A Classical Hypergeometric Proof of an Important Transformation Formula Found by J.-B. Baillon and R.E. Bruck

Peter Paule
Institut für Mathematik, RISC,
J. Kepler University,
A-4040 Linz, Austria
email: peter.paule@risc.uni-linz.ac.at

July 25, 1995

Abstract

We give a classical hypergeometric proof of a crucial transformation formula arising in work of J.-B. Baillon and R.E. Bruck on asymptotic regularity.

1 The Problem

In order to derive a quantitative form of the Ishikawa-Edelstein-O'Brian asymptotic regularity theorem, J.-B. Baillon and R.E. Bruck [1] needed to verify the hypergeometric identity

$$
\begin{align*}
& { }_{2} F_{1}\left(\begin{array}{c}
1 / 2,-m \\
2
\end{array} ; 4 x(1-x)\right)= \tag{1}\\
& (m+1)(1-x) x^{2 m-1}{ }_{2} F_{1}\left(\begin{array}{c}
-m,-m \\
2
\end{array} ;\left(\frac{1-x}{x}\right)^{2}\right)+
\end{align*}
$$

$$
(2 x-1) x_{2}^{2 m-1} F_{1}\left(\begin{array}{c}
-m,-m \\
1
\end{array}\left(\frac{1-x}{x}\right)^{2}\right) .
$$

Using Zeilberger's algorithm [5], J.-B. Baillon and R.E. Bruck gave a computer proof of this identity which is the key to the integral representation ([1], (2.1)) of their main theorem.

In this note we show how (1) can be proved by classical hypergeometric machinery, hence solving open problem 9.10 posed by J.-B. Baillon and R.E. Bruck [1].

All what we need is,

$$
\frac{a b z}{(c-1) c}{ }_{2} F_{1}\left(\begin{array}{c}
a+1, b+1 \tag{2}\\
c+1
\end{array} ; z\right)={ }_{2} F_{1}\left(\begin{array}{c}
a, b \\
c-1
\end{array} ; z\right)-{ }_{2} F_{1}\left(\begin{array}{c}
a, b \\
c
\end{array} ; z\right)
$$

and

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a+1, b \tag{3}\\
c+1
\end{array} ; z\right)=\frac{a-c}{a}{ }_{2} F_{1}\left(\begin{array}{c}
a, b \\
c+1
\end{array} ; z\right)+\frac{c}{a}{ }_{2} F_{1}\left(\begin{array}{c}
a, b \\
c
\end{array} ; z\right),
$$

together with

$$
{ }_{2} F_{1}\left(\begin{array}{c}
b, a \tag{4}\\
2 b
\end{array} ; \frac{4 z}{(1+z)^{2}}\right)=(1+z)^{2 a}{ }_{2} F_{1}\left(\begin{array}{c}
a, a-b+\frac{1}{2} \\
b+\frac{1}{2}
\end{array} z^{2}\right) .
$$

The relations (2), (3) are called "contiguous relations". They can be easily verified. (For instance, (3) is a special case of Exercise 5.25 in [2].) The quadratic transformation (4) is due to Gauss. For a proof see, for instance, the book of Rainville [4].

2 The Proof

Using (2) the left hand side of (1) is equal to
$B_{m}(x):=m(1-x) x_{2} F_{1}\left(\begin{array}{c}\frac{3}{2}, 1-m \\ 3\end{array} ; 4 x(1-x)\right)+{ }_{2} F_{1}\left(\begin{array}{c}\frac{1}{2},-m \\ 1\end{array} ; 4 x(1-x)\right)$.
Now the key step is to apply (4) to each of the summands of $B_{m}(x)$ with $z:=(1-x) / x$ and $b=3 / 2$, respectively $b=1 / 2$,

$$
B_{m}(x)=m(1-x) x^{2 m-1}{ }_{2} F_{1}\left(\begin{array}{c}
1-m,-m \\
2
\end{array} ;\left(\frac{1-x}{x}\right)^{2}\right)+
$$

$$
x_{2}^{2 m} F_{1}\left(\begin{array}{c}
-m,-m \\
1
\end{array}\left(\frac{1-x}{x}\right)^{2}\right) .
$$

In order to arrive at the right hand side of (1) one only has to apply (3) to the first summand series.

Remark: We want to note that Krattenthaler's Mathematica package hyp.m [3] was used to come up with this proof.

References

[1] J.-B. Baillon and R.E. Bruck, The rate of asymptotic regularity is $O(1 / \sqrt{n})$, this volume.
[2] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science. Reading: Addison-Wesley, 1989.
[3] C. Krattenthaler, HYP and HYPQ - Mathematica packages for the manipulation of binomial sums and hypergeometric series, respectively q binomial sums and basic hypergeometric series, to appear in: J. Symbolic Computation.
[4] E.D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
[5] D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities. Discr. Math. 80 (1990), 207-211.

