexible arity.
Unification in such a theory is decidable. The procedure enumerates an almost
minimal complete set of solutions, and terminates if the set is finite. This work
is an extension and refinement of our previous results [12].

We implemented the procedure (without the decision algorithm) in Mathe-
matica [25] on the base of a rule-based programming system ρLog4 [15].

Equation solving with sequence variables plays an important role in various
applications in automated reasoning, artificial intelligence, and programming.
Historically, probably the first attempt to implement unification with sequence
variables (without sequence functions) was made in the system MVL [7]. It

? Supported by the Austrian Science Foundation (FWF) under Project SFB F1302.
3 Semantically, sequence functions can be interpreted as multi-valued functions.
4 Available from http://www.ricam.oeaw.ac.at/people/page/marin/RhoLog/.

was incomplete because of restricted use of widening technique. The restriction
was imposed for the efficiency reasons. No theoretical study of the unification
algorithm of MVL, to the best of our knowledge, was undertaken.

Richardson and Fuchs [20] describe another unification algorithm with se-
quence variables that they call vector variables. Vector variables come with their
length attached, that makes unification finitary. The algorithm was implemented
but its properties have never been investigated.

Implementation of first-order logic in Isabelle [17] is based on sequent cal-
culus formulated using sequence variables (on the meta level). Sequence meta-
variables are used to denote sequences of formulae, and individual meta-variables
denote single formulae. Since in every such unification problem no sequence
meta-variable occurs more that once, and all of them occur only on the top
level, Isabelle, in fact, deals with a finitary case of sequence unification.

Word equations [23, 1, 8] and associative unification [18] can be modelled
by syntactic sequence unification using constants, sequence variables and one
flexible arity function symbol. In the similar way we can imitate the unification
algorithm for path logics closed under right identity and associativity [21].

The Set-Var prover [4] has a construct called vector of (Skolem) functions
that resembles our sequence functions. However, unification does not allow to
split vectors of functions between variables: such a vector of functions either
entirely unifies with a variable, or with another vector of functions.

The programming language of Mathematica uses pattern matching that
supports sequence variables (represented as identifiers with “triple blanks”, e.g.,
x) and flexible arity function symbols. Our procedure (without sequence func-
tion symbols) can imitate the behavior of Mathematica matching algorithm.

Buchberger introduced sequence functions in the Theorema system [6] to
Skolemize quantified sequence variables. In the equational prover of Theorema
[13] we implemented a special case of unification with sequence variables and
sequence functions: sequence variables occurring only in the last argument po-
sitions in terms. It makes unification unitary. Similar restriction is imposed on
sequence variables in the RelFun system [5] that integrates extensions of logic
and functional programming. RelFun allows multiple-valued functions as well.

In [12] we described unification procedures for free, flat, restricted flat and
orderless theories with sequence variables, but without sequence functions.

The paper is organized as follows: In Section 2 basic notions are introduced.
In Section 3 relation with order-sorted higher-order E-unification is discussed.
In Section 4 the unification procedure is defined and its properties are studied.
Section 5 is about implementation. Section 6 concludes.

The missing proofs can be found in the report [14].

2 Preliminaries

We assume that the reader is familiar with the standard notions of unification
theory [3]. We consider an alphabet consisting of the following pairwise disjoint

2

sets of symbols: individual variables VInd, sequence variables VSeq, fixed arity in-
dividual function symbols FFix

Ind , flexible arity individual function symbols FFlex
Ind ,

fixed arity sequence function symbols FFix
Seq , flexible arity sequence function sym-

bols FFlex
Seq . Each set of variables is countable. Each set of function symbols is

finite or countable. Besides, the alphabet contains the parenthesis ‘(’, ‘)’ and
the comma ‘,’. We will use the following denotations: V := VInd ∪ VSeq; FInd :=
FFix

Ind ∪FFlex
Ind ; FSeq := FFix

Seq ∪FFlex
Seq ; FFix := FFix

Ind ∪FFix
Seq ; FFlex := FFlex

Ind ∪FFlex
Seq ;

F := FInd ∪FSeq = FFix ∪FFlex. The arity of f ∈ FFix is denoted by Ar(f). A
function symbol c ∈ FFix is called a constant if Ar(c) = 0.

Definition 1. A term over F and V is either an individual or a sequence term
defined as follows:

1. If t ∈ VInd (resp. t ∈ VSeq), then t is an individual (resp. sequence) term.
2. If f ∈ FFix

Ind (resp. f ∈ FFix
Seq), Ar(f) = n, n ≥ 0, and t1, . . . , tn are individual

terms, then f(t1, . . . , tn) is an individual (resp. sequence) term.
3. If f ∈ FFlex

Ind (resp. f ∈ FFlex
Seq) and t1, . . . , tn (n ≥ 0) are individual or

sequence terms, then f(t1, . . . , tn) is an individual (resp. sequence) term.

The head of a term t = f(t1, . . . , tn), denoted by Head(t), is the function symbol
f . We denote by TInd(F ,V), TSeq(F ,V), and T (F ,V), respectively, the sets of all
individual terms, all sequence terms, and all terms over F and V. An equation
over F and V is a pair 〈s, t〉, denoted by s ≈ t, where s, t ∈ TInd(F ,V).

Example 1. Let x, y ∈ VInd, x ∈ VSeq, f ∈ FFlex
Ind , g ∈ FFix

Ind , f ∈ FFlex
Seq , g ∈ FFix

Seq ,
Ar(g) = 2, and Ar(g) = 1. Then f(x, g(x, y)) and f(x, f(x, x, y)) are indi-
vidual terms; f(x, f(x, x, y)) and g(f(x, x, y)) are sequence terms; f(x, g(x)),
f(x, g(x, y)) and f(x, g(x, y)) are not terms; f(x, g(x, y)) ≈ g(x, y) is an equa-
tion; f(x, g(x, y)) ≈ g(x, y), x ≈ f(x) and g(x) ≈ f(x) are not equations.

If not otherwise stated, the following symbols, maybe with indices, are used
as metavariables: x and y – over individual variables; x, y, z – over sequence
variables; v – over (individual or sequence) variables; f , g, h – over individ-
ual function symbols; f , g, h – over sequence function symbols; a, b, c – over
individual constants; a, b, c – over sequence constants; s, t, r, q – over terms.

Let T be a term, a sequence of terms, or a set of terms. Then we denote by
IVar(T) (resp. by SVar(T)) the set of all individual (resp. sequence) variables
in T ; by Var(T) the set IVar(T) ∪ SVar(T); by IFun(T) (resp. by SFun(T))
the set of all individual (resp. sequence) function symbols in T ; by Fix(T) (resp.
by F lex(T)) the set of all fixed (resp. flexible) arity function symbols in T .

Definition 2. A variable binding is either a pair x 7→ t where t ∈ TInd(F ,V)
and t 6= x, or an expression x 7→ pt1, . . . , tnq5 where n ≥ 0, for all 1 ≤ i ≤ n we
have ti ∈ T (F ,V), and if n = 1 then t1 6= x.

5 To improve readability, we write sequences that bind sequence variables between p
and q.

3

Definition 3. A sequence function symbol binding is an expression of the form
f 7→ pg1, . . . , gmq, where m ≥ 1, if m = 1 then f 6= g1, and either f, g1, . . . , gm ∈
FFix

Seq , with Ar(f) = Ar(g1) = · · · = Ar(gm), or f, g1, . . . , gm ∈ FFlex
Seq .

Definition 4. A substitution is a finite set of bindings {x1 7→ t1, . . . , xn 7→
tn, x1 7→ ps1

1, . . . , s
1
k1

q, . . . , xm 7→ psm
1 , . . . , sm

km
q, f1 7→ pg1

1 , . . . , g1
l1

q, . . . , fr 7→
pgr

1, . . . , g
r
lr

q} where n,m, r ≥ 0, x1, . . . , xn, x1, . . . , xm are distinct variables and
f1, . . . , fr are distinct sequence function symbols.

Lower case Greek letters are used to denote substitutions. The empty substitu-
tion is denoted by ε.

Definition 5. The instance of a term t with respect to a substitution σ, denoted
tσ, is defined recursively as follows:

1. xσ =
{

t, if x 7→ t ∈ σ,
x, otherwise.

2. xσ =
{

t1, . . . , tn, if x 7→ pt1, . . . , tnq ∈ σ, n ≥ 0,
x, otherwise.

3. f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).
4. f(t1, . . . , tn)σ ={

g1(t1σ, . . . , tnσ), . . . , gm(t1σ, . . . , tnσ), if f 7→ pg1, . . . , gmq ∈ σ,

f(t1σ, . . . , tnσ), otherwise.

Example 2. Let σ = {x 7→ a, y 7→ f(x), x 7→ pq, y 7→ pa, xq, g 7→ pg1, g2q}. Then
f(x, x, g(y, g()), y))σ = f(a, g1(f(x), g1(), g2()), g2(f(x), g1(), g2()), a, x).

Definition 6. The application of σ on f , denoted fσ, is a sequence of function
symbols g1, . . . , gm if f 7→ pg1, . . . , gmq ∈ σ. Otherwise fσ = f .

Applying a substitution θ on a sequence of terms pt1, . . . , tnq gives a sequence
of terms pt1θ, . . . , tnθq.

Definition 7. Let σ be a substitution. (1) The domain of σ is the set Dom(σ) =
{l | lσ 6= l} of variables and sequence function symbols. (2) The codomain of σ
is the set Cod(σ) = {lσ | l ∈ Dom(σ)} of terms and sequence function symbols6.
(3) The range of σ is the set Ran(σ) = Var(Cod(σ)) of variables.

Definition 8. Let σ and ϑ be two substitutions:

σ = { x1 7→ t1, . . . , xn 7→ tn, x1 7→ ps1
1, . . . , s

1
k1

q, . . . , xm 7→ psm
1 , . . . , sm

km
q,

f1 7→ pf1
1 , . . . , f1

l1
q, . . . , fr 7→ pfr

1 , . . . , fr
lr

q},
ϑ = { y1 7→ r1, . . . , yn′ 7→ rn′ , y1 7→ pq1

1 , . . . , q1
k′1q, . . . , ym′ 7→ pqm′

1 , . . . , qm′
k′m′

q,

g1 7→ pg1
1 , . . . , g1

l′1
q, . . . , gr′ 7→ pgr′

1 , . . . , gr′
l′
r′

q}.
6 Note that the codomain of a substitution is a set of terms and sequence function

symbols, not a set consisting of terms, sequences of terms, sequence function symbols,
and sequences of sequence function symbols. For instance, Cod({x 7→ f(a), x 7→
pa, a, bq, c 7→ pc1, c2q}) = {f(a), a, b, c1, c2}.

4

Then the composition of σ and ϑ, σϑ, is the substitution obtained from the set

{ x1 7→ t1ϑ, . . . , xn 7→ tnϑ, x1 7→ ps1
1ϑ, . . . , s1

k1
ϑq, . . . , xm 7→ psm

1 ϑ, . . . , sm
km

ϑq,

f1 7→ pf1
1 θ, . . . , f1

l1
θq, . . . , fr 7→ pfr

1 θ, . . . , fr
lr

θq,

y1 7→ r1, . . . , yn′ 7→ rn′ , y1 7→ pq1
1 , . . . , q1

k′1q, . . . , ym′ 7→ pqm′
1 , . . . , qm′

k′m′
q,

g1 7→ pg1
1 , . . . , g1

l′1
q, . . . , gr′ 7→ pgr′

1 , . . . , gr′
l′
r′

q}

by deleting

1. all the bindings xi 7→ tiϑ (1 ≤ i ≤ n) for which xi = tiϑ,
2. all the bindings xi 7→ psi

1ϑ, . . . , si
ki

ϑq (1 ≤ i ≤ m) for which the sequence
si
1ϑ, . . . , si

ki
ϑ consists of a single term xi,

3. all the sequence function symbol bindings fi 7→ pf i
1ϑ, . . . , f i

li
ϑq (1 ≤ i ≤ r)

such that the sequence f i
1ϑ, . . . , f i

lr
ϑ consists of a single function symbol fi,

4. all the bindings yi 7→ ri (1 ≤ i ≤ n′) such that yi ∈ {x1, . . . , xn},
5. all the bindings yi 7→ pqi

1, . . . , qi
k′iq (1 ≤ i ≤ m′) with yi ∈ {x1, . . . , xm},

6. all the sequence function symbol bindings gi 7→ pgi
1, . . . , gi

l′iq (1 ≤ i ≤ r′)
such that gi ∈ {f1, . . . , fr}.

Example 3. Let σ = {x 7→ y, x 7→ py, xq, y 7→ pf(a, b), y, g(x)q, f 7→ pg, hq}
and ϑ = {y 7→ x, y 7→ x, x 7→ pq, g 7→ pg1, g2q} be two substitutions. Then
σϑ = {y 7→ x, y 7→ pf(a, b), x, g1(), g2()q, f 7→ pg1, g2, hq, g 7→ pg1, g2q}.

Definition 9. A substitution σ is called linearizing away from a finite set of
sequence function symbols Q iff the following three conditions hold: (1) Cod(σ)∩
Q = ∅. (2) For all f, g ∈ Dom(σ) ∩ Q, if f 6= g, then {fσ} ∩ {gσ} = ∅. (3) If
f 7→ pg1 . . . , gnq ∈ σ and f ∈ Q, then gi 6= gj for all 1 ≤ i < j ≤ n.

Intuitively, a substitution linearizing away from Q either leaves a sequence func-
tion symbol in Q “unchanged”, or “moves it away from” Q, binding it with a
sequence of distinct sequence function symbols that do not occur in Q, and maps
different sequence function symbols to disjoint sequences.

Let E be a set of equations over F and V. By ≈E we denote the least con-
gruence relation on T (F ,V) that is closed under substitution application and
contains E. More precisely, ≈E contains E, satisfies reflexivity, symmetry, tran-
sitivity, congruence, and a special form of substitutivity: For all s, t ∈ T (F ,V),
if s ≈E t and sσ, tσ ∈ T (F ,V) for some σ, then sσ ≈E tσ. Substitutivity in this
form requires that sσ and tσ must be single terms, not arbitrary sequences of
terms. The set ≈E is called an equational theory defined by E. In the sequel,
we will also call the set E an equational theory, or E-theory. The signature of
E is the set Sig(E) = IFun(E) ∪ SFun(E). Solving equations in an E-theory
is called E-unification. The fact that the equation s ≈ t has to be solved in an
E-theory is written as s≈?

Et.

5

Definition 10. Let E be an equational theory with Sig(E) ⊆ F . An E-unifi-
cation problem over F is a finite multiset Γ = {s1 ≈?

E t1, . . . , sn ≈?
E tn} of

equations over F and V. An E-unifier of Γ is a substitution σ such that σ is
linearizing away from SFun(Γ) and for all 1 ≤ i ≤ n, siσ ≈E tiσ. The set of
all E-unifiers of Γ is denoted by UE(Γ), and Γ is E-unifiable iff UE(Γ) 6= ∅.
If {s1 ≈?

E t1, . . . , sn ≈?
E tn} is a unification problem, then si, ti ∈ TInd(F ,V) for

all 1 ≤ i ≤ n.

Example 4. Let Γ = {f(g(x, y, a)) ≈?
∅ f(g(c, b, x))}. Then {x 7→ c1, y 7→ pc2, bq,

x 7→ a, c 7→ pc1, c2q} ∈ U∅(Γ).
Let Γ = {f(g(x, y, a)) ≈?

∅ f(h(c, x))}. Then U∅(Γ) = ∅. If we did not require
the E-unifiers of a unification problem to be linearizing away from the sequence
function symbol set of the problem, then Γ would have ∅-unifiers, e.g., {x 7→
c1, y 7→ pc2, bq, x 7→ a, g 7→ h, c 7→ pc1, c2q} would be one of them.

In the sequel, if not otherwise stated, E stands for an equational theory, X for
a finite set of variables, and Q for a finite set of sequence function symbols.

Definition 11. A substitution σ is called erasing on X modulo E iff either
f(v)σ ≈E f() for some f ∈ Sig(E) and v ∈ X , or x 7→ pq ∈ σ for some x ∈ X .
We call σ non-erasing on X modulo E iff σ is not erasing on X modulo E.

Example 5. Any substitution containing x 7→ pq is erasing modulo E = ∅ on
any X that contains x.

Let E = {f(x, f(y), z) ≈ f(x, y, z)} and X = {x, x}. Then any substitution
that contains x 7→ f(), or x 7→ pq, or x 7→ pt1, . . . , tnq with n ≥ 1 and t1 = · · · =
tn = f(), is erasing on X modulo E. For instance, the substitutions {x 7→ f()},
{x 7→ f()}, {x 7→ pq}, {x 7→ pf(), f(), f(), f()q} are erasing on X modulo E.

Definition 12. A substitution σ agrees with a substitution ϑ on X and Q mod-
ulo E, denoted σ =X ,Q

E ϑ, iff (1) for all x ∈ X , xσ ≈E xϑ; (2) for all f ∈ Q,
fσ = fϑ; (3) for all x ∈ X , there exist t1, . . . , tn, s1, . . . , sn ∈ T (F ,V), n ≥ 0,
such that xσ = pt1, . . . , tnq, xϑ = ps1, . . . , snq and ti ≈E si for each 1 ≤ i ≤ n.

Example 6. Let σ = {x 7→ a}, ϑ = {x 7→ pb, cq, a 7→ pb, cq}, and ϕ = {x 7→
pb, cq, a 7→ pb, cq}. Let also X = {x}, Q = {a}, and E = ∅. Then σϕ =X ,Q

E ϑ.

Definition 13. A substitution σ is more general (resp. strongly more general)
than ϑ on X and Q modulo E, denoted σ≤¦ X ,Q

E ϑ (resp. σ¹¦ X ,Q
E ϑ), iff σϕ =X ,Q

E ϑ
for some substitution (resp. substitution non-erasing on X modulo E) ϕ.

Example 7. Let σ = {x 7→ y}, ϑ = {x 7→ pa, bq, y 7→ pa, bq}, η = {x 7→ pq, y 7→
pq}, X = {x, y}, Q = ∅, E = ∅. Then σ≤¦ X ,Q

E ϑ, σ¹¦ X ,Q
E ϑ, σ≤¦ X ,Q

E η, σ 6¹¦ X ,Q
E η.

A substitution ϑ is an E-instance (resp. strong E-instance) of σ on X and Q
iff σ≤¦ X ,Q

E ϑ (resp. σ¹¦ X ,Q
E ϑ). The equivalence associated with ≤¦ X ,Q

E (resp. with

¹¦ X ,Q
E) is denoted by =¦

X ,Q
E (resp. by ≈¦X ,Q

E). The strict part of ≤¦ X ,Q
E (resp.

¹¦ X ,Q
E) is denoted by <¦X ,Q

E (resp. ≺¦ X ,Q
E). Definition 13 implies ¹¦ X ,Q

E ⊆ ≤¦ X ,Q
E .

6

Definition 14. A set of substitutions S is called minimal (resp. almost min-
imal) with respect to X and Q modulo E iff two distinct elements of S are
incomparable with respect to ≤¦ X ,Q

E (resp. ¹¦ X ,Q
E).

Minimality implies almost minimality, but not vice versa: A counterexample is
the set {σ, η} from Example 7.

Definition 15. A complete set of E-unifiers of an E-unification problem Γ is
a set S of substitutions such that (1) S ⊆ UE(Γ), and (2) for each ϑ ∈ UE(Γ)
there exists σ ∈ S such that σ≤¦ X ,Q

E ϑ, where X = Var(Γ) and Q = SFun(Γ).
The set S is a minimal (resp. almost minimal) complete set of E-unifiers of

Γ , denoted mcuE(Γ) (resp. amcuE(Γ)) iff it is a complete set that is minimal
(resp. almost minimal) with respect to X and Q modulo E.

Proposition 1. An E-unification problem Γ has an almost minimal complete
set of E-unifiers iff it has a minimal complete set of E-unifiers.

If Γ is not E-unifiable, then mcuE(Γ) = amcuE(Γ) = ∅. A minimal (resp.
almost minimal) complete set of E-unifiers of Γ , if it exists, is unique up to the

equivalence =¦
X ,Q

E (resp. ≈¦X ,Q

E), where X = Var(Γ) and Q = SFun(Γ).

Example 8. 1. Γ = {f(x) ≈?
∅ f(y)}. Then mcu∅(Γ) = {{x 7→ y}}, amcu∅(Γ) =

{{x 7→ y}, {x 7→ pq, y 7→ pq}}.
2. Γ = {f(x, x, y) ≈?

∅ f(f(x), x, a, b)}. Then mcu∅(Γ) = amcu∅(Γ) = {{x 7→
f(), x 7→ pq, y 7→ pf(), a, bq}}.

3. Γ = {f(a, x) ≈?
∅ f(x, a)}. Then mcu∅(Γ) = amcu∅(Γ) = {{x 7→ pq}, {x 7→

a}, {x 7→ pa, aq}, . . .}.
4. Γ = {f(x, y, x) ≈?

∅ f(c, a)}. Then mcu∅(Γ) = amcu∅(Γ) = {{x 7→ pq, y 7→
c, x 7→ a}, {x 7→ c, y 7→ pq, x 7→ a}, {x 7→ c1, y 7→ c2, x 7→ a, c 7→ pc1, c2q}}.

Definition 16. A set of substitutions S is disjoint (resp. almost disjoint) wrt
X and Q modulo E iff two distinct elements in S have no common E-instance
(resp. strong E-instance) on X and Q, i.e., for all σ, ϑ ∈ S, if there exists ϕ

such that σ≤¦ X ,Q
E ϕ (resp. σ¹¦ X ,Q

E ϕ) and ϑ≤¦ X ,Q
E ϕ (resp. ϑ¹¦ X ,Q

E ϕ), then σ = ϑ.

Disjointness implies almost disjointness, but not vice versa: Consider again the
set {σ, η} in Example 7.

Proposition 2. If a set of substitutions S is disjoint (almost disjoint) wrt X
and Q modulo E, then it is minimal (almost minimal) wrt X and Q modulo E.

However, almost disjointness does not imply minimality: Again, take the set
{σ, η} in Example 7. On the other hand, minimality does not imply almost
disjointness: Let σ = {x 7→ f(a, y)}, ϑ = {x 7→ f(y, b)}, X = {x}, Q = ∅, and
E = ∅. Then {σ, ϑ} is minimal but not almost disjoint with respect to X and Q
modulo E, because σ¹¦ X ,Q

E ϕ and ϑ¹¦ X ,Q
E ϕ, with ϕ = {x 7→ f(a, b)}, but σ 6= ϑ.

The same example can be used to show that almost minimality does not imply

7

almost disjointness either. From these observations we can also conclude that
neither minimality nor almost minimality imply disjointness.

The equational theory E = ∅ is called the free theory with sequence vari-
ables and sequence function symbols. Unification in the free theory is called the
syntactic sequence unification. The theory E = {f(x, f(y), z) ≈ f(x, y, z)} that
we first encountered in Example 5 is called the flat theory, where f is the flat
flexible arity individual function symbol.

General syntactic sequence unification is decidable. We just sketch the proof
idea here, details can be found in [14]. We show decidability in three steps: First,
we reduce the general syntactic sequence unification problem by a unifiability
preserving transformation to a unification problem containing no sequence func-
tion symbols. Second, applying yet another unifiability preserving transforma-
tion we get rid of all free flexible arity (individual) function symbols, obtaining
a unification problem whose signature consists of fixed arity individual function
symbols and one flat flexible arity individual function symbol. Finally, we show
decidability of the reduced problem using Baader-Schulz combination method
[2] and decidability results for word equations and Robinson unification, both
with linear constant restrictions.

3 Relation with Order-Sorted Higher-Order Unification

In this section we relate syntactic sequence unification with order-sorted unifica-
tion. Unification in order-sorted theories has been studied by many authors (see,
e.g., [24, 22, 16, 9, 19, 10, 11]). Syntactic sequence unification can be considered as
a special case of order-sorted higher-order E-unification. Here we show the corre-
sponding encoding. We consider simply typed λ-calculus with the types i and o.
The set of base sorts consists of ind, seq, seqc, o such that the type of o is o and
the type of the other sorts is i. We will treat individual and sequence variables
as first order variables, sequence functions as second order variables and define
a context Γ such that Γ(x) = ind for all x ∈ VInd, Γ(x) = seq for all x ∈ VSeq,
Γ(f) = seq → seqc for each f ∈ FFlex

Seq , and Γ(f) = ind→ · · · → ind︸ ︷︷ ︸
n times

→ seqc

for each f ∈ FFix
Seq with Ar(f) = n. Individual function symbols are treated as

constants. We assign to each f ∈ FFlex
Ind a functional sort seq → ind and to

each f ∈ FFix
Ind with Ar(f) = n a functional sort ind→ · · · → ind︸ ︷︷ ︸

n times

→ ind. We

assume equality constants ≈s for every sort s. In addition, we have two func-
tion symbols: binary pq of the sort seq → seq → seq and a constant [] of the
sort seq. Sorts are partially ordered as [ind ≤ seqc] and [seqc ≤ seq]. The
equational theory is an AU-theory, asserting associativity of pq with [] as left
and right unit. We consider unification problems for terms of the sort ind where
terms are in βη-normal form containing no bound variables, and terms whose
head is pq are flattened. For a given unification problem Γ in this theory, we are
looking for unifiers that obey the following restrictions: If a unifier σ binds a sec-
ond order variable f of the sort seq → seqc, then fσ = λx.pg1(x), . . . , gm(x)q

8

and if σ binds a second order variable f of the sort ind→ · · · → ind︸ ︷︷ ︸
n times

→ seqc,

then fσ = λx1. . . . xn.pg1(x1, . . . , xn), . . . , gm(x1, . . . , xn)q, where m > 1 and
g1, . . . , gm are fresh variables of the same sort as f .

Hence, syntactic sequence unification can be considered as order-sorted se-
cond-order AU-unification with additional restrictions. Order-sorted higher-or-
der syntactic unification was investigated in [16, 9–11, 19], but we are not aware
of any work done on order-sorted higher-order equational unification.

4 Unification Procedure

In the sequel we assume that Γ , maybe with indices, and Γ ′ denote syntactic
sequence unification problems. A system is either the symbol ⊥ (representing
failure), or a pair 〈Γ ; σ〉. The inference system U consists of the transformation
rules on systems listed below. The function symbol g ∈ FFlex

Ind in the rule PD2 is
new. In the Splitting rule f1 and f2 are new sequence function symbols of the
same arity as f in the same rule. We assume that the indices n,m, k, l ≥ 0.
Projection (P):

〈Γ ; σ〉 =⇒ 〈Γϑ; σϑ〉, where ϑ 6= ε, Dom(ϑ) ⊆ SVar(Γ) and Cod(ϑ) = ∅.
Trivial (T):

〈{s ≈?
∅ s} ∪ Γ ′; σ〉 =⇒ 〈Γ ′; σ〉.

Orient 1 (O1):

〈{s ≈?
∅ x} ∪ Γ ′; σ〉 =⇒ 〈{x ≈?

∅ s} ∪ Γ ′; σ〉, if s /∈ VInd.

Orient 2 (O2):

〈{f(s, s1, . . . , sn) ≈?
∅ f(x, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(x, t1, . . . , tm) ≈?
∅ f(s, s1, . . . , sn)} ∪ Γ ′; σ〉, if s /∈ VSeq.

Solve (S):

〈{x ≈?
∅ t} ∪ Γ ′; σ〉 =⇒ 〈Γ ′ϑ; σϑ〉, if x /∈ IVar(t) and ϑ = {x 7→ t}.

Total Decomposition (TD):

〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tn)} ∪ Γ ′; σ〉 =⇒

〈{s1 ≈?
∅ t1, . . . , sn ≈?

∅ tn} ∪ Γ ′; σ〉
if f(s1, . . . , sn) 6= f(t1, . . . , tn), and si, ti ∈ TInd(F ,V) for all 1 ≤ i ≤ n.

Partial Decomposition 1 (PD1):

〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{s1 ≈?
∅ t1, . . . , sk−1 ≈?

∅ tk−1, f(sk, . . . , sn) ≈?
∅ f(tk, . . . , tm)} ∪ Γ ′; σ〉

if f(s1, . . . , sn) 6= f(t1, . . . , tm), for some 1 < k ≤ min(n, m),
sk ∈ TSeq(F ,V) or tk ∈ TSeq(F ,V), and si, ti ∈ TInd(F ,V) for all 1 ≤ i < k.

Partial Decomposition 2 (PD2):

〈{f(f(r1, . . . , rk), s1, . . . , sn) ≈?
∅ f(f(q1, . . . , ql), t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{g(r1, . . . , rk) ≈?
∅ g(q1, . . . , ql), f(s1, . . . , sn) ≈?

∅ f(t1, . . . , tm)} ∪ Γ ′; σ〉.
if f(f(r1, . . . , rk), s1, . . . , sn) 6= f(f(q1, . . . , ql), t1, . . . , tm).

9

Sequence Variable Elimination 1 (SVE1):

〈{f(x, s1, . . . , sn) ≈?
∅ f(x, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tm)} ∪ Γ ′; σ〉

if f(x, s1, . . . , sn) 6= f(x, t1, . . . , tm).

Sequence Variable Elimination 2 (SVE2):

〈{f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(s1, . . . , sn)ϑ ≈?
∅ f(t1, . . . , tm)ϑ} ∪ Γ ′ϑ; σϑ〉

if x /∈ SVar(t) and ϑ = {x 7→ t}.
Widening 1 (W1):

〈{f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(x, s1ϑ, . . . , snϑ) ≈?
∅ f(t1ϑ, . . . , tmϑ)} ∪ Γ ′ϑ; σϑ〉

if x /∈ SVar(t) and ϑ = {x 7→ pt, xq}.
Widening 2 (W2):

〈{f(x, s1, . . . , sn) ≈?
∅ f(y, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(s1ϑ, . . . , snϑ) ≈?
∅ f(y, t1ϑ, . . . , tmϑ)} ∪ Γ ′ϑ; σϑ〉

where ϑ = {y 7→ px, yq}.
Splitting (Sp):

〈{f(x, s1, . . . , sn) ≈?
∅ f(f(r1, . . . , rk), t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(s1, . . . , sn)ϑ ≈?
∅ f(f2(r1, . . . , rk), t1, . . . , tm)ϑ} ∪ Γ ′ϑ; σϑ〉

if x /∈ SVar(f(r1, . . . , rk)) and ϑ = {x 7→ f1(r1, . . . , rk)}{f 7→ pf1, f2q}.
We may use the rule name abbreviations as subscripts, e.g., 〈Γ1; σ1〉 =⇒P

〈Γ2; σ2〉 for Projection. We may also write 〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 to indicate
that 〈Γ1; σ1〉 was transformed to 〈Γ2; σ2〉 by some basic transformation (i.e.,
non-projection) rule. P, SVE2, W1, W2, and Sp are non-deterministic rules.

A derivation is a sequence 〈Γ1;σ1〉 =⇒ 〈Γ2; σ2〉 =⇒ · · · of system trans-
formations. A derivation is fair if any transformation rule which is continuously
enabled is eventually applied. Any finite fair derivation S1 =⇒ S2 =⇒ · · · =⇒ Sn

is maximal, i.e., no further transformation rule can be applied on Sn.

Definition 17. A syntactic sequence unification procedure is any program that
takes a system 〈Γ ; ε〉 as an input and uses the rules in U to generate a tree of
fair derivations, called the unification tree for Γ , UT (Γ), in the following way:

1. The root of the tree is labeled with 〈Γ ; ε〉;
2. Each branch of the tree is a fair derivation either of the form 〈Γ ; ε〉 =⇒P

〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 =⇒BT · · · or 〈Γ ; ε〉 =⇒BT 〈Γ1; σ1〉 =⇒BT

〈Γ2; σ2〉 =⇒BT · · · . The nodes in the tree are systems.
3. If several transformation rules, or different instances of the same transfor-

mation rule are applicable to a node in the tree, they are applied concurrently.
4. The decision procedure is applied to the root and to each node generated by a

non-deterministic transformation rule, to decide whether the node contains
a solvable unification problem. If the unification problem ∆ in a node 〈∆; δ〉
is unsolvable, then the branch is extended by 〈∆; δ〉 =⇒DP ⊥.

10

The leaves of UT (Γ) are labeled either with the systems of the form 〈∅; σ〉
or with ⊥. The branches of UT (Γ) that end with 〈∅; σ〉 are called successful
branches, and those with the leaves ⊥ are failed branches. We denote by Sol∅(Γ)
the solution set of Γ , i.e., the set of all σ-s such that 〈∅; σ〉 is a leaf of UT (Γ).

The calculus is sound and complete:

Theorem 1 (Soundness). If 〈Γ ; ε〉 =⇒+ 〈∅; ϑ〉, then ϑ ∈ U∅(Γ).

Theorem 2 (Completeness). Sol∅(Γ) is a complete set of unifiers of Γ .

The set Sol∅(Γ), in general, is not minimal with respect to Var(Γ) and SFun(Γ)
modulo the free theory. Just consider Γ = {f(x) ≈?

∅ f(y)}, then Sol∅(Γ) =
{{x 7→ y}, {x 7→ pq, y 7→ pq}}. However, it can be shown that Sol∅(Γ) is almost
minimal7, that implies the main result of this section:

Theorem 3 (Main Theorem). Sol∅(Γ) = amcu∅(Γ).

5 Implementation

We implemented the procedure (without the decision algorithm) in Mathemat-
ica [25] on the base of a rule-based programming system ρLog [15]. ρLog pro-
vides full support for programming with the primitive operators for defining ele-
mentary rules and for computing with unions, compositions, reflexive-transitive
closures, and normal forms of transformation rules. Rules are specifications of
partially defined and possibly non-deterministic computations which describe
the calculation of a new object from another object described by a pattern.
Strategies are built with a minimal number of rule combinators: composition,
alternatives, repetition, normalization, and first commitment. A version of ap-
plicative higher-order matching algorithm with sequence variables is built-in. In
such a language it is pretty straightforward to implement calculi like the unifi-
cation procedure described in this paper. For instance, the SVE2 and O2 rules
can be implemented as a single ρLog rule "O2SVE2" as follows:

DeclareRule[〈{(f [x ?SVarQ, s] ≈ f [r , t]) |
(f [r /; Not[SVarQ[r]], t] ≈ f [x ?SVarQ, y]), rest }, σ 〉 →"O2SVE2"

〈{f[s] ≈ f[t], rest}/. x→ r, σ ◦ {x→ r}〉];

The basic transformation rules of the procedure are combined in one rule called
"BT" using the combinator for alternatives, that (on backtracking) computes
the union of the results of each rule. Instead of costly decision algorithm we
implemented simpler rules that provide sufficient conditions to detect failure.
These rules are combined with each other by the combinator for alternatives, and
the obtained rule is combined with the "BT" by the first commitment combinator,
getting a rule called "Failure+BT". Then the procedure itself is nothing else than
the strategy that composes the projection rule with the NF["Failure+BT"] rule,
7 In fact, Sol∅(Γ) has a stronger property: almost disjointness.

11

where NF is the rule combinator for the normal form. Then ρLog performs depth-
first search with bounded depth and backtracking, thus generating a finite subset
of the set of solutions.

6 Conclusions

We developed a complete almost minimal unification procedure for general syn-
tactic unification with sequence variables and sequence functions.

Syntactic sequence unification is decidable but infinitary. Under certain re-
strictions the unification problems have at most finitely many solutions: sequence
variables in the last argument positions, unification problems with at least one
ground side (matching as a particular instance), all sequence variables on the
top level with maximum one occurrence. It would be interesting to identify more
cases with finite or finitely representable solution sets.

References

1. H. Abdulrab and J.-P. Pécuchet. Solving word equations. J. Symbolic Computation,
8(5):499–522, 1990.

2. F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. J. Symbolic Computation, 21(2):211–244, 1996.

3. F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532.
Elsevier Science, 2001.

4. W. W. Bledsoe and Guohui Feng. Set-Var. J. Automated Reasoning, 11(3):293–
314, 1993.

5. H. Boley. A Tight, Practical Integration of Relations and Functions, volume 1712
of LNAI. Springer, 1999.

6. B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and
W. Windsteiger. The Theorema project: A progress report. In M. Kerber and
M. Kohlhase, editors, Proc. of Calculemus’2000 Conference, pages 98–113, St. An-
drews, UK, 6–7 August 2000.

7. M. L. Ginsberg. User’s guide to the MVL system. Technical report, Stanford
University, Stanford, California, US, 1989.

8. J. Jaffar. Minimal and complete word unification. J. ACM, 37(1):47–85, 1990.
9. P. Johann. A combinator-based order-sorted higher-order unification algorithm.

Technical Report SR-93-16, Universität des Saarlandes. Saarbrücken, Germany,
1993.

10. P. Johann and M. Kohlhase. Unification in an extensional lambda calculus with
ordered function sorts and constant overloading. In Proc. of the 12th Int. Con-
ference on Automated Deduction, CADE’94, volume 814 of LNAI, pages 620–634,
Nancy, France, 1994. Springer.

11. M. Kohlhase. A mechanization of sorted higher-order logic based on the resolution
principle. PhD Thesis. Universität des Saarlandes. Saarbrücken, Germany, 1994.

12. T. Kutsia. Solving and proving in equational theories with sequence variables and
flexible arity symbols. Technical Report 02-31, RISC, Johannes Kepler University,
Linz, Austria, 2002.

12

13. T. Kutsia. Equational prover of Theorema. In R. Nieuwenhuis, editor, Proc.
of the 14th Int. Conference on Rewriting Techniques and Applications, RTA’03,
volume 2706 of LNCS, pages 367–379, Valencia, Spain, 9–11 June 2003. Springer.

14. T. Kutsia. Solving equations involving sequence variables and sequence functions.
Technical report, RISC, Johannes Kepler University, Linz, Austria, 2004. Available
from: ftp://ftp.risc.uni-linz.ac.at/pub/people/tkutsia/papers/sequnif.ps.

15. M. Marin and T. Kutsia. On the implementation of a rule-based programming
system and some of its applications. In B. Konev and R. Schmidt, editors, Proc.
of the 4th Int. Workshop on the Implementation of Logics (WIL’03), pages 55–68,
Almaty, Kazakhstan, 2003.

16. Tobias Nipkow. Higher-order unification, polymorphism, and subsorts. In S. Ka-
plan and M. Okada, editors, Proc. of the 2nd Int. Workshop Conditional and Typed
Rewriting Systems, volume 516 of LNCS. Springer, 1991.

17. L. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361–386. Academic Press, 1990.

18. G. Plotkin. Building in equational theories. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 7, pages 73–90, Edinburgh, UK, 1972. Edinburgh
University Press.

19. Z. Qian and T. Nipkow. Reduction and unification in lambda calculi with a general
notion of subtype. J. of Automated Reasoning, 12:389–406, 1994.

20. J. Richardson and N. E. Fuchs. Development of correct transformation schemata
for prolog programs. In N. E. Fuchs, editor, Proc. of the 7th Int. Workshop on
Logic Program Synthesis and Transformation, LOPSTR’97, volume 1463 of LNCS,
pages 263–281, Leuven, Belgium, 10–12 July 1997. Springer.

21. R. Schmidt. E-Unification for subsystems of S4. In T. Nipkow, editor, Proc. of the
9th Int. Conference on Rewriting Techniques and Applications, RTA’98, volume
1379 of LNCS, pages 106–120, Tsukuba, Japan, 1998. Springer.

22. M. Schmidt-Schauss. Computational aspects of an order-sorted logic with term
declarations, volume 395 of LNAI. Springer, 1989.

23. J. Siekmann. String unification. Research paper, Essex University, 1975.
24. C. Walther. A many sorted calculus based on resolution and paramodulation. Pit-

man, London, 1987.
25. S. Wolfram. The Mathematica Book. Cambridge University Press and Wolfram

Research, Inc., fourth edition, 1999.

13

