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Abstract

We give a classical hypergeometric proof of a crucial transforma-
tion formula arising in work of J.-B. Baillon and R.E. Bruck on asym-
ptotic regularity.

1 The Problem

In order to derive a quantitative form of the Ishikawa-Edelstein-O’Brian
asymptotic regularity theorem, J.-B. Baillon and R.E. Bruck [1] needed to
verify the hypergeometric identity

2F1

(
1/2,−m

2
; 4x(1− x)

)
= (1)

(m + 1)(1− x)x2m−1
2F1

(
−m,−m

2
; (

1− x

x
)2

)
+

1



(2x− 1)x2m−1
2F1

(
−m,−m

1
; (

1− x

x
)2

)
.

Using Zeilberger’s algorithm [5], J.-B. Baillon and R.E. Bruck gave a compu-
ter proof of this identity which is the key to the integral representation ([1],
(2.1)) of their main theorem.

In this note we show how (1) can be proved by classical hypergeometric
machinery, hence solving open problem 9.10 posed by J.-B. Baillon and R.E.
Bruck [1].

All what we need is,
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The relations (2), (3) are called “contiguous relations”. They can be easily
verified. (For instance, (3) is a special case of Exercise 5.25 in [2].) The
quadratic transformation (4) is due to Gauss. For a proof see, for instance,
the book of Rainville [4].

2 The Proof

Using (2) the left hand side of (1) is equal to
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Now the key step is to apply (4) to each of the summands of Bm(x) with
z := (1− x)/x and b = 3/2, respectively b = 1/2,
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In order to arrive at the right hand side of (1) one only has to apply (3) to
the first summand series.

Remark: We want to note that Krattenthaler’s Mathematica package hyp.m

[3] was used to come up with this proof.
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