
On the Implementation of a Rule-Based

Programming System and Some of its

Applications

Mircea Marin1 and Temur Kutsia2

1 Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

A-4040 Linz, Austria
mircea.marin@oeaw.ac.at

2 Research Institute for Symbolic Computation
Johannes Kepler University
A-4232 Hagenberg, Austria

tkutsia@risc.uni-linz.ac.at

Abstract. We describe a rule-based programming system where rules
specify nondeterministic computations. The system is called FunLog

and has constructs for defining elementary rules, and to build up complex
rules from simpler ones via operations akin to the standard operations
from abstract rewriting. The system has been implemented in Mathe-

matica and is, in particular, useful to program procedures which can be
encoded as sequences of rule applications which follow a certain reduc-
tion strategy. In particular, the procedures for unification with sequence
variables in free, flat, and restricted flat theories can be specified via a set
of inference rules which should be applied in accordance with a certain
strategy. We illustrate how these unification procedures can be expressed
in our framework.

1 Introduction

In this paper we describe a rule-based programming language and illustrate
its usefulness for implementing unification procedures with sequence variables
in free, flat and restricted flat theories. We have designed and implemented a
rule-based system called FunLog, which provides programming constructs to
define elementary rules and to build up complex rules from simpler ones. Our
programming constructs include primitives to compose rules, to group them
into a specification of a nondeterministic rule, to compute with their transitive
closure, and to define various evaluation strategies.

Such a programming style is very suitable for complex computations steps
which can be expressed as sequences of computation steps with the following
characteristics:

1. Each computation step is driven by the application of a rule chosen (nonde-
terministically) from a finite set of alternative rules.

2. The sequence of steps must match a certain specification. In FunLog, such
specifications can be built up via a number of operators which are similar to
the operators of abstract term rewriting.

We used Funlog to implement unification procedures in free, flat, and restricted
flat theories with sequence variables and flexible arity symbols. It was shown in
[8, 9] that these procedures can be specified via a set of inference rules which
should be applied in accordance with a certain strategy. Therefore, these proce-
dures are a good example to be programmed in FunLog.

The rest of this paper is structured as follows. In Section 2 we give a brief
description of the rule-based programming style supported by FunLog and
describe the programming constructs of our system. Section 3 explains some
details about the Mathematica implementation of FunLog. In Section 4 we
describe our FunLog implementation of unification procedures with sequence
variables. Section 5 concludes.

2 Programming with FunLog

FunLog is a rule-based system where

rule = specification of a partially defined, possibly nondeterministic
computation.

This paradigm makes our notion of rule very similar to the notion of strategy as
defined in the rule-based system Elan [4, 7]. There are, however, some notable
exceptions:

1. all rules can be nondeterministic. The nondeterministic application of basic
rules stems from the fact that we allow patterns which can match in more
than one way with a given expression.

2. the application of rules is not driven by a built-in leftmost-innermost rewrit-
ing strategy. Instead, rules are always applied at the root position of a term.
Rewriting behaviors can be attained by associating a new rule to a given rule,
and imposing a certain strategy to look up for the subterm to be rewritten.

We believe that these features make our rule-based system more flexible, mainly
because we can control the positions where rules should be applied.

In FunLog, each rule is characterized by a name and a code which describes
a partially defined, possibly nondeterministic, computation. Formally, a rule is
an expression

lbl :: patt → rhs (1)

where lbl is the rule name, patt is a pattern expression and rhs specifies the
computation of a result from the bindings of the variables which occur in patt .
The expression patt :> rhs is called the code of the rule lbl .

The main usage of rules is to act with them them on various expressions. The
attempt to apply a rule of type (1) on an expression expr proceeds as follows:

1. M := enumeration of all matchers between expr and patt .
2. If M = ∅ then fail else goto 3.
3. θ := first(M), M := rest(M), V := enumeration of all values of θ(rhs).
4. If V = ∅ then goto 3 else return first(V).

We write expr 6→lbl if the application of rule lbl to expr fails, and expr →lbl if it
succeeds.

There are two sources of non-determinism in FunLog: non-unique matches
and non-unique ways to evaluate a partially defined computation. Clearly, the
result of an application expr →lbl depends on the enumerations of matchers
(M) and values (V) which are built into a particular implementation. These enu-
meration strategies are relevant to the programmer and are described in the
specification of the operational semantics of our implementation.

In the sequel we write expr1 →lbl expr2 if we can identify two enumerations,
for M and V, which render the result expr 2 for the application expr1 →lbl .

Rules can be combined with various combinators into more complex rules.
The implementation of these combinators is compositional, i.e., the meaning
of each combination of rules can be defined in terms of the meanings of the
component rules.

2.1 Main Combinators

A rule with name lbl is applied to an expression expr 1 via the call

ApplyRule[expr1, lbl] (2)

which behaves as follows:

– If expr1 6→lbl then return expr1

– If expr1 →lbl then return the first expr2 for which expr1 →lbl expr2.

The call
ApplyRuleList[expr 1, lbl] (3)

returns the list of values {expr 2 | expr1 →lbl expr2}.
FunLog provides a number of useful constructs to build up rules. These

constructs are described in the remainder of this section.

Basic rules. A basic rule is a rule named by a string, whose code is given
explicitly as a Mathematica transformation rule. A basic rule lbl :: patt :> rhs
is declared by

DeclareRule[patt :> rhs, lbl] (4)

We recall that expr1 →lbl expr2 iff there is a matcher θ between expr 1 and patt
for which θ(rhs) evaluates to expr 2.

The enumeration strategy of basic rules depends only on the enumeration
strategy of matches.

Example 1. The rule ”split” introduced by the declaration

DeclareRule[{x , y }/; (Length[{x}] > Length[{y}]) :>{x}, “split”]

takes as input a list L of elements and yields a prefix sublist of L whose length
is larger than half the length of L. The outcome of the call

ApplyRule[{a, b, c, d}, “split”]
{a, b, c}

yields the instance {a, b, c} = θ({x}) corresponding to the matcher θ = {x 7→
pa, b, cq, y 7→ pdq}. Note that this is the first matcher found by the enumer-
ation strategy of the Mathematica interpreter, for which θ(Length[{x}] >
Length[{y}]) holds. ut

Choice. lbl1 | . . . | lbln denotes a rule whose applicative behavior is given by

expr1 →lbl1|...|lbln
expr2 iff expr1 →lbli

expr2 for some i ∈ {1, . . . , n}. (5)

The enumeration of the steps expr 1 →lbl1|...|lbln
starts with the enumeration of

the steps expr1 →lbl1
, followed by the enumeration of the steps expr 1 →lbl2

, and
so on up to the enumeration of the steps expr 1 →lbln

.

Example 2. Consider the declarations

DeclareRule[{x m , y , n , z } :> False/; (m > n), “test”];
DeclareRule[List :> True, “else”];

Here, List is a pattern variable which matches any list structure. Then

ApplyRule[L, “test” | “else”]

yields True iff L is a list with elements in ascending order. This behavior is
witnessed by the calls:

ApplyRule[{1, 2, 4, 5, 3}, “test” | “else”]
False

ApplyRule[{1, 2, 3, 4, 5}, “test” | “else”]
True

The first call yields False because {1, 2, 4, 5, 3} →“test” False with the matcher
θ = {x 7→ p1, 2q,m 7→ 5, y 7→ pq, n 7→ 4, z 7→ p3q}. The second call yields True

because {1, 2, 3, 4, 5} 6→“test” and {1, 2, 3, 4, 5} →“else” True. ut

Composition. lbl1 ◦ lbl2 denotes a rule whose applicative behavior is given by

expr1 →lbl1◦lbl2 expr2 iff expr1 →lbl1
expr →lbl2

expr2 for some expr . (6)

The enumeration of values expr 2 for which the relation expr1 →lbl1◦lbl2 expr2

holds, proceeds by enumerating all steps expr →lbl2
expr2 during an enumeration

of the steps expr1 →lbl1
expr .

Example 3 (Oriented graphs). The following rule declarations

DeclareRule[x :> x, “Id”];
DeclareRule[a :> b, “r1”]; DeclareRule[a :> c, “r2”];
DeclareRule[c :> b, “r3”]; DeclareRule[b :> d, “r4”];
DeclareRule[b :> e, “r5”]; DeclareRule[c :> f, “r6”];

define the edges of an oriented graph with nodes {a, b, c, d, e, f}. Then

a →Repeat[“r1”|“r2”|“r3”|“r4”|“r5”|“r6”,“Id”] v

iff there exists a (possibly empty) path from a to v. To find such a v we can call

ApplyRule[a, Repeat[“r1” | “r2” | “r3” | “r4” | “r5” | “r6”, “Id”]]

and FunLog will yield the value d corresponding to the derivation

a →“r1” b →“r4” d →“Id” d.

The call

ApplyRuleList[c, Repeat[“r1” | “r2” | “r3” | “r4” | “r5” | “r6”, “Id”]]

will yield the list {d, e, b} of all nodes reachable from b. ut

Reflexive-transitive closures. If lbl ∈ {Repeat[lbl 1, lbl2], Until[lbl2, lbl1]}
then

expr1 →lbl expr2 iff expr1 →∗
lbl1

expr →lbl2
expr2 for some expr (7)

where →∗
lbl1

denotes the reflexive-transitive closure of →lbl1
. These two con-

structs differ only with respect to the enumeration strategy of the possible re-
duction steps.

The enumeration of expr1 →Repeat[lbl1,lbl2] expr2 proceeds by unfolding the
recursive definition:

Repeat[lbl1, lbl2] = lbl1 ◦ Repeat[lbl1, lbl2] | lbl2,

whereas the enumeration of expr 1 →Until[lbl1,lbl2] expr2 proceeds by unfolding
the recursive definition:

Until[lbl2, lbl1] = lbl2 | lbl1 ◦ Until[lbl2, lbl1].

Example 4 (Sorting). Consider the declarations of basic rules

DeclareRule[x :> x, “Id”];
DeclareRule[{x m , y , n , z }/; (m > n) :>{x, n, y,m, z}, “perm”];

Then the enumeration strategy of Repeat[“perm”, “Id”] ensures that the ap-
plication of rule Repeat[“perm”, “Id”] to any list of integers yields the sorted
version if that list. For example

ApplyRule[{3, 1, 2}, Repeat[“perm”, “Id”]]

yields {1, 2, 3} via the following sequence of transformation steps

{3, 1, 2} →“perm” {1, 3, 2} →“perm” {1, 2, 3} →“Id” {1, 2, 3}.

ut

Rewrite rules. FunLog provides the following mechanism to define a rule
that rewrites with respect to a given rule:

RWRule[lbl1, lbl , Traversal → . . . , Prohibit → . . .] (8)

This call declares a new rule named lbl such that expr 1 →lbl expr2 iff there exists
a position p in expr1 such that expr1|p →lbl1

expr and expr2 = expr1[expr]p.
Here, expr1|p is the subexpression of expr at position p, and expr 1[expr]p is
the result of replacing the subexpression at position p by expr in expr 1. The
option Traversal defines the enumeration ordering of rewrite steps (see below),
whereas the option Prohibit restricts the set of positions allowed for rewriting.
If the option Prohibit → {f1, . . . , fn} is given, then rewriting is prohibited at
positions below occurrences of symbols f ∈ {f1, . . . , fn}. By default, the value
of Prohibit is {}, i.e., rewriting can be performed everywhere.

The enumeration strategy of rewrite steps can be controlled via the option
Traversal which has the default value ”LeftmostIn”. If the option Traversal →
“LeftmostOut” is given, then the rewriting steps are enumerated by traversing
the rewriting positions in leftmost-outermost order. If Traversal → “LeftmostIn”
is given, then the rewriting steps are enumerated by traversing the rewriting po-
sitions in leftmost-innermost order.

Example 5 (Pure λ-calculus). In λ-calculus, a value is an expression which has
no β-redexes outside λ-abstractions. We adopt the following syntax for λ-terms:

term ::= terms :
| x variable
| app[term1, term2] application
| λ[x, term] abstraction

β-redexes are eliminated by applications of the β-conversion rule, which can be
encoded in FunLog as follows:

DeclareRule[app[λ[x , t1], t2] :> repl[t1, {x, t2}], “β”]

where repl[t1, {x, t2}] replaces all free occurrences of x in t1 by t2. A straight-
forward implementation of repl in Mathematica is shown below1:

repl[λ[x , t], {x , }] := λ[x, t];
repl[x , {x , t }] := t;
repl[λ[x , t], σ] := λ[x, repl[t, σ]];
repl[app[t1 , t2], σ] := app[repl[t1, σ], repl[t2, σ]];
repl[t ,] := t;

The computation of a value of a λ-term proceeds by repeated reductions of the
redexes which are not inside abstractions. In FunLog, the reduction of such a
redex coincides with an application of the rewrite rule “β-elim” defined by

RWRule[“β”, “β-elim”, Prohibit → {λ}]

The following calls illustrate the behavior of this rule:

t := app[z, app[λ[x, app[x, λ[y, app[x, y]]]], λ[z, z]]];
t1 := ApplyRule[t, “β-elim”]
app[z, app[λ[z, z], λ[y, app[λ[z, z], y]]]]

t2 := ApplyRule[t1, “β-elim”]
app[z, λ[y, app[λ[z, z], y]]]

t3 := ApplyRule[t2, “β-elim”]
app[z, λ[y, app[λ[z, z], y]]]

Thus, t2 is a value of t. To compute the value of t directly, we could call

ApplyRule[t, Repeat[“β-elim”, “Id”]]
app[z, λ[y, app[λ[z, z], y]]]

ut

Normal forms. NF[lbl] denotes a rule whose applicative behavior is given by

expr →NF[lbl] expr2 iff expr1 →∗
lbl

expr2 and expr2 6→lbl . (9)

The enumeration strategy of NF[lbl] is obtained by unfolding the recursive defi-
nition

NF[lbl] = NFQ[lbl] | lbl ◦ NF[lbl] (10)

where NFQ[lbl] :: x :> x/; (x 6→lbl).

Abstraction. The abstraction principle is provided in FunLog via the con-
struct

SetAlias[expr , lbl] (11)

1 The Mathematica definitions are tried top-down, and this guarantees a proper
interpretation of the replacement operation.

where lbl is a fresh rule name (a string identifier) and expr is an expression built
from names of rules already declared with the operators |, ◦, Repeat and Until

described before. For example, the call

SetAlias[Repeat[“perm”, “Id”], “sort”]

declares a rule named “sort” whose applicative behavior coincides with that of
the construct Repeat[“perm”, “Id”].

3 Notes on Implementation

We have implemented a Mathematica package called FunLog which supports
the programming style elaborated above. We decided to implement FunLog

in Mathematica because Mathematica has very advanced pattern matching
constructs for specifying transformation rules. Moreover, Mathematica pro-
vides a powerful mechanism to control backtracking. More precisely, it allows to
specify transformation rules of the form

patt :> Block[{result, . . .}, result/; test with side effect]

which, when applied to an expression expr behave as follows:

1. If patt matches with expr , compute θ :=the first matcher and go to 2. Oth-
erwise fail.

2. Evaluate the condition test with side effect , in which we instantiate the pat-
tern variables with the bindings of θ.

3. If the computation yields True, it also computes result as a side effect. This
is possible because the Block construct makes the variable result visible
inside the calls of test with side effect .

4. If test with side effect yields False then the interpreter of Mathematica

backtracks by computing θ := next matcher and goto 2. If no matchers are
left, then fail.

We have employed this construct to implement the backtracking mechanism of
FunLog. For instance, the code for lbl 1 ◦ lbl2 is computed as follows:

– assume patt :> rhs is the code of lbl1. Then the code of lbl1 ◦ lbl2 will be of
the form

patt :> Block[{result, . . .}, result/; CasesQ[rhs, lbl 2]]

where CasesQ[rhs, lbl2] does the following:
• If rhs →lbl2

expr1, then it binds result to expr 1 and yields True.
• If rhs 6→lbl2

it yields False.
This decision step relies on the possibility to detect whether the code of
rule lbl2 accepts expr1 as input. In our implementation, the code of lbl 2 is
a Mathematica transformation rule of the form patt2 :> rhs2. The piece of
Mathematica code

ok = True; result = Replace[expr 1, {patt2 → rhs2, → (ok = False)}]

does the following:

• It sets the value of ok to True.
• It applies the rule patt2 → rhs2 to expr1 by assigning expr2 to result

if expr1 →lbl2
expr2.

• If expr1 6→lbl2
then it applies the Mathematica rule → (ok = False),

which assigns False to ok.
In this way we can simultaneously check whether the code of lbl 2 is defined
for expr1, and assign expr2 to result if expr1 →lbl2

expr2.
– variations of the same trick can be used for all the possible syntactic shapes

of the code of lbl1.

A similar trick can be used to implement the code for Repeat[lbl 1, lbl2].
In principle, our implementation of the combinators for rules is based on an

agreed-upon standard on how to represent the code of non-basic rules, which
enables to easily compute the code of the newly declared rule. We do not ex-
pose the details here because some of them require a deep understanding of the
evaluation and backtracking principles of Mathematica.

4 Applications – Implementing Unification Procedures

with Sequence Variables

We have implemented a library of unification procedures for free, flat and re-
stricted flat theories with sequence variables and flexible arity symbols [8] in
FunLog. The common characteristic features of the procedures is that they
are based on transformation rules, applied in a “don’t know” non-deterministic
manner. Each of the procedures is designed as a tree generation process.

A sequence variable is a variable that can be instantiated by an arbitrary
finite sequence of terms. Below we use x, y, z and w to denote sequence variables,
while x, y, z will denote individual variables. Sequence variables are used together
with flexible arity function symbols. Terms and equalities are built in the usual
way over individual and sequence variables, and fixed and flexible arity function
symbols, with the following restriction: sequence variable can not be a direct
argument of a fixed arity function, and sequence variable can not be a direct
argument of equality. Substitutions map individual variables to single terms
and sequence variables to finite, possible empty, sequences of terms. Application
of a substitution is defined as usual. For example, applying the substitution
{x 7→ a, y 7→ f(x), x 7→ pq, y 7→ pa, f(x), bq} to the term f(x, x, g(y, y), y) gives
f(a, g(f(x), f(x)), a, f(x), b). The standard notions of unification theory [3] can
be easily adapted for terms with sequence variables and flexible arity symbols.

4.1 Free Unification with Sequence Variables and Flexible Arity

Symbols

In [9] a minimal complete unification procedure for a general free unification
problem with sequence variables and flexible arity symbols was described. The
procedure consists of five types of rules: projection, success, failure, elimination

and split. They are given in Appendix. All three types of free unification with
sequence variables (elementary, with constants and general) are decidable, but
infinitary. We do not implement the decision procedure (it requires Makanin
algorithm [10] and the combination method [2]). Instead, we put a bound on
the unification tree depth and perform a depth-first search with backtracking.
Optionally, if the user sets the tree depth bound to infinity, FunLog performs
iterative deepening with the predefined depth (by default it is set to 20, but the
user can change it), and reports the solutions as they are found.

Nodes in the unification tree are pairs (u, σ), where u is a unification prob-
lem together with its context and σ is the substitution computed so far. The
successful nodes are labelled only with substitutions.

For instance, the third and fourth elimination rules can be encoded in Fun-

Log as follows:

DeclareRule [{{({f [x ?SVarQ, s1], f [t , s2]} |
{f [t , s2], f [x ?SVarQ, s1]})/; Not[SVarQ[t]],
ctx }, σ }/; FreeQ[t, x] :>
{{{f[s1], f[s2]}, ctx}/.x → t,
ComposeSubst[σ, {x → t}], “Elim-svar-nonsvar-1”];

DeclareRule [{{({f [x ?SVarQ, s1], f [t , s2]} |
{f [t , s2], f [x ?SVarQ, s1]})/; Not[SVarQ[t]],
ctx }, σ }/; FreeQ[t, x] :>
{{{f[x, Apply[Sequence, {s1}/.x → seq[t, x]]],
f[s2]/.x → seq[t, x]}, ctx/.x → seq[t, x]},
ComposeSubst[σ, {x → seq[t, x]}], “Elim-svar-nonsvar-2”];

“Elim-svar-nonsvar-1” rule corresponds to the cases with the substitution σ1

of the third and fourth elimination rules in Fig. 1, and “Elim-svar-nonsvar-2”
corresponds to the cases with σ2 of the same rules. In this manner, we can declare
a finite set of FunLog rules that cover all the situations shown in Fig. 1. The
non-success rules can be grouped together via the FunLog construct

SetAlias[lbl1| · · · |lbln, “Non-success”]

where lbl1, . . . , lbln are labels of all non-success rules. Similarly, the success rules
can be grouped into a rule

SetAlias[lbl1| · · · |lblm, “Success”]

where lbl1, . . . , lblm are the names of all success rules encoded with FunLog.
We encode computation of one unifier into the following FunLog rule:

SetAlias[“Projection” ◦ Repeat[“Non-success”, “Success”], “Unify”].

After that, the computation of a unifier of a free unification problem Γ is
achieved by the call

ApplyRule[Γ, “Unify”]

whereas the list of all unifiers is produced by the call

ApplyRuleList[Γ, “Unify”].

Example 6. For the free unification problem f(x, b, y, f(x))'?
∅f(a, x, f(b, y)) the

procedure computes the solution {{x 7→ a, x 7→ pb, xq, y 7→ x}, {x 7→ a, x 7→
b, y 7→ pq}}. ut

Problems like word equations [1] or associative unification with unit element
[14] can be encoded as a particular case of free unification with sequence vari-
ables and flexible arity symbols. Similarly, associative unification [13] can be
translated into a particular case of free unification with sequence variables when
projection rules are omitted. Thus, as a side effect, our implementation also
provides unification procedures for those problems.

4.2 Flat Unification with Sequence Variables and Flexible Arity

Symbols

Flat theory with sequence variables is axiomatized by the equality f(x, f(y), z) '
f(x, y, z). This theory gives a precise characterization of evaluation behavior of
flat functions as it is implemented in the Mathematica system. It was the main
motivation to study the flat theory, but then it turned out to have some inter-
esting properties. Namely, it was shown that both matching and unification are
infinitary but decidable, and the unification procedure was designed. It should
be noted that flat pattern matching of Mathematica implements a restricted,
finitary case of matching in the flat theory with sequence variables and flexible
arity symbols.

The FunLog implementation of a general flat unification with sequence vari-
ables and flexible arity symbols goes along the procedure described in [8]. It
combines the rules specific for the flat theory with those specific for the free
theory. The implementation does not contain the decision procedure and uses
the depth-first search with bounded depth. Since the procedure does not enu-
merate directly the minimal complete set of unifiers, after answer generation a
certain minimization effort is required. As a result, the answer returned by the
procedure represents a minimal subset of the complete set of solutions (and not
a subset of minimal complete set of solutions).

Example 7. Let f(x)'?
F f(a) be a flat unification problem. It has infinitely many

solutions. Our implementation computes the subset

{{x 7→ a}, {x 7→ f(a)}, {x 7→ pa, f()q}, {x 7→ pf(a), f()q}, {x 7→ pf(), aq},
{x 7→ pf(), f(a)q}, {x 7→ pf(), a, f()q}, {x 7→ pf(), f(a), f()q},
{x 7→ pf(), f(), aq}, {x 7→ pf(), f(), f(a)q}, {x 7→ pa, f(), f()q},
{x 7→ pf(a), f(), f()q}}.

of the complete set of unifiers of the problem, with the tree depth set to 4. ut

Example 8. Let f(x, g(x))'?
F f(a, b, g(a, f(), b)) be a general flat unification prob-

lem, with f flat and g free. The the procedure computes the unique unifier
{x 7→ pa, f(), bq}. ut

4.3 Restricted Flat Unification with Sequence Variables and

Flexible Arity Symbols

The restricted flat theory with sequence variables is axiomatized by the equality
f(x, f(y, x, z), w) ' f(x, y, x, z, w). In this theory only nested terms with at least
one non-sequence variable argument can be flattened. Such a restriction makes
matching finitary, while other properties of the flat theory are retained.

Example 9. The restricted flat unification problem f(x)'?
RF f(a) has two solu-

tions: {x 7→ a}, {x 7→ f(a)}. ut

We have implemented in FunLog the restricted flat unification procedure
described in [8].

5 Conclusion and Future Work

FunLog is intended to be used in areas where problems can be specified con-
veniently as combinations of abstract rewrite rules. In particular, the package
turned out to be useful in implementations of procedures for E-unification.

Obviously, the range of problems which can be tackled with FunLog is
very large. We expect to identify more interesting problems which can be eas-
ily programmed with transformation rules. But we also expect that our future
attempts to solve new problems will reveal new programming constructs which
are desirable for making our programming style more expressive.

Currently, we investigate how these programming constructs can be employed
to implement provers in the Theorema system [5, 6]. We also believe that our
programming constructs could underlie a convenient tool to write reasoners by
Theorema users and developers.

Another direction of future work is to introduce control mechanisms for pat-
tern matching with sequence variables. The current implementation of FunLog

relies entirely on the enumeration strategy of matchers which is built into the
Mathematica interpreter. However, there are many situations when this enu-
meration strategy is not desirable. We have already addressed this problem in
[11, 12] and implemented the package Sequentica with language extensions
which can overwrite the default enumeration strategy of the Mathematica in-
terpreter. The integration of those language extensions in FunLog will certainly
increase the expressive power of our rule-based system. We are currently working
on integrating Sequentica with FunLog.

The current implementation of FunLog can be downloaded from

http://www.score.is.tsukuba.ac.jp/~mmarin/FunLog/

Acknowledgements. Mircea Marin has been supported by the Austrian Aca-
demy of Sciences. Temur Kutsia has been supported by the Austrian Science
Foundation (FWF) under Project SFB F1302.

References

1. H. Abdulrab and J.-P. Pécuchet. Solving word equations. J. of Symbolic Compu-
tation, 8(5):499–522, 1990.

2. F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. J. of Symbolic Computation, 21(2):211–244, 1996.

3. F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532.
Elsevier Science, 2001.

4. P. Borovanský, C. Kirchner, H. Kirchner, and Ch. Ringeissen. Rewriting with
strategies in ELAN: a functional semantics. International Journal of Foundations
of Computer Science, 12(1):69–98, 2001. Also available as Technical Report A01-
R-388, LORIA, Nancy (France).

5. B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and
W. Windsteiger. The Theorema project: A progress report. In M. Kerber and
M. Kohlhase, editors, Symbolic Computation and Automated Reasoning. Proc. of
Calculemus’2000, pages 98–113, St.Andrews, UK, 6–7 August 2000.

6. B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru.
A survey of the Theorema project. In W. Küchlin, editor, Proceedings of the In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC’97, pages
384–391, Maui, Hawaii, US, 21–23 July 1997. ACM Press.

7. The PROTHEO Group. http://www.loria.fr/equipes/protheo/softwares/elan/.
8. T. Kutsia. Solving and Proving in Equational Theories with Sequence Variables

and Flexible Arity Symbols. PhD thesis, Institute RISC-Linz, Johannes Kepler
University, Hagenberg, Austria, June 2002.

9. T. Kutsia. Unification with Sequence Variables and Flexible Arity Symbols and
its Extension with Pattern-Terms. In J. Calmet, B. Benhamou, O. Caprotti,
L. Henocque, and V. Sorge, editors, editor, Artificial Intelligence, Automated Rea-
soning and Symbolic Computation. Proceedings of Joint AICS’2002 - Calcule-
mus’2002 Conference, volume 2385 of LNAI, Marseille, France, 2002.

10. G. S. Makanin. The problem of solvability of equations on a free semigroup. Math.
USSR Sbornik, 32(2), 1977.

11. M. Marin. Functional Programming with Sequence Variables: The Sequentica
Package. In J. Levy, M. Kohlhase, J. Niehren, and M. Villaret, editors, Proceedings
of the 17th International Workshop on Unification (UNIF 2003), pages 65–78,
Valencia, June 2003.

12. M. Marin and D. Ţepeneu. Programming with Sequence Variables: The Sequen-
tica Package. In P. Mitic, P. Ramsden, and J. Carne, editors, Challenging the
Boundaries of Symbolic Computation. Proceedings of 5th International Mathemat-
ica Symposium (IMS 2003), pages 17–24, Imperial College, London, July 7–11
2003. Imperial College Press.

13. G. Plotkin. Building in equational theories. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 7, pages 73–90, Edinburgh, UK, 1972. Edinburgh
University Press.

14. A. F. Tiu. A1-unification. Technical Report WV-01-08, Knowledge Representation
and Reasoning Group, Department of Computer Science, Dresden University of
Technology, 2001.

A Rules for Free Unification

Projection: s '?
∅ t 〈〈sπ1 '?

∅ tπ1, π1〉, . . . , where

〈sπk '?
∅ tπk, πk〉〉 {π1, . . . , πk} = Π(s '?

∅ t).

Success: t'?
∅t 〈〈>, ε〉〉.

x'?
∅t 〈〈>, {x 7→ t}〉〉, if x /∈ vars(t).

t'?
∅x 〈〈>, {x 7→ t}〉〉, if x /∈ vars(t).

Failure: c1'
?
∅c2 ⊥, if c1 6= c2.

x'?
∅t ⊥, if t 6= x and x ∈ vars(t).

t'?
∅x ⊥, if t 6= x and x ∈ vars(t).

f1(t̃)'
?
∅f2(s̃) ⊥, if f1 6= f2.

f()'?
∅f(t1, t̃) ⊥.

f(t1, t̃)'
?
∅f() ⊥.

f(x, t̃)'?
∅f(s1, s̃) ⊥, if s1 6= x and x ∈ svars(s1).

f(s1, s̃)'
?
∅f(x, t̃) ⊥, if s1 6= x and x ∈ svars(s1).

f(t1, t̃)'
?
∅f(s1, s̃) ⊥, if t1'

?
∅s1 ⊥.

Eliminate: f(t1, t̃)'
?
∅f(s1, s̃) 〈〈g(t̃σ)'?

∅g(s̃σ), σ〉〉, if t1'
?
∅s1 〈〈>, σ〉〉.

f(x, t̃)'?
∅f(x, s̃) 〈〈f(t̃)'?

∅f(s̃), ε〉〉.

f(x, t̃)'?
∅f(s1, s̃) if s1 /∈ VSeq and x /∈ svars(s1),

〈〈f(t̃σ1)'
?
∅f(s̃σ1), σ1〉, where σ1 = {x 7→ s1},

〈f(x, t̃σ2)'
?
∅f(s̃σ2), σ2〉〉, σ2 = {x 7→ ps1, xq}.

f(s1, s̃)'
?
∅f(x, t̃) if s1 /∈ VSeq and x /∈ svars(s1),

〈〈f(s̃σ1)'
?
∅f(t̃σ1), σ1〉, where σ1 = {x 7→ s1},

〈f(s̃σ2)'
?
∅f(x, t̃σ2), σ2〉〉, σ2 = {x 7→ ps1, xq}.

f(x, t̃)'?
∅f(y, s̃) where

〈〈f(t̃σ1)'
?
∅f(s̃σ1), σ1〉, σ1 = {x 7→ y},

〈f(x, t̃σ2)'
?
∅f(s̃σ2), σ2〉, σ2 = {x 7→ py, xq},

〈f(t̃σ3)'
?
∅f(y, s̃σ3), σ3〉 〉, σ3 = {y 7→ px, yq}.

Split: f(t1, t̃)'
?
∅f(s1, s̃) if t1, s1 /∈ VInd ∪ VSeq and

〈〈f(r1, t̃σ1)'
?
∅f(q1, s̃σ1), σ1〉, . . . , t1'

?
∅s1 〈〈r1'

?
∅q1, σ1〉,

〈f(rk, t̃σk)'?
∅f(qk, s̃σk), σk〉〉 . . . , 〈rk'

?
∅qk, σk〉〉.

Fig. 1. t̃ and s̃ are possibly empty sequences of terms; Π(Γ) is the set of substitutions
{{x1 7→ pq, . . . , xn 7→ pq} | {x1, . . . , xn} ⊆ svars(Γ)}; svars(t) (vars(t)) is the set of
all seq. variables (all variables) in t; f, f1, f2 are free (fixed or flexible) symbols; g is a
new free flexible symbol, if in the same rule f is of the fixed arity, otherwise g is f .

