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ABSTRACT

In recent years, the problem of symbolic summation has received much attention
due to the exciting applications of Zeilberger’s method for definite hypergeometric
summation. This lead to renewed interest in the central part of the algorithmic
machinery, Gosper’s “classical” method for indefinite hypergeometric summation.
We review some of the recent (partly unpublished as yet) work done in this field,
with a particular emphasis on the unifying and guiding rôle of normal forms for
polynomials and rational functions, especially adapted to summation algorithms.

1. Introduction

The algorithmic problem of symbolic summation can be most easily introduced
by presenting it as the discrete analogue of the well-known problem of “symbolic
integration” or “integration in finite terms”. Without being too formal, we can simply
say that the rôle of the differential operator in the latter problem is taken over by the
difference operator ∆:

(∆ g) (x) := g(x + 1)− g(x) ,

where g is a function belonging to some appropriate domain. It is also convenient to
introduce the shift operator E (in the variable x):

(E g) (x) := g(x + 1) ,

so that ∆ = E − Id. Positive and negative powers of E denote the corresponding
shifts in x.

The problem of indefinite summation essentially asks for solving the first-order
difference equation

∆ g = f ,



where f belongs to some “nice” domain of functions∗, and g is searched for in the same
class or some suitable extension of it. For such a g, by telescoping,

b∑
x=a

f(x) = g(b + 1)− g(a) , if b− a ∈ N,

i.e. the “antidifference” g of f provides an expression for sums involving f . It is
usually no serious restriction if we consider functions f, g etc. on integer arguments
only, and thus speak of a summation problem with respect to “sequences” instead of
“functions”.

It must be admitted that the summation problem, despite its deep roots in classical
difference calculus, has never attracted the same attention as the related, and very
prestigious, problem of symbolic integration. A first survey of summation methods
in the context of computer algebra has been given by Lafon16. The main themes
treated there are

• summation of polynomials and rational functions;

• hypergeometric summation and Gosper’s algorithm;

• summation using extensions of function domains.

In all cases, only indefinite summation was treated. Thus it may come as a surprise
that most of the present interest in these questions was stimulated by the ingenious
use Zeilberger made of Gosper’s method for indefinite hypergeometric summa-
tion for the purpose of definite hypergeometric summation. Thus “Summation” has
become a very active field of research, and what we present below is a glance into
some of the most recent work under the unifying perspective of normal forms, mo-
tivated and stimulated by Gosper’s and Zeilberger’s algorithms. We will not be
complete, and, in particular, we did not intend to write an “update” of Lafon’s sur-
vey. Especially, we do not touch the third theme, “summation by extensions” at all,
an area which is marked by the outstanding work of Karr13,14. On the other hand,
we do come back to the interesting part of the first theme, the summation rational
functions, for two good reasons.

Before giving a short outline of the sections to follow, let us mention that Gra-
ham et al.10 give a gentle introduction into summation with many examples. In
particular, Gosper’s algorithm is treated in detail, and the applications made by
Zeilberger and Wilf are discussed and illustrated.

Here we first briefly recall Gosper’s algorithm and fix the notation for later ref-
erence. In Sec. 3 we present the main ideas and concepts of Zeilberger’s method
for definite hypergeometric sums. In the fourth section we look back to the most ele-
mentary case of hypergeometric summation, i.e. the summation of rational functions.

∗For computer algebra this means, in particular, that functions to be dealt with must be specifi-
able with a finite amount of information, as is the case for “polynomials”, “rational function”, or
“hypergeometric terms”.



We motivate the concept of greatest factorial factorization (GFF) of polynomials,
which, in the context of rational summation, is the appropriate analogue of the well-
known squarefree factorization, used in rational integration. Looking (in Sec. 5)
at Gosper’s algorithm with the GFF in mind, the “mystery” of this method dis-
appears and, more importantly, a certain normal form for rational functions, which
we call the Gosper-Petkovšek form, appears naturally. These strongly normal-
izing representations, GFF and Gosper-Petkovšek form, are then reliable guides
for formulating the analogues of Gosper’s and Zeilberger’s method in the world
of q-hypergeometric series. We follow this track in Sec. 6 up to the point where
the analogies become clearly visible, and demonstrate the possibility of effective im-
plementation by examples. To conclude, we come back to the rational summation
problem and present an “optimal” summation algorithm, which is essentially based
on the Gosper-Petkovšek form for rational functions.

We conclude this introduction with a technical remark: throughout this article
K denotes a field of characteristic 0. Polynomials A ∈ K[x] are usually assumed to
be monic (unless stated otherwise) — this is no restriction for the problems under
consideration.

2. Gosper’s algorithm for indefinite hypergeometric summation

In order to prepare the stage for hypergeometric summation, let us briefly recall
the classical notion of hypergeometric series (or “functions”), cf. Graham et al.10:
these are infinite series

pFq

[
a1 a2 . . . ap

b1 b2 . . . bq

; z

]
=

∞∑

k=0

ak
1 ak

2 . . . ak
p

bk
1 bk

2 . . . bk
q

· zk

k!
, (1)

where the ai, bj are (complex) parameters, z is a (complex) variable, and where, for
k ≥ 0,

ak := a · (a + 1) · . . . · (a + k − 1)

denotes the rising factorial of length k. Most of the classically known “special func-
tions” (exponential, logarithmic, trigonometric functions, orthogonal polynomials,
Bessel functions etc.) can actually be written as hypergeometric series by an appro-
priate choice of parameters. As a rule, binomial sums, such as compiled by Gould9,
are nothing but terminating hypergeometric series, which is, loosely speaking, the
case if one of the numerator parameters in Eq. (1) is a negative integer. These sums,
in particular, belong to the objects to which Zeilberger’s method can be applied
— see the references given in Sec. 3 for numerous examples.

The particular feature of the summation in (1) is the fact that, if we write fk for
the k-th term of the series, then the quotient of successive terms

fk+1

fk

=
(a1 + k)(a2 + k) . . . (ap + k)

(b1 + k)(b2 + k) . . . (bq + k)
· z

(1 + k)



is a rational function of k. Conversely, up to normalization, any rational function of k
can be written in this form. This leads us to the notion of a hypergeometric sequence.

A sequence (fk)k≥0 of elements in K is hypergeometric if there exist polynomials
A, B ∈ K[x] such that

fk+1

fk

=
A(k)

B(k)
(k ≥ 0) .

The rational function A/B ∈ K(x) is called a rational representation of (fk)k≥0. The
problem of indefinite hypergeometric summation asks the following:

given a hypergeometric sequence (fk)k≥0 over K , e.g. specified by its
hypergeometric representation A/B ∈ K(x) ,
decide whether there exists a hypergeometric sequence (gk)k≥0 such that

gk+1 − gk = fk (k ≥ 0) (2)

and if this is the case, determine its rational representation.

As mentioned before, a solution (gk)k≥0 of the first-order difference equation (2)
leads, by telescoping, to

b−1∑

k=a

fk = gb − ga (0 ≤ a < b) ,

which justifies to speak about an indefinite summation problem.
The following classical algorithm, presented by Gosper8 in 1978, provides a com-

plete solution to the indefinite hypergeometric summation problem:

Let r ∈ K(x) be a rational function representation of some hypergeomet-
ric sequence (fk)k≥0. Then

1. determine polynomials P, Q,R ∈ K[x] such that

r =
E P

P
· Q

E R
, (3)

where
gcd(Q,EjR) = 1 for all j ≥ 1 .

2. try to solve the “key equation”

P = Q · E Y −R · Y (4)

for Y ∈ K[x] (!). Now:



• If such a polynomial solution Y ∈ K[x] exists, then (gk)k≥0,
where

gk =
Y (k) R(k)

P (k)
· fk (k ≥ 0) , (5)

is a hypergeometric solution of (2) and

s =
Q

R
· E Y

Y
(6)

is a rational representation of it.

• If no polynomial solution Y ∈ K[x] of (4) exists, then no hyper-
geometric solution (gk)k≥0 of (2) can exist.

It follows, in particular, that a hypergeometric solution (gk)k≥0 of (2), if it exists, is
necessarily a rational multiple of the input sequence (fk)k≥0. As a consequence, we
can note: if the input sequence (fk)k≥0 is rational, then a potential hypergeometric
“antidifference” (gk)k≥0 must itself be rational.

The feasibility of Gosper’s algorithm, what really turns it into a decision method,
depends on the fact that one can give an a priori degree bound on potential polynomial
solutions Y ∈ K[x] of the key equation (4). This is discussed in the presentations
given by Gosper8, Lafon16, Graham et al.10, and, with particular attention paid
to uniqueness questions and the behaviour on rational inputs, by Lisoněk et al.17.

In Sec. 5 we will look again on Gosper’s algorithm. It turns out that the concept
of greatest factorial factorization, introduced in Sec. 4 in the context of the rational
summation problem, leads to a strengthening of the particular representation of a
rational function, as contained in Eq. (3). We will show that this “normal form”
for rational functions, which we call the Gosper-Petkovšek representation, makes
the machinery behind the “key equation” (4) and the statements (5) and (6) better
understandable.

Gosper’s algorithm is at the computational heart of Zeilberger’s fast algorithm
for definite hypergeometric summation, which is discussed in the next section. We
restrict ourselves here to the presentation of two very simple illustrating examples.

– Let fk = (k + 1)(k + 1)! for k ≥ 0, then

fk+1

fk

=
k + 2

k + 1
· k + 2

1
.

Hence P (x) = x + 1, Q(x) = x + 2, and R(x) = 1. The constant polynomial
Y (x) = 1 satisfies the key equation

x + 1 = (x + 2)Y (x + 1)− Y (x) .

Consequently, according to Eq. (5), the hypergeometric solution of the differ-
ence equation fk = gk+1 − gk is

gk =
1

k + 1
· fk = (k + 1)! ,



with rational representration

s = ·x + 2

1
· 1

1
= x + 2 .

and thus, for n ≥ 0,

n∑

k=0

(k + 1)(k + 1)! = gn+1 − g0 = (n + 2)!− 1 .

– Let now fk =
(

n
k

)
for k ≥ 0 and n ≥ 0 fixed. Then

fk+1

fk

=
n− k

k + 1
.

Hence P (x) = 1, Q(x) = n− x and R(x) = x. The key equation reads

1 = (n− x) · Y (x + 1)− x · Y (x) ,

and it is easily checked that this equation does not admit a polynomial solution

Y ∈ K[x]. Consequently,
∑m

k=0

(
n
k

)
is not hypergeometric as a function of m.

3. Gosper’s algorithm and Zeilberger’s summation method

It was observed by Zeilberger35,36,38 that the indefinite summation algorithm of
Gosper can be used in a non-obvious and nontrivial way for definite hypergeometric
summation. The methodology which evolved from that approach has important appli-
cations in verifying or finding binomial identities “automatically”, finding annihilating
recurrence operators for hypergeometric sums etc.. Expositions of what is now known
as “Zeilberger’s method”, together with examples and applications, have been
given e.g. by Zeilberger39, Wilf33, Cartier4, Koornwinder15, Strehl31,32,
Graham et al.10. A generalization of that method to multisum identities, has been
presented by Wilf and Zeilberger34. This fundamental article is also an excellent
source for examples and further references. Maple versions of Zeilberger’s algorithm
have been written and published by Zeilberger37 and Koornwinder15. A Math-
ematica implementation by Paule and Schorn22 is available by email request from
the first author.

The following short description of the basic mechanism of Zeilberger’s method
is adapted from Paule21, where the q-analogue (see section 6 of this paper) is spelled
out.

Let f := (fn,k) be a double-indexed sequence with values in the ground-field K.
We shall consider only sequences where n runs through the nonnegative integers,
whereas the second parameter k may run through all integers.



The sequence f is called hypergeometric in both parameters if both quotients

fn+1,k

fn,k

and
fn,k+1

fn,k

are rational functions in n and k over the field K (for all n and k for which the
quotients are well-defined).

For instance, for the binomial coefficient sequence fn,k =
(

n
k

)
we have

(
n + 1

k + 1

)
/

(
n

k + 1

)
=

n + 1

n− k
and

(
n + 1

k + 1

)
/

(
n + 1

k

)
=

n− k + 1

k + 1
. (7)

We assume that the hypergeometric sequence f has finite support with respect
to k, i.e. for each fixed n one has fn,k = 0 for all k outside a finite integer interval
In. In this case, the sum Sn :=

∑
k fn,k =

∑
k∈In

fn,k is finite, and we may use the
convention that the summation parameter k runs through all the integers, in case the
summation range is not specified explicitly.

It can then be shown that, under mild conditions, the sequence S := (Sn)n≥0 is
holonomic, i.e. it satisfies a homogeneous linear recursion with rational function (or
polynomial) coefficients:

C0(n)Sn + C1(n)Sn−1 + · · ·+ Cd(n)Sn−d = 0 (8)

for n ≥ d, with Ci ∈ K(x), C0 6= 0. If we denote by N the shift operator w.r.t. n,
then we can state that S is uniquely specified by such an annihilating operator

AS(N) :=
d∑

l=0

Cl(n)N−l, (9)

together with the d initial values S0, . . . , Sd−1 (provided that C0(n) 6= 0 for n ≥ d).
What is the rôle of Gosper’s algorithm in constructing such an operator AS(N)?

Note that from

N−1fn,k =
fn−1,k

fn,k

fn,k, N−2fn,k =
fn−2,k

fn−1,k

fn−1,k

fn,k

fn,k, a.s.o.

it follows that AS(N) fn,k is a rational multiple of fn,k, i.e.

AS(N) fn,k = r(n, k) fn,k , (10)

where r(n, k) is a rational function in n, k overK. Hence, for each fixed n, the sequence
(AS(N) fn,k)k≥0 is hypergeometric (w.r.t. k). We can use Gosper’s algorithm in
order to solve the hypergeometric summation problem

AS(N) fn,k = gn,k − gn,k−1 , (11)



where gn,k is hypergeometric in n, k, and indeed, if it exists, gn,k will be rational
multiple of fn,k:

gn,k = certS(n, k) fn,k . (12)

In this situation, it follows by telescoping over Eq. (11) and using the finite support
property of f that the operator AS(N) has the desired property:

AS(N) S, = AS(N)
∑

k

fn,k =
∑

k

gn,k − gn,k−1 = 0 .

Now the following remarks are crucial for the understanding of the method:

• Up to now we have argued as if AS(N) were known — this is not the case, of
course. But if start by writing AS(N) with undetermined coefficients Cj ∈ K(x),
then we can use the second phase of Gosper’s algorithm (solving the “key
equation”) to solve for these unknowns as well, since they enter linearly into
this equation. This approach will work if the assumed degree d of AS(N) is
sufficiently high.

For the class of “proper” hypergeometric inputs f , for which the algorithm is
known to work, one has a priori bounds for the order d. In practice, one tries
orders d = 1, 2, 3, . . . until Gosper’s algorithms admits a solution.

• If successful, Zeilberger’s algorithm will return, as a result from applying
Gosper’s algorithm, a difference operator AS(N), as above, and a (rational)
“certificate function” certS(n, k) such that Eq. (11) and Eq. (12) hold. This
fact can be checked independently, because this amounts to checking the rational
function identity

r(n, k) = certS(n, k)− certS(n, k − 1)
fn,k−1

fn,k

, (13)

where r(n, k), rational in n and k, comes from Eq. (10). This justifies the
notion “certificate” for the rational function certS(n, k).

As a very simple illustrating example we use Zeilberger’s algorithm in order to
obtain a computer proof for the binomial theorem.

Let fn,k =
(

n
k

)
xk, (x ∈ K). Then the output of Zeilberger’s algorithm is

AS(N) = N0 − (1 + x)N−1 , certS(n, k) = (k − n)x/n .

The first part of the result asserts that Sn =
∑

k fn,k satisfies the same (first-order)
recursion as (1 + x)n. To actually verify this claim, we compute

AS(N)fn,k =

(
n

k

)
xk − (1 + x)

(
n− 1

k

)
xk =

(
1− (1 + x)

n− k

k

)
fn,k ,



i.e.

r(n, k) =
(x + 1)k − xn

n
,

and equate it with

certS(n, k)− certS(n, k − 1)
fn,k−1

fn,k

=
(k − n)x

n
− (k − n− 1)x

n
· k

(n− k + 1)x
.

This simple example does not at all demonstrate the full power of the method.
For instance, about 80% of the more than 500 binomial coefficient identities listed
by Gould9 can be proved automatically this way. Numerous further interesting and
nontrivial applications of Zeilberger’s algorithm can be found in the references
given above.

We conclude this section by an example in which we use the Paule/Schorn22

implementation of Zeilberger’s algorithm. We shall prove

n∑

k=0

(
n

k

)2(
2k

n

)(
2k

k + a

)(
2k

k

)−1

=
n∑

k=0

(
n

k

)2(
n

k + a

)
, (14)

an identity which is a generalization of a key identity (case a = 0) used in a study by
Strehl31 on a problem arising from number theory.

Invoking the program one gets:

zeder!8> math

Mathematica 2.1 for HP Apollo Domain/OS

Copyright 1988-92 Wolfram Research, Inc.

In[1]:= <<zb_alg.m

Out[1]= Peter Paule and Markus Schorn’s implementation loaded.

In[2]:= Zb[Binomial[n,k]^2 Binomial[2k,n] Binomial[2k,k+a] *

Binomial[2k,k]^(-1), k,n,3]

2 2

Out[2]= {-8 (1 + n) (2 + n) SUM[n] -

2 2 2

> (2 + n) (88 - 4 a + 69 n + 15 n ) SUM[1 + n] -

2 2

> (4 + n) (5 + 2 n) (19 - a + 15 n + 3 n ) SUM[2 + n] +

2 2

> (3 - a + n) (3 + a + n) SUM[3 + n] == 0}



In[3]:= Zb[Binomial[n,k]^2 Binomial[n,k+a], k,n, 3]

2 2

Out[3]= {8 (1 + n) (2 + n) SUM[n] +

2 2 2

> (2 + n) (88 - 4 a + 69 n + 15 n ) SUM[1 + n] +

2 2

> (4 + n) (5 + 2 n) (19 - a + 15 n + 3 n ) SUM[2 + n] -

2 2

> (3 - a + n) (3 + a + n) SUM[3 + n] == 0}

This shows that both sides of Eq. (14) satisfy the same third-order recurrence in n,
thus the validity of Eq. (14) follows from checking the the first three initial values of
both sides.

4. Summation of rational functions

Let us start with a general proviso for this section and the last one, both dealing
with the summation problem for rational functions: Since indefinite integration and
summation of polynomials can be considered as trivial tasks, we will assume that all
rational functions appearing in these sections are proper, i.e. degree of the numerator
polynomial < degree of the denominator polynomial.

The problem of indefinite integration of rational functions asks for the following:

given a rational function r = A/B ∈ K(x) ,
determine rational functions s = C/D ∈ K(x) and t = F/G ∈ K(x)
such that

r =
d

dx
s + t i.e.

∫ A

B
dx =

C

D
+

∫ F

G
dx , (15)

where the “logarithmic” part t is as “small” as possible, so that no further
rational parts of the integral can be “extracted” from it.

A solution, in this sense, is obtained once polynomials C,D, F, G have been found
such that (15) holds and such that the denominator polynomial G of the logarithmic
part t is a product of pairwise relatively prime squarefree polynomials. A classical
algorithm, due to Hermite11 (see also Geddes et al.7 or Subramaniam and
Malm30), shows how this goal can always be reached iteratively via partial fraction
decomposition and partial integration. An alternative method, due to Horowitz12

(see also Geddes et al.7), proceeds as follows:



Let B = B1
1 · B2

2 · . . . · Bk
k denote the squarefree factorization of the de-

nominator polynomial B. Then put

D := gcd(B,
d

dx
B) = B0

1 ·B1
2 · . . . ·Bk−1

k , (16)

G := B/D = B1 ·B2 · . . . ·Bk ,

and obtain polynomials C, F , such that Eq. (15) holds, by the method
of undetermined coefficients, applied to the polynomial equation (the
“Hermite-Ostrogradski formula”)

A = G ·
(

d

dx
C

)
−

(
d

dx
D

)
G

D
· C + D · F . (17)

Let us remark the following:

— Eq. (17) is indeed a polynomial equation, since D divides G · d
dx

D, which can
be seen from

G · d

dx
D =

d

dx
B − d

dx
G ·D .

— The feasibility of the approach with undetermined coefficients follows from the
a priori degree bounds deg C < deg D and deg F < deg G.

— The denominator polynomial G is indeed a product of pairwise relatively prime
squarefree polynomials.

— The squarefree factorization, which plays the essential rôle in this approach, can
be computed by gcd-calculations only, i.e. no factoring is required (see Geddes
et al.7).

We now turn to the parallel problem of indefinite summation of rational functions.
Here our problem is

given a rational function r = A/B ∈ K(x) ,
determine rational functions s = C/D ∈ K(x) and t = F/G ∈ K(x)
such that

r = ∆ s + t i.e.†
∑ A

B
δx =

C

D
+

∑ F

G
δx (18)

where the “transcendental” part t is as “small” as possible, so that no
further rational parts of the sum can be “extracted” from it.

In this situation, the notion of “smallness” can be made precise by requiring that
the degree of the denominator polynomial G should be as small as possible for all
polynomials C, D, F,G satisfying (18). It is not too difficult to see (cf. Abramov1,

†We use the suggestive δ-notation proposed in Graham et al.10.



Paule19, Pirastu24) that an equivalent condition can be given in terms of the disper-
sion of a (nonconstant) polynomial: this is defined as the maximum integer distance
occurring between any two roots of the polynomial (in the algebraic closure of K )
— see the example below. A proper solution of the rational summation problem for
A/B ∈ K[x] is then given by polynomials C,D, F, G such that (18) holds, where the
denominator polynomial G has zero dispersion. Note that this condition alone is too
weak to ensure uniqueness in a strong sense. For a study of the uniqueness question
see Paule19, Pirastu24,26, and Pirastu and Strehl27.

The two standard approaches for the rational integration problem do have their
counterparts in the summation case. A Hermite-type approach was presented by
Moenck18,16, but the theoretical base for the version he gives is not sufficiently pre-
cise, and this has lead to at least one defective implementation in a computer algebra
system. See Pirastu24,25 for details and for a correct adaptation of Hermite’s idea
to the summation situation.

For a summation analog of the Horowitz approach, as outlined above, one needs
first an analog of the squarefree decomposition of a polynomial. The corresponding
notion, the greatest factorial factorization (GFF) of a polynomial, has been introduced
only recently and extensively studied by Paule19. To discuss it, we need a bit of
notation.

If G ∈ K[x] is a polynomial, then, for k ≥ 0, the k-th (falling) factorial of G is
defined by

[G]k :=
{

G ·
(
E−1G

)
·
(
E−2G

)
· . . . ·

(
E−k+1G

)
if k > 0 ,

1 if k = 0 .

Using this notion, one can show that every non-constant polynomial G ∈ K[x] has a
representation of the form

G = [G1]
1 · [G2]

2 · . . . · [Gk]
k , (19)

where G1, . . . , Gk ∈ K[x] are polynomials such that Gk is non-constant, and that
such a representation is unique if the following condition is satisfied:

∀ 1 ≤ i, j ≤ k : max(j − i, 0) < h ≤ j ⇒ gcd(EhGi, Gj) = 1 . (20)

It is this particular situation which gives rise to the GFF. The parameter k in this
representation is named factorial exponent of G.

The “geometrical” meaning behind this uniqueness condition is the following:
we call an interval of G any factorial polynomial [H]h which divides G. Naturally,
a polynomial can, in general, be written as a product of intervals in many ways. A
unique normal form can be achieved if it is required that no two such factors “overlap”
or “touch”.

Let us illustrate this concept by an example (over K = Q):

G = x18 + 11 x17 + 30 x16 − 38 x15 − 148 x14 + 316 x13

+ 378 x12 − 1250 x11 + 415 x10 + 1365 x9 − 1736 x8 + 584 x7

+ 500 x6 − 1692 x5 + 1328 x4 + 704 x3 − 768 x2



¿From its factored form

G = (x2 − 2 x + 2)2 (x2 + 1) (x− 1)3 x2 (x + 1)3 (x + 3) (x + 4)3

one can easily read off the squarefree factorization

G =
(
(x2 + 1)(x + 3)

)1 (
(x2 − 2 x + 2)(x)

)2 (
(x− 1)(x + 1)(x + 4)

)3

=
(
x3 + 3 x2 + x + 3

)1 (
x3 − 2 x2 + 2 x

)2 (
x3 + 4 x2 − x− 4

)3
,

i.e.

G1 = x3 + 3 x2 + x + 3 , G2 = x3 − 2 x2 + 2 x , G3 = x3 + 4 x2 − x− 4 .

For the GFF G = [G1]
1 · [G2]

2 · . . . · [Gk]
k we find, again by inspecting the factored

form,

G = [(x + 4)2(x + 1) (x− 1) (x2 − 2 x + 2)]1 [(x + 4) (x2 + 1)]2 [(x + 1)2]3 ,

so that

G1 = (x + 4)2 (x + 1) (x− 1) (x2 − 2 x + 2)

= x6 + 6 x5 + x4 − 22 x3 + 30 x2 + 16 x− 32

G2 = (x + 4) (x2 + 1) = x3 + 4 x2 + x + 4

G3 = (x + 1)2 = x2 + 2 x + 1 .

Here the factorial exponent is k = 3, whereas the dispersion of G has value 5, since
−4 and 1 are zeros of G, and no other zeros of G have integer distance > 5.

As with the squarefree factorization, it is important to note that the GFF of a
polynomial can be calculated by gcd-computations alone, i.e. without factoring. To
demonstrate this, we outline one possible method of computation, which can easily be
extended to a proof of the uniqueness property. In order to avoid heavy notation, the
meet-sign ∧ will occasionally be used to denote the gcd-operation for polynomials.

Let G ∈ K[x] be a non-constant polynomial, and let k ≥ 1, be the factorial
exponent of G, i.e. the maximal positive integer j such that

G ∧ E G ∧ . . . ∧ Ej−1G 6= 1 ,

and define
Gk := G ∧ E G ∧ . . . ∧ Ek−1G .

By definition,
Gk 6= 1 and Gk ∧ EkG = 1 ,

and thus
Gk ∧ EjGk = 1 (0 < j ≤ k) .



It follows that the polynomials

Gk , E−1Gk , . . . , E−k+1Gk

are pairwise relatively prime, and each of them divides G. Hence

[Gk]
k = Gk ·

(
E−1Gk

)
· . . . ·

(
E−k+1Gk

)
| G .

Now put H := G/[Gk]
k, then either H = 1, or else H is a non-constant polynomial

with factorial exponent < k, so that the same procedure just outlined may be applied
iteratively to H.

We note that the GFF has properties similar to the squarefree factorization, in
particular, if (19) is the GFF of G ∈ K[x] , then

gcd(G, ∆G) = gcd(G,E G) = G ∧ E G = [G1]
0 · [G2]

1 · . . . · [Gk]
k−1 ,

so that
G

E−1 gcd(G, ∆G)
= G1 ·G2 · . . . ·Gk .

Using the concept of GFF, a summation analog of Horowitz’ method can be
formulated. Some care about relative primeness has to be taken, however, the analogy
is not as straightforward as one might wish.

Let A/B ∈ K(x) be a proper rational function. It will now be necessary to
“blow up” the fraction A/B by multiplying numerator and denominator by the same

polynomial. The new fraction, Ã/B̃ say, which denotes the same element of K(x) as
A/B, has to be “shift-saturated”, in a sense to be explained below.

Under this condition, one can indeed show that a solution of the rational summa-
tion problem (18) can be obtained from

A

B
=

Ã

B̃
= ∆

C

E−1
(
[B̃1]0 [B̃2]1 · · · [B̃k]k−1

) +
F

B̃1 B̃2 · · · B̃k

.

Here
D = E−1

(
[B̃1]

0 [B̃2]
1 · · · [B̃k]

k−1
)

= gcd(B̃, E−1B̃)

and

G = B̃1 · B̃2 · . . . · B̃k =
B̃

D

come from the GFF of B̃:

B̃ = [B̃1]
1 · [B̃2]

2 · . . . · [B̃k]
k ,

and C, F ∈ K[x] are polynomials with deg(C) < deg(D) and deg(F ) < deg(G).



Again, the solution polynomials C, F can be obtained via undetermined coeffi-
cients from the polynomial equation

Ã =
B̃

(E D)
· (E C)−G · C + D · F

using the degree bounds. Note, in particular, that the “blowing up” procedure men-
tioned above has to be performed in such a way that the polynomial G = B̃1 B̃2 · · · B̃k

has dispersion 0, i.e. gcd(G,EhG) = 1 for all h 6= 0. A method for doing this has
been presented by Paule19. His way of solving the rational summation problem à
la Horowitz as an application of the GFF has the disadvantage that the “blow
up” may lead to degree bounds which are much bigger that necessary. In Section 7,
we will present an alternative approach which avoids this inefficiency — indeed, the
method presented there is “optimal” with respect to the parameter “degree bound”.

To conclude this section, let us mention that another iterative method, different
from Moenck’s approach à la Hermite and not based on partial fraction decom-
position, has been proposed by Abramov2 — see also Pirastu24,25 for a discussion
and an improvement of this approach.

5. Greatest factorial factorization and Gosper’s algorithm

With the concept of GFF in mind, we now look back at Gosper’s algorithm from
Sec. 2, in particular at the crucial representation (3) of rational functions. Following
Paule20, let us consider the homogeneous first-order difference equation

B · E Y − A · Y = 0 , (21)

where A,B ∈ K[x] with gcd(A,B) = 1. Let Y ∈ K[x] be a non-constant polynomial
solution of Eq. (21), and let

Y = [Y1]
1 · [Y2]

2 · . . . · [Yk]
k

denote its GFF. Dividing Eq. (21) by

gcd(Y, E Y ) = [Y2]
1 · [Y3]

2 · . . . · [Yk]
k−1

gives

B · (E Y1) · . . . · (E Yk) = A · Y1

(
E−1Y2

)
· . . . ·

(
E−k+1Yk

)
,

and from the coprimeness condition (20) we get

A = (E Y1) · (E Y2) · . . . · (E Yk) , (22)

B = Y1 ·
(
E−1Y2

)
· . . . ·

(
E−k+1Yk

)
. (23)

This gives us a way of computing the solution Y by constructing iteratively its GFF:



— put A(0) = A and B(0) = B and let k denote the maximum integer i such that
gcd(A,EiB) 6= 1;

— for j from 1 to k compute

Yj := gcd(E−1A(j−1), B(j−1))

A(j) := A(j−1)/E Yj

B(j) := B(j−1)/E−j+1Yj

— if a polynomial solution Y ∈ K[x] of Eq. (21) exists, then one ends up with
(A(k), B(k)) = (1, 1) and Y = [Y1]

1 · . . . · [Yk]
k is this solution;

— if no such solution exists, then one ends up with (A(k), B(k)) 6= (1, 1), which
means that

A = (E Y1) · . . . · (E Yk) · A(k) ,

B = Y1 · . . . ·
(
E−k+1Yk

)
·B(k) ,

where A(k), B(k) ∈ K[x] are polynomials such that

gcd(A(k), EjB(k)) = 1 for all j ≥ 0 . (24)

In the “failure” situation just described we may nevertheless conclude that Y =
[Y1]

1 · . . . · [Yk]
k is the solution of the equation

B

B(k)
· E Y − A

A(k)
· Y = 0 ,

or equivalently,
A

B
=

E Y

Y
· A(k)

B(k)
,

which, together with condition (24), brings us back to the situation of Eq. (3). But
even more can be said: it turns out that the output of the algorithm described above
satisfies

gcd(A(k), Y ) = 1 = gcd(B(k), E Y ) .

In his work on hypergeometric solutions of linear difference equations with polyno-
mial coefficients, Petkovšek23 showed that under these additional assumptions the
Gosper representation (3) is unique. We state this result, the Gosper-Petkovšek
representation for rational functions, for later reference:

For any (nonzero) rational function r ∈ K(x) there exist unique monic
polynomials P,Q, R ∈ K[x] and a unique constant‡c ∈ K such that

r = c · E P

P
· Q

E R
, (25)

with gcd(P, Q) = 1 = gcd(P, R) and gcd(Q,EjR) = 1 for all j ≥ 1.

‡For the following, it is convenient to assume that the constant c, if 6= 1, is associated with the
polynomial Q, so that we admit a polynomial which is not necessarily monic in this position.



The above algorithm shows how this representation can be computed, again using
(essentially) only gcd-calculations. Note that the value k of the factorial exponent
of Y can be obtained by a resultant computation, since this is the maximum integer
value of the resultant Resx(A,EiB), seen as a polynomial in i. As a technical remark,
let us note for later use that in the situation of Eq. (25) the gdc-conditions ensure in
particular that Q |A and (E R) |B, where r = A/B is written in reduced form.

With the Gosper-Petkovšek (in short: GP) representation in hands, Gosper’s
ingenious, but somewhat mysterious, algorithm can be given the following “natural”
explanation, which is due to Paule20.

Let A/B ∈ K(x) with gcd(A,B) = 1 be the reduced rational representation of the
hypergeometric sequence (fk)k≥0. Suppose a hypergeometric solution (gk)k≥0 of

gk+1 − gk = fk (k ≥ 0) (26)

exists, and let C/D ∈ K(x) with gcd(C,D) = 1 be the reduced rational representation
of (gk)k≥0. Then (gk)k≥0 is a rational multiple of the input, or written explicitly,

gk =
D(k)

C(k)−D(k)
· fk (k ≥ 0) . (27)

Conversely, using this representation as an “Ansatz” for gk we find

A

B
=

E(C −D)

C −D
· C

ED
. (28)

Hence, solving (26) is equivalent to finding relatively prime polynomials C,D satis-
fying (28). If this can be done, C/D ∈ K(x) is the (reduced) rational representation
of the solution (gk)k≥0.

Note that gcd(C, C −D) = 1 = gcd(D,C −D), thus the right hand side of (28)
is ”very close” to a GP representation. If it actually were that representation, then
from writing the “true” GP representation of A/B as

A

B
=

EP

P
· Q

ER
, (29)

for P, Q, R ∈ K[x], say, we could conclude that C = Q, D = R (and P = C − D)
by uniqueness. But in general there is no guarantee to have gcd(C, EjD) = 1 for all
j ≥ 1. As a way out, consider the GP representation for C/ED,

C

ED
=

EP̃

P̃
· Q̃

ER̃
(30)

say, for polynomials P̃ , Q̃, R̃ ∈ K[x], which turns the right hand side of Eq. (28) into
a true GP representation:

E((C −D)P̃ )

(C −D)P̃
· Q̃

ER̃
. (31)



Now the comparison with the GP representation (29) results in

Q̃ = Q , R̃ = R , (32)

and

P = (C −D)P̃ . (33)

Eq. (33) can be rewritten as

P = Q · E(
D

R
P̃ )−R · (D

R
P̃ ) , (34)

which shows that Y = P̃ D/R is a solution of the “key equation” (4). Note that Y is
a polynomial, since R divides D by the properties of the GP representation, applied
to Eq. (30). It is now an easy matter to check that this Y actually leads to Eqs. (5)
and (6).

6. q-analogues of Gosper’s and Zeilberger’s algorithms

In this section we present a sketch of how the concepts introduced above, greatest
factorial factorization and Gosper-Petkovšek representation, extend quite nat-
urally into the realm of q-analogues. As direct consequences, q-analogues of the
Gosper and Zeilberger algorithms can be put into action. Proofs, further details,
and applications will appear in a forthcoming article by Paule20.

For this section we adjoin to the ground-field K the indeterminate q. In applica-
tions q might be specialized to a nonzero complex number, e.g. with |q| < 1 for limit
considerations. We shall make use of the standard notation

(a; q)n = (a)n = (1− a)(1− aq) · · · (1− aqn−1) for n ≥ 1,

(a; q)0 = (a)0 = 1 , and 1/(q)n = 0 for n < 0.

Following Gasper and Rahman6, let us define a q-hypergeometric sequence (fk)k≥0

with m (≥ 0) numerator and n (≥ 0) denominator parameters ai, bj ∈ K(q), (1 ≤
i ≤ m, 1 ≤ j ≤ n) as

fk =
(a1)k . . . (am)k

(b1)k . . . (bn)k

· zk

(q)k

· qα(k
2)+βk ,

with argument§z ∈ K, and where α, β are integers.
Writing x = qk, we can view the rational representation of fk+1/fk, namely

fk+1

fk

=
(1− a1x) . . . (1− amx)

(1− b1x) . . . (1− bnx)(1− qx)
· xα · qβ · z (35)

§For sake of simplicity we restrict ourselves to z ∈ K. All works the same way when taking z = z(q) ∈ K(q)
with z(0) 6= 0.



as an element of K(q, x).
In this section we will look at polynomials G ∈ K(q)[x], and the q-shift operator ε

(εG)(x) := G(qx)

will play an analogous rôle to that of the shift operator E. This motivates the
following definitions. A polynomial G ∈ K(q)[x] is said to be q-monic if G(0) = 1.
Note that this property is invariant with respect to the q-shift operator ε, whereas
the property monic, defined as usual, is invariant with respect to the shift operator
(EG)(x) = G(x + 1). For a polynomial G ∈ K(q)[x], the k-th falling q-factorial of G
is defined by

[G]kq :=
{

G ·
(
ε−1G

)
·
(
ε−2G

)
· . . . ·

(
ε−k+1G

)
if k > 0 ,

1 if k = 0 .

For example, (x)n = [1−xqn−1]nq . By separating the q-monic part and considering the
q-shift operator ε instead of E, we are able to define the unique q-greatest factorial
factorization (qGFF) of a polynomial G ∈ K(q)[x]:

G = c · xj · [G1(x)]1q · [G2(x)]2q · . . . · [Gk(x)]kq ,

where c ∈ K(q), and Gi ∈ K(q)[x] are q-monic. Note that the monomial xj (j ≥ 0),
corresponds to the root 0 of G with multiplicity j. One can prove that for the qGFF
of G ∈ K(q)[x] (as above) the following analogue of the gcd-property of the GFF
holds:

gcd(G, εG) = xj · [G1(x)]0q · [G2(x)]1q · . . . · [Gk(x)]k−1
q .

By an argument analogous to that in Sec. 5, it is possible to derive a unique q-
analogue of the Gosper-Petkovšek representation, in short the qGP form, of the
rational representation r(x) of a q-hypergeometric sequence. Let us introduce some
notation first. We consider rational functions

r(x) =
A(x)

B(x)
=

A1(x)

B1(x)
· xα · qβ · z ,

where A,B ∈ K(q)[x] are such that A1, B1 ∈ K(q)[x] are q-monic, α and β are
integers, and z ∈ K. Let µ(x) := xα ∈ K(x) and π(q) := qβ ∈ K(q). It is convenient
to use num(s) (resp. den(s)) for the numerator (resp. denominator) of a reduced
rational function s. Now we can formulate the properties of the qGP form:

For any (nonzero) r ∈ K(q)(x), as above, there exist unique q-monic
polynomials P,Q, R ∈ K(q)[x] such that

A1

B1

=
ε P

P
· Q

εR
,



the q-monic part of r, with gcd(P, Q) = 1 = gcd(P, R) and gcd(Q, εjR) =
1 for all j ≥ 1, and

r =
ε P̃

P̃
· Q̃

ε R̃
, (36)

where

P̃ = P · num(π(x)) ,

Q̃ = Q · z · num(µ(x))/den(π(q)) ,

εR̃ = (εR) · den(µ(x)) .

With this qPG form in our hands, we are able to derive a q-analog of Gosper’s
algorithm simply by following the steps made in Sec. 5:

1. Given the qGP form (36) of a rational representation r ∈ K(q)(x), as above, of
a q-hypergeometric sequence (fk)k≥0, the q-key equation

P̃ = Q̃ · (εY )− R̃ · Y
has to be solved for Y ∈ K(q)[x].

2. Then
C

D
=

εY

Y
· Q̃

R̃
∈ K(q)(x)

is the rational representation of the q-hypergeometric solution, i.e.

gk =
D(qk)

C(qk)−D(qk)
· fk

solves
fk = gk+1 − gk .

As an elementary illustrating example let us take, for any fixed n ≥ 0 and for
k ≥ 0,

fk = (−1)kq(
k
2)−(n−1)k

[
n

k

]
,

where [
n

k

]
:=





(q)n

(q)k(q)n−k

, if 0 ≤ k ≤ n ,

0 , otherwise ,

is the Gaussian polynomial, which for q = 1 turns into the ordinary binomial coeffi-

cient
(

n
k

)
. Writing x = qk, the rational representation of fk+1/fk is

fk+1

fk

=
q (1− q−nx)

1− qx
=: r(x) .



¿From the qGP form of r(x), namely

r(x) =
qx

x
· 1− q−n

1− qx
,

we get that
P̃ (x) = x , Q̃(x) = 1− q−nx , and R̃(x) = 1− x .

Solving the q-key equation

x = (1− q−nx) Y (qx)− (1− x) Y (x)

yields
Y (x) = 1/(1− q−n) ∈ K(q, x) .

Hence
C/D ∈ K(q, x) with C(x) = 1− q−nx and D(x) = 1− x

is the rational representation of the q-hypergeometric solution, i.e.

gk =
D(qk)

C(qk)−D(qk)
· fk = −qn−k 1− qk

1− qn
· fk

solves fk = gk+1 − gk. Consequently, for m ≥ 0,

m∑

k=0

(−1)kq(
k
2)−(n−1)k

[
n

k

]
= gm+1 − g0 = (−1)mq(

m
2 )−(n−1)m

[
n− 1

m

]
.

Note that for q = 1 this turns into the well-known identity

m∑

k=0

(−1)k

(
n

k

)
= (−1)m

(
n− 1

m

)
.

In section 2 we have seen that the sign-less variation of
∑m

k=0

(
n
k

)
is not hypergeometric

as a function of m.
Being equipped with a q-analogue of Gosper’s algorithm, a q-analogue of Zeil-

berger’s fast algorithm can be designed in a straightforward manner. Instead of
considering hypergeometric sequences (fn,k), as in section 3, we consider sequences
which are q-hypergeometric in both parameters, i.e. fn+1,k/fn,k and fn,k+1/fn,k are ra-
tional functions in qn and qk over K(q). For instance, taking the sequence of Gaussian

polynomials fn,k =
[
n
k

]
we have (compare with Eq. (7))

[
n + 1

k + 1

]
/

[
n

k + 1

]
=

1− qn+1

1− qn−k
and

[
n + 1

k + 1

]
/

[
n + 1

k

]
=

1− qn−k+1

1− qk+1
.

The annihilating operator AS(N) =
∑d

l=0 Cl(n)N−l now comes with coefficient poly-
nomials Cl(x) from K(q)[x]. Finally, the certificate certS(n, k), as well as the corre-
sponding r(n, k), is a rational function over K(q), rational in qn and qk.



We give no further details, instead we conclude this section by an example for
which we use Riese’s28 implementation written in Mathematica. This package is
not the first, but the most comprehensive implementation of a q-analogue of Zeil-
berger’s fast algorithm. Maple programs for the q-case are due to Zeilberger5 and
Koornwinder15.

We shall prove here, for any n ≥ 0,

∑

l

q6l2+l

[
2n + 2

n− 3l

]
1− q6l+2

1− q2n+2
= 1 , (37)

an identity which is due to Schur29. Note that the sum actually is taken over a finite
integer intervall.

Invoking the program one gets:

zeder!11> math

Mathematica 2.1 for HP Apollo Domain/OS

Copyright 1988-92 Wolfram Research, Inc.

-- Display Manager graphics initialized --

In[1]:= <<qZeil.m

Out[1]= Axel Riese’s q-Zeilberger implementation version 1.3 loaded

In[2]:= FullCert = True

Out[2]= True

In[3]:= qZeil[q^(6l^2+l) qBinomial[2n+2,n-3l,q] (1-q^(6l+2))/

(1-q^(2n+2)), {l,-Infinity,Infinity},n,1]

Out[3]= SUM[n] == SUM[-1 + n]

In[4]:= Cert

Out[4]=

1 + n 1 + 3 l n 3 l n 2 + 3 l n

q (q - q )(-q + q )(-q + q )

-------------------------------------------------------------

1 + 3 l 1 + 3 l n n 1 + 2 n

(-1 + q )(1 + q )(-1 + q )(1 + q )(-1 + q )

The expression Cert corresponds to the qWZ-certificate certS(n, l). For n → ∞
identity (37) turns into a classic identity, namely Euler’s pentagonal number theorem,

∞∑

k=−∞
(−1)kq

1
2
k(3k+1) =

∞∏

m=1

(1− qm),

see e.g. Andrews3.



We also would like to remark that the specialization q = 1 of identity (37) results
in the nontrivial binomial coefficient identity

∑

l

(
2n + 2

n− 3l

)
3l + 1

n + 1
= 1 .

This relatively simple example does not reflect the full power of the method. For
instance, with Riese’s implementation it is possible to give computer proofs of most
of the terminating summation and transformation formulas listed in the appendix of
the book by Gasper and Rahman6. The range of applications also includes the
automatic treatment of various identities from additive number theory, such as the
celebrated Rogers-Ramanujan identities, see e.g. Ekhad and Tre5, or Paule21.

7. Gosper-Petkovšek representation and rational summation

In this last section we come back to the indefinite summation problem for ra-
tional functions, as already treated in Sec. 4. As remarked earlier, if a rational
function has a hypergeometric “antidifference”, then this antidifference is itself ra-
tional, and Gosper’s algorithm can be used to determine it. Here we look again
at the summation problem as stated in (18). Surprisingly, the data provided by the
Gosper-Petkovšek representation of rational functions can be put into action for
a surprisingly simple solution of the summation problem à la Horowitz. This method
is even “optimal” with respect to the degrees of the denominator polynomials in-
volved. A detailed description of this method is given in an article by Pirastu and
Strehl27.

We want to solve the equation

A

B
= ∆

C

D
+

F

G
, (38)

where A/B ∈ K(x) is a given proper rational function (in reduced form), and
C/D,F/G ∈ K(x) are the proper rational functions to be determined such that
G has dispersion zero, i.e. gcd(G,EjG) = 1 for all integers j 6= 0.

Eq. (38) can be solved in many different ways, and following Horowitz’ idea we
can do this by first appropriately fixing the denominator polynomials D and G, and
the solving a linear system corresponding to Eq. (38) for the undetermined coefficients
of C and F , respecting the degree bound for these polynomials. Note that we do not
insist on finding C/D and F/G in reduced form. After determining the coefficients of
C and F from the linear system, it may happen that in the fractions C/D and F/G
a cancellation takes place.

Since in this approach we need to solve a linear system of size deg D + deg G, it
is desirable to fix D and G such that

– a polynomial solution of Eq. (38) (for C and F ) in the desired form is possible;



– deg D and deg G are as small as possible for any choice of denominator polyno-
mials with this property.

It turns out that such an “optimal” way of fixing D and G a priori can be made in
the following sense:

– the choice of D and G depends only on the denominator polynomial B of the
input, and leads to a solution of Eq. (38) for any choice of A such that deg A <
deg B;

– the polynomials D and G have minimum degree among all polynomials with
this property.

In particular, this “optimal” method yields denominator polynomials D with (usually)
much lower degree than the approach by Paule mentioned in Sec. 4, whereas the
degree of G is the same in both methods. We remark that, in general, even the degree
of the “optimal” D is much larger that the degree of B — a notable difference to the
situation with integration, see Eq. (16), where the degree of D is always less that the
degree of B.

It is convenient to introduce the notion of shift-equivalence of irreducible polyno-
mials G,H ∈ K[x] :

G ∼E H
def⇔ ∃k ∈ Z : EkG = H

The shift-equivalence class containing G will be written as 〈G〉E. From now on,
Γ denotes an arbitrary system of representatives for the shift-equivalence classes of
irreducible polynomials. If F,G ∈ K[x] are polynomials, with G irreducible, we
define the G-part of F as

ΨG(F ) :=
∏

j∈Z

(
EjG

)aj

,

where (EjG)
aj is the exact power of EjG dividing F — this is the largest factor

of F that “belongs to 〈G〉E”. This factor may be represented by the corresponding
sequence of exponents

ψG(F ) := (aj)j∈Z ,

which belongs to the set of sequences

Ω0 =
{

ω = (ωj)j∈Z ; ωj ∈ N, finitely many 6= 0
}

,

i.e. the free abelian monoid over Z, where we freely use additional componentwise
operations and relations (infimum, comparison) in the natural way.

Once a representative system Γ has been fixed, a polynomial F ∈ K[x] can be
identified with a finitary mapping

F : Γ → Ω0 : G 7→ ψG(F ) ,

where “finitary” means that only finitely many sequences ψG(F ) are different from the
zero sequence, the neutral element of the monoid Ω0. Conversely, any such mapping



belongs to a polynomial ∈ K[x] . In this way, transformations acting on polynomials
can be specified by describing the corresponding transformation acting on sequences
∈ Ω0.

Four simple transformations of Ω0 will be used in the sequel. We first define, for
any nonzero sequence ω = (ωj)j∈Z ∈ Ω0, the index of the first maximum, m(ω), and

the index of the last nonzero component, l(ω):

j < m(ω) ⇒ ωj < ωm(ω) , j ≥ m(ω) ⇒ ωj ≤ ωm(ω) ,

ωl(ω) 6= 0 , j > l(ω) ⇒ ωj = 0

We then put:

ω̂ = (ω̂j)j∈Z , the cover of ω : this is the least unimodal sequence η ∈ Ω0 s.th.

η ≥ ω (w.r.t. the componentwise partial ordering of Ω0);

ω = (ωj)j∈Z , the reduced cover of ω , defined by

ωj =

{
ω̂j if j < m(ω)(= m(ω̂)) ,
ω̂j+1 if j ≥ m(ω) ;

ωmax = (ωmax
j)j∈Z , the maximum indicator of ω , defined by

ωmax
j =

{
0 if j 6= m(ω) ,
ωm(ω) if j = m(ω) ;

ω+ =
(
ω+

j

)
j∈Z

, the compression of ω , where

ω+
j =

{
0 if j 6= l(ω) ,∑

i∈Z ωi if j = l(ω) .

We can now define the covering transformation F 7→ F̂ for polynomials by simply
requiring that

∀G ∈ Γ : ψG(F̂ ) = ̂ψG(F )

i.e. by executing the covering transformation ω 7→ ω̂ on all sequences ψG(F ) (G ∈ Γ)
“in parallel”. The same can be done for the other three operations. Note that none
of these transformations depends on the choice of Γ.

We can now state the crucial result about optimality, which follows from a detailed
study of the action of the ∆-operator on shift equivalence classes:

• The optimal choice for the denominator polynomials D and G in the rational
summation problem, given the input A/B ∈ K(x) , is:

D = B , G = Bmax



The (perhaps surprising) link with the Gosper-Petkovšek representation is then:

• Let
B

E B
=

E P

P
· Q

E R

be the Gosper-Petkovšek representation of the rational function B/(E B),
then

B =
P ·B

R
=

B̂

R
, Bmax = Q+ .

We conclude that

an “optimal” rational summation algorithm can be easily designed on the
basis of any algorithm computing the Gosper-Petkovšek representa-
tion.

Note that the transformation Q 7→ Q+ can be implemented without factoring.
We illustrate the rational summation algorithm just outlined and the concepts

introduced in this section by an example. Note that the factored form of the poly-
nomials are given for the purpose of illustration only — computations are done using
the expanded forms.

Consider the rational function A/B ∈ Q(x), where

A := x2 − 3 x + 1

B := x12 + 9 x11 + 30 x10 + 38 x9 − 12 x8 − 68 x7 − 46 x6 − 22 x5 − 5 x4 + 75 x3

= ( x− 1 )2 x3 ( x + 3 ) ( x2 + 1 ) ( x2 + 4 x + 5 )2

We have two shift classes, 〈x〉 and 〈x2 + 1〉, and

Ψx(B) = (x− 1)2x3(x + 3) i.e. ψx(B) = ( . . . 0 2 3 0 0 1 0 . . . )

Ψx2+1(B) = (x2 + 1)(x2 + 4x + 5)2 i.e. ψx2+1(B) = ( . . . 0 1 0 2 0 . . . )

where underlining denotes the position of index zero. From

ψx(B̂) = ̂ψx(B) = ( . . . 0 2 3 1 1 1 0 . . . ) ψx2+1(B̂) = ̂ψx2+1(B) = ( . . . 0 1 1 2 0 . . . )

ψx(B) = ψx(B) = ( . . . 0 2 1 1 1 0 . . . ) ψx2+1(B) = ψx2+1(B) = ( . . . 0 1 1 0 . . . )

and

ψx(B
max) = ψx(B)max = ( . . . 0 0 3 0 0 . . . )

ψx2+1(B
max) = ψx2+1(B)max = ( . . . 0 0 0 2 0 0 . . . )

we expect to find

C = (x− 1)2(x)(x + 1)(x + 2)(x2 + 1)(x2 + 2x + 2) , G = x3(x2 + 4x + 5)2 ,



Indeed, the computation of the Gosper-Petkovšek representation of B/(E B) out-
puts the three polynomials

P = x4 + 5 x3 + 10 x2 + 10 x + 4

= ( 2 + 2 x + x2 ) ( 2 + x ) ( 1 + x )

Q = x7 + 2 x6 − x5 − 4 x4 + 3 x3 − 6 x2 + 5 x

= ( x− 1 )2 x ( x2 + 1 ) ( x2 + 4 x + 5 )

R = x7 + 7 x6 + 20 x5 + 32 x4 + 28 x3 + 12 x2

= x2 ( 3 + x ) (x2 + 4 x + 5 )2 .

Note that

ψx(Q) = ( . . . 0 2 1 0 . . . ) , ψx2+1(Q) = ( . . . 0 1 0 1 0 . . . ) ,

ψx(Q
+) = ψx(Q)+ = ( . . . 0 3 0 . . . ) , ψx2+1(Q

+) = ψx2+1(Q)+ = ( . . . 0 0 0 2 0 . . . ).

Next we find

D = P ·B/R = x9 + 3 x8 + 2 x7 − 2 x6 − 5 x5 − 3 x4 − 2 x3 + 2 x2 + 4 x

= ( x2 + 1 ) x ( x− 1 )2 ( 2 + 2 x + x2 ) ( 2 + x ) ( 1 + x ) ,

G = Q+ = x7 + 8x6 + 26x5 + 40x4 + 25x3

= x3 ( x2 + 4x + 5 )2 .

Solving now a polynomial equation equivalent to

A

B
= ∆

C

D
+

F

G
(39)

for the coefficients of

C = c0 + c1x + · · ·+ c8x
8 and F = f0 + f1x + · · ·+ f6x

6

yields a solution of Eq. (39), where

C

D
=
−1900− 24428 x + 25768 x2 + · · · − 13947 x7 + 222 x8

43200 (x2 + 1) x (x− 1)2 (2 + 2 x + x2) (2 + x) (1 + x)
,

F

G
=

24000− 34250 x− 56900 x2 − 27745 x3 − 4612 x4 + 37 x5

72000 (x2 + 4 x + 5)2 x3
.
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